xref: /openbmc/linux/block/partitions/efi.c (revision f7777dcc)
1 /************************************************************
2  * EFI GUID Partition Table handling
3  *
4  * http://www.uefi.org/specs/
5  * http://www.intel.com/technology/efi/
6  *
7  * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com>
8  *   Copyright 2000,2001,2002,2004 Dell Inc.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  *
25  * TODO:
26  *
27  * Changelog:
28  * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com>
29  * - detect hybrid MBRs, tighter pMBR checking & cleanups.
30  *
31  * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com>
32  * - test for valid PMBR and valid PGPT before ever reading
33  *   AGPT, allow override with 'gpt' kernel command line option.
34  * - check for first/last_usable_lba outside of size of disk
35  *
36  * Tue  Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com>
37  * - Ported to 2.5.7-pre1 and 2.5.7-dj2
38  * - Applied patch to avoid fault in alternate header handling
39  * - cleaned up find_valid_gpt
40  * - On-disk structure and copy in memory is *always* LE now -
41  *   swab fields as needed
42  * - remove print_gpt_header()
43  * - only use first max_p partition entries, to keep the kernel minor number
44  *   and partition numbers tied.
45  *
46  * Mon  Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com>
47  * - Removed __PRIPTR_PREFIX - not being used
48  *
49  * Mon  Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com>
50  * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied
51  *
52  * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com>
53  * - Added compare_gpts().
54  * - moved le_efi_guid_to_cpus() back into this file.  GPT is the only
55  *   thing that keeps EFI GUIDs on disk.
56  * - Changed gpt structure names and members to be simpler and more Linux-like.
57  *
58  * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com>
59  * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck
60  *
61  * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com>
62  * - Changed function comments to DocBook style per Andreas Dilger suggestion.
63  *
64  * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com>
65  * - Change read_lba() to use the page cache per Al Viro's work.
66  * - print u64s properly on all architectures
67  * - fixed debug_printk(), now Dprintk()
68  *
69  * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com>
70  * - Style cleanups
71  * - made most functions static
72  * - Endianness addition
73  * - remove test for second alternate header, as it's not per spec,
74  *   and is unnecessary.  There's now a method to read/write the last
75  *   sector of an odd-sized disk from user space.  No tools have ever
76  *   been released which used this code, so it's effectively dead.
77  * - Per Asit Mallick of Intel, added a test for a valid PMBR.
78  * - Added kernel command line option 'gpt' to override valid PMBR test.
79  *
80  * Wed Jun  6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com>
81  * - added devfs volume UUID support (/dev/volumes/uuids) for
82  *   mounting file systems by the partition GUID.
83  *
84  * Tue Dec  5 2000 Matt Domsch <Matt_Domsch@dell.com>
85  * - Moved crc32() to linux/lib, added efi_crc32().
86  *
87  * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com>
88  * - Replaced Intel's CRC32 function with an equivalent
89  *   non-license-restricted version.
90  *
91  * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com>
92  * - Fixed the last_lba() call to return the proper last block
93  *
94  * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com>
95  * - Thanks to Andries Brouwer for his debugging assistance.
96  * - Code works, detects all the partitions.
97  *
98  ************************************************************/
99 #include <linux/crc32.h>
100 #include <linux/ctype.h>
101 #include <linux/math64.h>
102 #include <linux/slab.h>
103 #include "check.h"
104 #include "efi.h"
105 
106 /* This allows a kernel command line option 'gpt' to override
107  * the test for invalid PMBR.  Not __initdata because reloading
108  * the partition tables happens after init too.
109  */
110 static int force_gpt;
111 static int __init
112 force_gpt_fn(char *str)
113 {
114 	force_gpt = 1;
115 	return 1;
116 }
117 __setup("gpt", force_gpt_fn);
118 
119 
120 /**
121  * efi_crc32() - EFI version of crc32 function
122  * @buf: buffer to calculate crc32 of
123  * @len - length of buf
124  *
125  * Description: Returns EFI-style CRC32 value for @buf
126  *
127  * This function uses the little endian Ethernet polynomial
128  * but seeds the function with ~0, and xor's with ~0 at the end.
129  * Note, the EFI Specification, v1.02, has a reference to
130  * Dr. Dobbs Journal, May 1994 (actually it's in May 1992).
131  */
132 static inline u32
133 efi_crc32(const void *buf, unsigned long len)
134 {
135 	return (crc32(~0L, buf, len) ^ ~0L);
136 }
137 
138 /**
139  * last_lba(): return number of last logical block of device
140  * @bdev: block device
141  *
142  * Description: Returns last LBA value on success, 0 on error.
143  * This is stored (by sd and ide-geometry) in
144  *  the part[0] entry for this disk, and is the number of
145  *  physical sectors available on the disk.
146  */
147 static u64 last_lba(struct block_device *bdev)
148 {
149 	if (!bdev || !bdev->bd_inode)
150 		return 0;
151 	return div_u64(bdev->bd_inode->i_size,
152 		       bdev_logical_block_size(bdev)) - 1ULL;
153 }
154 
155 static inline int pmbr_part_valid(gpt_mbr_record *part)
156 {
157 	if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
158 		goto invalid;
159 
160 	/* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
161 	if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
162 		goto invalid;
163 
164 	return GPT_MBR_PROTECTIVE;
165 invalid:
166 	return 0;
167 }
168 
169 /**
170  * is_pmbr_valid(): test Protective MBR for validity
171  * @mbr: pointer to a legacy mbr structure
172  * @total_sectors: amount of sectors in the device
173  *
174  * Description: Checks for a valid protective or hybrid
175  * master boot record (MBR). The validity of a pMBR depends
176  * on all of the following properties:
177  *  1) MSDOS signature is in the last two bytes of the MBR
178  *  2) One partition of type 0xEE is found
179  *
180  * In addition, a hybrid MBR will have up to three additional
181  * primary partitions, which point to the same space that's
182  * marked out by up to three GPT partitions.
183  *
184  * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or
185  * GPT_MBR_HYBRID depending on the device layout.
186  */
187 static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors)
188 {
189 	uint32_t sz = 0;
190 	int i, part = 0, ret = 0; /* invalid by default */
191 
192 	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
193 		goto done;
194 
195 	for (i = 0; i < 4; i++) {
196 		ret = pmbr_part_valid(&mbr->partition_record[i]);
197 		if (ret == GPT_MBR_PROTECTIVE) {
198 			part = i;
199 			/*
200 			 * Ok, we at least know that there's a protective MBR,
201 			 * now check if there are other partition types for
202 			 * hybrid MBR.
203 			 */
204 			goto check_hybrid;
205 		}
206 	}
207 
208 	if (ret != GPT_MBR_PROTECTIVE)
209 		goto done;
210 check_hybrid:
211 	for (i = 0; i < 4; i++)
212 		if ((mbr->partition_record[i].os_type !=
213 			EFI_PMBR_OSTYPE_EFI_GPT) &&
214 		    (mbr->partition_record[i].os_type != 0x00))
215 			ret = GPT_MBR_HYBRID;
216 
217 	/*
218 	 * Protective MBRs take up the lesser of the whole disk
219 	 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
220 	 * Some partitioning programs, nonetheless, choose to set
221 	 * the size to the maximum 32-bit limitation, disregarding
222 	 * the disk size.
223 	 *
224 	 * Hybrid MBRs do not necessarily comply with this.
225 	 *
226 	 * Consider a bad value here to be a warning to support dd'ing
227 	 * an image from a smaller disk to a larger disk.
228 	 */
229 	if (ret == GPT_MBR_PROTECTIVE) {
230 		sz = le32_to_cpu(mbr->partition_record[part].size_in_lba);
231 		if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
232 			pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n",
233 				 sz, min_t(uint32_t,
234 					   total_sectors - 1, 0xFFFFFFFF));
235 	}
236 done:
237 	return ret;
238 }
239 
240 /**
241  * read_lba(): Read bytes from disk, starting at given LBA
242  * @state
243  * @lba
244  * @buffer
245  * @size_t
246  *
247  * Description: Reads @count bytes from @state->bdev into @buffer.
248  * Returns number of bytes read on success, 0 on error.
249  */
250 static size_t read_lba(struct parsed_partitions *state,
251 		       u64 lba, u8 *buffer, size_t count)
252 {
253 	size_t totalreadcount = 0;
254 	struct block_device *bdev = state->bdev;
255 	sector_t n = lba * (bdev_logical_block_size(bdev) / 512);
256 
257 	if (!buffer || lba > last_lba(bdev))
258                 return 0;
259 
260 	while (count) {
261 		int copied = 512;
262 		Sector sect;
263 		unsigned char *data = read_part_sector(state, n++, &sect);
264 		if (!data)
265 			break;
266 		if (copied > count)
267 			copied = count;
268 		memcpy(buffer, data, copied);
269 		put_dev_sector(sect);
270 		buffer += copied;
271 		totalreadcount +=copied;
272 		count -= copied;
273 	}
274 	return totalreadcount;
275 }
276 
277 /**
278  * alloc_read_gpt_entries(): reads partition entries from disk
279  * @state
280  * @gpt - GPT header
281  *
282  * Description: Returns ptes on success,  NULL on error.
283  * Allocates space for PTEs based on information found in @gpt.
284  * Notes: remember to free pte when you're done!
285  */
286 static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state,
287 					 gpt_header *gpt)
288 {
289 	size_t count;
290 	gpt_entry *pte;
291 
292 	if (!gpt)
293 		return NULL;
294 
295 	count = le32_to_cpu(gpt->num_partition_entries) *
296                 le32_to_cpu(gpt->sizeof_partition_entry);
297 	if (!count)
298 		return NULL;
299 	pte = kmalloc(count, GFP_KERNEL);
300 	if (!pte)
301 		return NULL;
302 
303 	if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba),
304 			(u8 *) pte, count) < count) {
305 		kfree(pte);
306                 pte=NULL;
307 		return NULL;
308 	}
309 	return pte;
310 }
311 
312 /**
313  * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk
314  * @state
315  * @lba is the Logical Block Address of the partition table
316  *
317  * Description: returns GPT header on success, NULL on error.   Allocates
318  * and fills a GPT header starting at @ from @state->bdev.
319  * Note: remember to free gpt when finished with it.
320  */
321 static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state,
322 					 u64 lba)
323 {
324 	gpt_header *gpt;
325 	unsigned ssz = bdev_logical_block_size(state->bdev);
326 
327 	gpt = kmalloc(ssz, GFP_KERNEL);
328 	if (!gpt)
329 		return NULL;
330 
331 	if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) {
332 		kfree(gpt);
333                 gpt=NULL;
334 		return NULL;
335 	}
336 
337 	return gpt;
338 }
339 
340 /**
341  * is_gpt_valid() - tests one GPT header and PTEs for validity
342  * @state
343  * @lba is the logical block address of the GPT header to test
344  * @gpt is a GPT header ptr, filled on return.
345  * @ptes is a PTEs ptr, filled on return.
346  *
347  * Description: returns 1 if valid,  0 on error.
348  * If valid, returns pointers to newly allocated GPT header and PTEs.
349  */
350 static int is_gpt_valid(struct parsed_partitions *state, u64 lba,
351 			gpt_header **gpt, gpt_entry **ptes)
352 {
353 	u32 crc, origcrc;
354 	u64 lastlba;
355 
356 	if (!ptes)
357 		return 0;
358 	if (!(*gpt = alloc_read_gpt_header(state, lba)))
359 		return 0;
360 
361 	/* Check the GUID Partition Table signature */
362 	if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) {
363 		pr_debug("GUID Partition Table Header signature is wrong:"
364 			 "%lld != %lld\n",
365 			 (unsigned long long)le64_to_cpu((*gpt)->signature),
366 			 (unsigned long long)GPT_HEADER_SIGNATURE);
367 		goto fail;
368 	}
369 
370 	/* Check the GUID Partition Table header size is too big */
371 	if (le32_to_cpu((*gpt)->header_size) >
372 			bdev_logical_block_size(state->bdev)) {
373 		pr_debug("GUID Partition Table Header size is too large: %u > %u\n",
374 			le32_to_cpu((*gpt)->header_size),
375 			bdev_logical_block_size(state->bdev));
376 		goto fail;
377 	}
378 
379 	/* Check the GUID Partition Table header size is too small */
380 	if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) {
381 		pr_debug("GUID Partition Table Header size is too small: %u < %zu\n",
382 			le32_to_cpu((*gpt)->header_size),
383 			sizeof(gpt_header));
384 		goto fail;
385 	}
386 
387 	/* Check the GUID Partition Table CRC */
388 	origcrc = le32_to_cpu((*gpt)->header_crc32);
389 	(*gpt)->header_crc32 = 0;
390 	crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size));
391 
392 	if (crc != origcrc) {
393 		pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n",
394 			 crc, origcrc);
395 		goto fail;
396 	}
397 	(*gpt)->header_crc32 = cpu_to_le32(origcrc);
398 
399 	/* Check that the my_lba entry points to the LBA that contains
400 	 * the GUID Partition Table */
401 	if (le64_to_cpu((*gpt)->my_lba) != lba) {
402 		pr_debug("GPT my_lba incorrect: %lld != %lld\n",
403 			 (unsigned long long)le64_to_cpu((*gpt)->my_lba),
404 			 (unsigned long long)lba);
405 		goto fail;
406 	}
407 
408 	/* Check the first_usable_lba and last_usable_lba are
409 	 * within the disk.
410 	 */
411 	lastlba = last_lba(state->bdev);
412 	if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) {
413 		pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n",
414 			 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba),
415 			 (unsigned long long)lastlba);
416 		goto fail;
417 	}
418 	if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) {
419 		pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
420 			 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
421 			 (unsigned long long)lastlba);
422 		goto fail;
423 	}
424 	if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) {
425 		pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
426 			 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
427 			 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba));
428 		goto fail;
429 	}
430 	/* Check that sizeof_partition_entry has the correct value */
431 	if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) {
432 		pr_debug("GUID Partitition Entry Size check failed.\n");
433 		goto fail;
434 	}
435 
436 	if (!(*ptes = alloc_read_gpt_entries(state, *gpt)))
437 		goto fail;
438 
439 	/* Check the GUID Partition Entry Array CRC */
440 	crc = efi_crc32((const unsigned char *) (*ptes),
441 			le32_to_cpu((*gpt)->num_partition_entries) *
442 			le32_to_cpu((*gpt)->sizeof_partition_entry));
443 
444 	if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) {
445 		pr_debug("GUID Partitition Entry Array CRC check failed.\n");
446 		goto fail_ptes;
447 	}
448 
449 	/* We're done, all's well */
450 	return 1;
451 
452  fail_ptes:
453 	kfree(*ptes);
454 	*ptes = NULL;
455  fail:
456 	kfree(*gpt);
457 	*gpt = NULL;
458 	return 0;
459 }
460 
461 /**
462  * is_pte_valid() - tests one PTE for validity
463  * @pte is the pte to check
464  * @lastlba is last lba of the disk
465  *
466  * Description: returns 1 if valid,  0 on error.
467  */
468 static inline int
469 is_pte_valid(const gpt_entry *pte, const u64 lastlba)
470 {
471 	if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
472 	    le64_to_cpu(pte->starting_lba) > lastlba         ||
473 	    le64_to_cpu(pte->ending_lba)   > lastlba)
474 		return 0;
475 	return 1;
476 }
477 
478 /**
479  * compare_gpts() - Search disk for valid GPT headers and PTEs
480  * @pgpt is the primary GPT header
481  * @agpt is the alternate GPT header
482  * @lastlba is the last LBA number
483  * Description: Returns nothing.  Sanity checks pgpt and agpt fields
484  * and prints warnings on discrepancies.
485  *
486  */
487 static void
488 compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba)
489 {
490 	int error_found = 0;
491 	if (!pgpt || !agpt)
492 		return;
493 	if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) {
494 		pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n");
495 		pr_warn("GPT:%lld != %lld\n",
496 		       (unsigned long long)le64_to_cpu(pgpt->my_lba),
497                        (unsigned long long)le64_to_cpu(agpt->alternate_lba));
498 		error_found++;
499 	}
500 	if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) {
501 		pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n");
502 		pr_warn("GPT:%lld != %lld\n",
503 		       (unsigned long long)le64_to_cpu(pgpt->alternate_lba),
504                        (unsigned long long)le64_to_cpu(agpt->my_lba));
505 		error_found++;
506 	}
507 	if (le64_to_cpu(pgpt->first_usable_lba) !=
508             le64_to_cpu(agpt->first_usable_lba)) {
509 		pr_warn("GPT:first_usable_lbas don't match.\n");
510 		pr_warn("GPT:%lld != %lld\n",
511 		       (unsigned long long)le64_to_cpu(pgpt->first_usable_lba),
512                        (unsigned long long)le64_to_cpu(agpt->first_usable_lba));
513 		error_found++;
514 	}
515 	if (le64_to_cpu(pgpt->last_usable_lba) !=
516             le64_to_cpu(agpt->last_usable_lba)) {
517 		pr_warn("GPT:last_usable_lbas don't match.\n");
518 		pr_warn("GPT:%lld != %lld\n",
519 		       (unsigned long long)le64_to_cpu(pgpt->last_usable_lba),
520                        (unsigned long long)le64_to_cpu(agpt->last_usable_lba));
521 		error_found++;
522 	}
523 	if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) {
524 		pr_warn("GPT:disk_guids don't match.\n");
525 		error_found++;
526 	}
527 	if (le32_to_cpu(pgpt->num_partition_entries) !=
528             le32_to_cpu(agpt->num_partition_entries)) {
529 		pr_warn("GPT:num_partition_entries don't match: "
530 		       "0x%x != 0x%x\n",
531 		       le32_to_cpu(pgpt->num_partition_entries),
532 		       le32_to_cpu(agpt->num_partition_entries));
533 		error_found++;
534 	}
535 	if (le32_to_cpu(pgpt->sizeof_partition_entry) !=
536             le32_to_cpu(agpt->sizeof_partition_entry)) {
537 		pr_warn("GPT:sizeof_partition_entry values don't match: "
538 		       "0x%x != 0x%x\n",
539                        le32_to_cpu(pgpt->sizeof_partition_entry),
540 		       le32_to_cpu(agpt->sizeof_partition_entry));
541 		error_found++;
542 	}
543 	if (le32_to_cpu(pgpt->partition_entry_array_crc32) !=
544             le32_to_cpu(agpt->partition_entry_array_crc32)) {
545 		pr_warn("GPT:partition_entry_array_crc32 values don't match: "
546 		       "0x%x != 0x%x\n",
547                        le32_to_cpu(pgpt->partition_entry_array_crc32),
548 		       le32_to_cpu(agpt->partition_entry_array_crc32));
549 		error_found++;
550 	}
551 	if (le64_to_cpu(pgpt->alternate_lba) != lastlba) {
552 		pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n");
553 		pr_warn("GPT:%lld != %lld\n",
554 			(unsigned long long)le64_to_cpu(pgpt->alternate_lba),
555 			(unsigned long long)lastlba);
556 		error_found++;
557 	}
558 
559 	if (le64_to_cpu(agpt->my_lba) != lastlba) {
560 		pr_warn("GPT:Alternate GPT header not at the end of the disk.\n");
561 		pr_warn("GPT:%lld != %lld\n",
562 			(unsigned long long)le64_to_cpu(agpt->my_lba),
563 			(unsigned long long)lastlba);
564 		error_found++;
565 	}
566 
567 	if (error_found)
568 		pr_warn("GPT: Use GNU Parted to correct GPT errors.\n");
569 	return;
570 }
571 
572 /**
573  * find_valid_gpt() - Search disk for valid GPT headers and PTEs
574  * @state
575  * @gpt is a GPT header ptr, filled on return.
576  * @ptes is a PTEs ptr, filled on return.
577  * Description: Returns 1 if valid, 0 on error.
578  * If valid, returns pointers to newly allocated GPT header and PTEs.
579  * Validity depends on PMBR being valid (or being overridden by the
580  * 'gpt' kernel command line option) and finding either the Primary
581  * GPT header and PTEs valid, or the Alternate GPT header and PTEs
582  * valid.  If the Primary GPT header is not valid, the Alternate GPT header
583  * is not checked unless the 'gpt' kernel command line option is passed.
584  * This protects against devices which misreport their size, and forces
585  * the user to decide to use the Alternate GPT.
586  */
587 static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt,
588 			  gpt_entry **ptes)
589 {
590 	int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
591 	gpt_header *pgpt = NULL, *agpt = NULL;
592 	gpt_entry *pptes = NULL, *aptes = NULL;
593 	legacy_mbr *legacymbr;
594 	sector_t total_sectors = i_size_read(state->bdev->bd_inode) >> 9;
595 	u64 lastlba;
596 
597 	if (!ptes)
598 		return 0;
599 
600 	lastlba = last_lba(state->bdev);
601         if (!force_gpt) {
602 		/* This will be added to the EFI Spec. per Intel after v1.02. */
603 		legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL);
604 		if (!legacymbr)
605 			goto fail;
606 
607 		read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr));
608 		good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
609 		kfree(legacymbr);
610 
611 		if (!good_pmbr)
612 			goto fail;
613 
614 		pr_debug("Device has a %s MBR\n",
615 			 good_pmbr == GPT_MBR_PROTECTIVE ?
616 						"protective" : "hybrid");
617 	}
618 
619 	good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA,
620 				 &pgpt, &pptes);
621         if (good_pgpt)
622 		good_agpt = is_gpt_valid(state,
623 					 le64_to_cpu(pgpt->alternate_lba),
624 					 &agpt, &aptes);
625         if (!good_agpt && force_gpt)
626                 good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes);
627 
628         /* The obviously unsuccessful case */
629         if (!good_pgpt && !good_agpt)
630                 goto fail;
631 
632         compare_gpts(pgpt, agpt, lastlba);
633 
634         /* The good cases */
635         if (good_pgpt) {
636                 *gpt  = pgpt;
637                 *ptes = pptes;
638                 kfree(agpt);
639                 kfree(aptes);
640 		if (!good_agpt)
641                         pr_warn("Alternate GPT is invalid, using primary GPT.\n");
642                 return 1;
643         }
644         else if (good_agpt) {
645                 *gpt  = agpt;
646                 *ptes = aptes;
647                 kfree(pgpt);
648                 kfree(pptes);
649 		pr_warn("Primary GPT is invalid, using alternate GPT.\n");
650                 return 1;
651         }
652 
653  fail:
654         kfree(pgpt);
655         kfree(agpt);
656         kfree(pptes);
657         kfree(aptes);
658         *gpt = NULL;
659         *ptes = NULL;
660         return 0;
661 }
662 
663 /**
664  * efi_partition(struct parsed_partitions *state)
665  * @state
666  *
667  * Description: called from check.c, if the disk contains GPT
668  * partitions, sets up partition entries in the kernel.
669  *
670  * If the first block on the disk is a legacy MBR,
671  * it will get handled by msdos_partition().
672  * If it's a Protective MBR, we'll handle it here.
673  *
674  * We do not create a Linux partition for GPT, but
675  * only for the actual data partitions.
676  * Returns:
677  * -1 if unable to read the partition table
678  *  0 if this isn't our partition table
679  *  1 if successful
680  *
681  */
682 int efi_partition(struct parsed_partitions *state)
683 {
684 	gpt_header *gpt = NULL;
685 	gpt_entry *ptes = NULL;
686 	u32 i;
687 	unsigned ssz = bdev_logical_block_size(state->bdev) / 512;
688 
689 	if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) {
690 		kfree(gpt);
691 		kfree(ptes);
692 		return 0;
693 	}
694 
695 	pr_debug("GUID Partition Table is valid!  Yea!\n");
696 
697 	for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) {
698 		struct partition_meta_info *info;
699 		unsigned label_count = 0;
700 		unsigned label_max;
701 		u64 start = le64_to_cpu(ptes[i].starting_lba);
702 		u64 size = le64_to_cpu(ptes[i].ending_lba) -
703 			   le64_to_cpu(ptes[i].starting_lba) + 1ULL;
704 
705 		if (!is_pte_valid(&ptes[i], last_lba(state->bdev)))
706 			continue;
707 
708 		put_partition(state, i+1, start * ssz, size * ssz);
709 
710 		/* If this is a RAID volume, tell md */
711 		if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID))
712 			state->parts[i + 1].flags = ADDPART_FLAG_RAID;
713 
714 		info = &state->parts[i + 1].info;
715 		efi_guid_unparse(&ptes[i].unique_partition_guid, info->uuid);
716 
717 		/* Naively convert UTF16-LE to 7 bits. */
718 		label_max = min(sizeof(info->volname) - 1,
719 				sizeof(ptes[i].partition_name));
720 		info->volname[label_max] = 0;
721 		while (label_count < label_max) {
722 			u8 c = ptes[i].partition_name[label_count] & 0xff;
723 			if (c && !isprint(c))
724 				c = '!';
725 			info->volname[label_count] = c;
726 			label_count++;
727 		}
728 		state->parts[i + 1].has_info = true;
729 	}
730 	kfree(ptes);
731 	kfree(gpt);
732 	strlcat(state->pp_buf, "\n", PAGE_SIZE);
733 	return 1;
734 }
735