xref: /openbmc/linux/block/partitions/efi.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /************************************************************
3  * EFI GUID Partition Table handling
4  *
5  * http://www.uefi.org/specs/
6  * http://www.intel.com/technology/efi/
7  *
8  * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com>
9  *   Copyright 2000,2001,2002,2004 Dell Inc.
10  *
11  * TODO:
12  *
13  * Changelog:
14  * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com>
15  * - detect hybrid MBRs, tighter pMBR checking & cleanups.
16  *
17  * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com>
18  * - test for valid PMBR and valid PGPT before ever reading
19  *   AGPT, allow override with 'gpt' kernel command line option.
20  * - check for first/last_usable_lba outside of size of disk
21  *
22  * Tue  Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com>
23  * - Ported to 2.5.7-pre1 and 2.5.7-dj2
24  * - Applied patch to avoid fault in alternate header handling
25  * - cleaned up find_valid_gpt
26  * - On-disk structure and copy in memory is *always* LE now -
27  *   swab fields as needed
28  * - remove print_gpt_header()
29  * - only use first max_p partition entries, to keep the kernel minor number
30  *   and partition numbers tied.
31  *
32  * Mon  Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com>
33  * - Removed __PRIPTR_PREFIX - not being used
34  *
35  * Mon  Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com>
36  * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied
37  *
38  * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com>
39  * - Added compare_gpts().
40  * - moved le_efi_guid_to_cpus() back into this file.  GPT is the only
41  *   thing that keeps EFI GUIDs on disk.
42  * - Changed gpt structure names and members to be simpler and more Linux-like.
43  *
44  * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com>
45  * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck
46  *
47  * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com>
48  * - Changed function comments to DocBook style per Andreas Dilger suggestion.
49  *
50  * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com>
51  * - Change read_lba() to use the page cache per Al Viro's work.
52  * - print u64s properly on all architectures
53  * - fixed debug_printk(), now Dprintk()
54  *
55  * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com>
56  * - Style cleanups
57  * - made most functions static
58  * - Endianness addition
59  * - remove test for second alternate header, as it's not per spec,
60  *   and is unnecessary.  There's now a method to read/write the last
61  *   sector of an odd-sized disk from user space.  No tools have ever
62  *   been released which used this code, so it's effectively dead.
63  * - Per Asit Mallick of Intel, added a test for a valid PMBR.
64  * - Added kernel command line option 'gpt' to override valid PMBR test.
65  *
66  * Wed Jun  6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com>
67  * - added devfs volume UUID support (/dev/volumes/uuids) for
68  *   mounting file systems by the partition GUID.
69  *
70  * Tue Dec  5 2000 Matt Domsch <Matt_Domsch@dell.com>
71  * - Moved crc32() to linux/lib, added efi_crc32().
72  *
73  * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com>
74  * - Replaced Intel's CRC32 function with an equivalent
75  *   non-license-restricted version.
76  *
77  * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com>
78  * - Fixed the last_lba() call to return the proper last block
79  *
80  * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com>
81  * - Thanks to Andries Brouwer for his debugging assistance.
82  * - Code works, detects all the partitions.
83  *
84  ************************************************************/
85 #include <linux/kernel.h>
86 #include <linux/crc32.h>
87 #include <linux/ctype.h>
88 #include <linux/math64.h>
89 #include <linux/slab.h>
90 #include "check.h"
91 #include "efi.h"
92 
93 /* This allows a kernel command line option 'gpt' to override
94  * the test for invalid PMBR.  Not __initdata because reloading
95  * the partition tables happens after init too.
96  */
97 static int force_gpt;
98 static int __init
99 force_gpt_fn(char *str)
100 {
101 	force_gpt = 1;
102 	return 1;
103 }
104 __setup("gpt", force_gpt_fn);
105 
106 
107 /**
108  * efi_crc32() - EFI version of crc32 function
109  * @buf: buffer to calculate crc32 of
110  * @len: length of buf
111  *
112  * Description: Returns EFI-style CRC32 value for @buf
113  *
114  * This function uses the little endian Ethernet polynomial
115  * but seeds the function with ~0, and xor's with ~0 at the end.
116  * Note, the EFI Specification, v1.02, has a reference to
117  * Dr. Dobbs Journal, May 1994 (actually it's in May 1992).
118  */
119 static inline u32
120 efi_crc32(const void *buf, unsigned long len)
121 {
122 	return (crc32(~0L, buf, len) ^ ~0L);
123 }
124 
125 /**
126  * last_lba(): return number of last logical block of device
127  * @bdev: block device
128  *
129  * Description: Returns last LBA value on success, 0 on error.
130  * This is stored (by sd and ide-geometry) in
131  *  the part[0] entry for this disk, and is the number of
132  *  physical sectors available on the disk.
133  */
134 static u64 last_lba(struct block_device *bdev)
135 {
136 	if (!bdev || !bdev->bd_inode)
137 		return 0;
138 	return div_u64(bdev->bd_inode->i_size,
139 		       bdev_logical_block_size(bdev)) - 1ULL;
140 }
141 
142 static inline int pmbr_part_valid(gpt_mbr_record *part)
143 {
144 	if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
145 		goto invalid;
146 
147 	/* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
148 	if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
149 		goto invalid;
150 
151 	return GPT_MBR_PROTECTIVE;
152 invalid:
153 	return 0;
154 }
155 
156 /**
157  * is_pmbr_valid(): test Protective MBR for validity
158  * @mbr: pointer to a legacy mbr structure
159  * @total_sectors: amount of sectors in the device
160  *
161  * Description: Checks for a valid protective or hybrid
162  * master boot record (MBR). The validity of a pMBR depends
163  * on all of the following properties:
164  *  1) MSDOS signature is in the last two bytes of the MBR
165  *  2) One partition of type 0xEE is found
166  *
167  * In addition, a hybrid MBR will have up to three additional
168  * primary partitions, which point to the same space that's
169  * marked out by up to three GPT partitions.
170  *
171  * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or
172  * GPT_MBR_HYBRID depending on the device layout.
173  */
174 static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors)
175 {
176 	uint32_t sz = 0;
177 	int i, part = 0, ret = 0; /* invalid by default */
178 
179 	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
180 		goto done;
181 
182 	for (i = 0; i < 4; i++) {
183 		ret = pmbr_part_valid(&mbr->partition_record[i]);
184 		if (ret == GPT_MBR_PROTECTIVE) {
185 			part = i;
186 			/*
187 			 * Ok, we at least know that there's a protective MBR,
188 			 * now check if there are other partition types for
189 			 * hybrid MBR.
190 			 */
191 			goto check_hybrid;
192 		}
193 	}
194 
195 	if (ret != GPT_MBR_PROTECTIVE)
196 		goto done;
197 check_hybrid:
198 	for (i = 0; i < 4; i++)
199 		if ((mbr->partition_record[i].os_type !=
200 			EFI_PMBR_OSTYPE_EFI_GPT) &&
201 		    (mbr->partition_record[i].os_type != 0x00))
202 			ret = GPT_MBR_HYBRID;
203 
204 	/*
205 	 * Protective MBRs take up the lesser of the whole disk
206 	 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
207 	 * Some partitioning programs, nonetheless, choose to set
208 	 * the size to the maximum 32-bit limitation, disregarding
209 	 * the disk size.
210 	 *
211 	 * Hybrid MBRs do not necessarily comply with this.
212 	 *
213 	 * Consider a bad value here to be a warning to support dd'ing
214 	 * an image from a smaller disk to a larger disk.
215 	 */
216 	if (ret == GPT_MBR_PROTECTIVE) {
217 		sz = le32_to_cpu(mbr->partition_record[part].size_in_lba);
218 		if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
219 			pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n",
220 				 sz, min_t(uint32_t,
221 					   total_sectors - 1, 0xFFFFFFFF));
222 	}
223 done:
224 	return ret;
225 }
226 
227 /**
228  * read_lba(): Read bytes from disk, starting at given LBA
229  * @state: disk parsed partitions
230  * @lba: the Logical Block Address of the partition table
231  * @buffer: destination buffer
232  * @count: bytes to read
233  *
234  * Description: Reads @count bytes from @state->bdev into @buffer.
235  * Returns number of bytes read on success, 0 on error.
236  */
237 static size_t read_lba(struct parsed_partitions *state,
238 		       u64 lba, u8 *buffer, size_t count)
239 {
240 	size_t totalreadcount = 0;
241 	struct block_device *bdev = state->bdev;
242 	sector_t n = lba * (bdev_logical_block_size(bdev) / 512);
243 
244 	if (!buffer || lba > last_lba(bdev))
245                 return 0;
246 
247 	while (count) {
248 		int copied = 512;
249 		Sector sect;
250 		unsigned char *data = read_part_sector(state, n++, &sect);
251 		if (!data)
252 			break;
253 		if (copied > count)
254 			copied = count;
255 		memcpy(buffer, data, copied);
256 		put_dev_sector(sect);
257 		buffer += copied;
258 		totalreadcount +=copied;
259 		count -= copied;
260 	}
261 	return totalreadcount;
262 }
263 
264 /**
265  * alloc_read_gpt_entries(): reads partition entries from disk
266  * @state: disk parsed partitions
267  * @gpt: GPT header
268  *
269  * Description: Returns ptes on success,  NULL on error.
270  * Allocates space for PTEs based on information found in @gpt.
271  * Notes: remember to free pte when you're done!
272  */
273 static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state,
274 					 gpt_header *gpt)
275 {
276 	size_t count;
277 	gpt_entry *pte;
278 
279 	if (!gpt)
280 		return NULL;
281 
282 	count = (size_t)le32_to_cpu(gpt->num_partition_entries) *
283                 le32_to_cpu(gpt->sizeof_partition_entry);
284 	if (!count)
285 		return NULL;
286 	pte = kmalloc(count, GFP_KERNEL);
287 	if (!pte)
288 		return NULL;
289 
290 	if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba),
291 			(u8 *) pte, count) < count) {
292 		kfree(pte);
293                 pte=NULL;
294 		return NULL;
295 	}
296 	return pte;
297 }
298 
299 /**
300  * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk
301  * @state: disk parsed partitions
302  * @lba: the Logical Block Address of the partition table
303  *
304  * Description: returns GPT header on success, NULL on error.   Allocates
305  * and fills a GPT header starting at @ from @state->bdev.
306  * Note: remember to free gpt when finished with it.
307  */
308 static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state,
309 					 u64 lba)
310 {
311 	gpt_header *gpt;
312 	unsigned ssz = bdev_logical_block_size(state->bdev);
313 
314 	gpt = kmalloc(ssz, GFP_KERNEL);
315 	if (!gpt)
316 		return NULL;
317 
318 	if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) {
319 		kfree(gpt);
320                 gpt=NULL;
321 		return NULL;
322 	}
323 
324 	return gpt;
325 }
326 
327 /**
328  * is_gpt_valid() - tests one GPT header and PTEs for validity
329  * @state: disk parsed partitions
330  * @lba: logical block address of the GPT header to test
331  * @gpt: GPT header ptr, filled on return.
332  * @ptes: PTEs ptr, filled on return.
333  *
334  * Description: returns 1 if valid,  0 on error.
335  * If valid, returns pointers to newly allocated GPT header and PTEs.
336  */
337 static int is_gpt_valid(struct parsed_partitions *state, u64 lba,
338 			gpt_header **gpt, gpt_entry **ptes)
339 {
340 	u32 crc, origcrc;
341 	u64 lastlba, pt_size;
342 
343 	if (!ptes)
344 		return 0;
345 	if (!(*gpt = alloc_read_gpt_header(state, lba)))
346 		return 0;
347 
348 	/* Check the GUID Partition Table signature */
349 	if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) {
350 		pr_debug("GUID Partition Table Header signature is wrong:"
351 			 "%lld != %lld\n",
352 			 (unsigned long long)le64_to_cpu((*gpt)->signature),
353 			 (unsigned long long)GPT_HEADER_SIGNATURE);
354 		goto fail;
355 	}
356 
357 	/* Check the GUID Partition Table header size is too big */
358 	if (le32_to_cpu((*gpt)->header_size) >
359 			bdev_logical_block_size(state->bdev)) {
360 		pr_debug("GUID Partition Table Header size is too large: %u > %u\n",
361 			le32_to_cpu((*gpt)->header_size),
362 			bdev_logical_block_size(state->bdev));
363 		goto fail;
364 	}
365 
366 	/* Check the GUID Partition Table header size is too small */
367 	if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) {
368 		pr_debug("GUID Partition Table Header size is too small: %u < %zu\n",
369 			le32_to_cpu((*gpt)->header_size),
370 			sizeof(gpt_header));
371 		goto fail;
372 	}
373 
374 	/* Check the GUID Partition Table CRC */
375 	origcrc = le32_to_cpu((*gpt)->header_crc32);
376 	(*gpt)->header_crc32 = 0;
377 	crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size));
378 
379 	if (crc != origcrc) {
380 		pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n",
381 			 crc, origcrc);
382 		goto fail;
383 	}
384 	(*gpt)->header_crc32 = cpu_to_le32(origcrc);
385 
386 	/* Check that the my_lba entry points to the LBA that contains
387 	 * the GUID Partition Table */
388 	if (le64_to_cpu((*gpt)->my_lba) != lba) {
389 		pr_debug("GPT my_lba incorrect: %lld != %lld\n",
390 			 (unsigned long long)le64_to_cpu((*gpt)->my_lba),
391 			 (unsigned long long)lba);
392 		goto fail;
393 	}
394 
395 	/* Check the first_usable_lba and last_usable_lba are
396 	 * within the disk.
397 	 */
398 	lastlba = last_lba(state->bdev);
399 	if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) {
400 		pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n",
401 			 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba),
402 			 (unsigned long long)lastlba);
403 		goto fail;
404 	}
405 	if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) {
406 		pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
407 			 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
408 			 (unsigned long long)lastlba);
409 		goto fail;
410 	}
411 	if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) {
412 		pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
413 			 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
414 			 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba));
415 		goto fail;
416 	}
417 	/* Check that sizeof_partition_entry has the correct value */
418 	if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) {
419 		pr_debug("GUID Partition Entry Size check failed.\n");
420 		goto fail;
421 	}
422 
423 	/* Sanity check partition table size */
424 	pt_size = (u64)le32_to_cpu((*gpt)->num_partition_entries) *
425 		le32_to_cpu((*gpt)->sizeof_partition_entry);
426 	if (pt_size > KMALLOC_MAX_SIZE) {
427 		pr_debug("GUID Partition Table is too large: %llu > %lu bytes\n",
428 			 (unsigned long long)pt_size, KMALLOC_MAX_SIZE);
429 		goto fail;
430 	}
431 
432 	if (!(*ptes = alloc_read_gpt_entries(state, *gpt)))
433 		goto fail;
434 
435 	/* Check the GUID Partition Entry Array CRC */
436 	crc = efi_crc32((const unsigned char *) (*ptes), pt_size);
437 
438 	if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) {
439 		pr_debug("GUID Partition Entry Array CRC check failed.\n");
440 		goto fail_ptes;
441 	}
442 
443 	/* We're done, all's well */
444 	return 1;
445 
446  fail_ptes:
447 	kfree(*ptes);
448 	*ptes = NULL;
449  fail:
450 	kfree(*gpt);
451 	*gpt = NULL;
452 	return 0;
453 }
454 
455 /**
456  * is_pte_valid() - tests one PTE for validity
457  * @pte:pte to check
458  * @lastlba: last lba of the disk
459  *
460  * Description: returns 1 if valid,  0 on error.
461  */
462 static inline int
463 is_pte_valid(const gpt_entry *pte, const u64 lastlba)
464 {
465 	if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
466 	    le64_to_cpu(pte->starting_lba) > lastlba         ||
467 	    le64_to_cpu(pte->ending_lba)   > lastlba)
468 		return 0;
469 	return 1;
470 }
471 
472 /**
473  * compare_gpts() - Search disk for valid GPT headers and PTEs
474  * @pgpt: primary GPT header
475  * @agpt: alternate GPT header
476  * @lastlba: last LBA number
477  *
478  * Description: Returns nothing.  Sanity checks pgpt and agpt fields
479  * and prints warnings on discrepancies.
480  *
481  */
482 static void
483 compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba)
484 {
485 	int error_found = 0;
486 	if (!pgpt || !agpt)
487 		return;
488 	if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) {
489 		pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n");
490 		pr_warn("GPT:%lld != %lld\n",
491 		       (unsigned long long)le64_to_cpu(pgpt->my_lba),
492                        (unsigned long long)le64_to_cpu(agpt->alternate_lba));
493 		error_found++;
494 	}
495 	if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) {
496 		pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n");
497 		pr_warn("GPT:%lld != %lld\n",
498 		       (unsigned long long)le64_to_cpu(pgpt->alternate_lba),
499                        (unsigned long long)le64_to_cpu(agpt->my_lba));
500 		error_found++;
501 	}
502 	if (le64_to_cpu(pgpt->first_usable_lba) !=
503             le64_to_cpu(agpt->first_usable_lba)) {
504 		pr_warn("GPT:first_usable_lbas don't match.\n");
505 		pr_warn("GPT:%lld != %lld\n",
506 		       (unsigned long long)le64_to_cpu(pgpt->first_usable_lba),
507                        (unsigned long long)le64_to_cpu(agpt->first_usable_lba));
508 		error_found++;
509 	}
510 	if (le64_to_cpu(pgpt->last_usable_lba) !=
511             le64_to_cpu(agpt->last_usable_lba)) {
512 		pr_warn("GPT:last_usable_lbas don't match.\n");
513 		pr_warn("GPT:%lld != %lld\n",
514 		       (unsigned long long)le64_to_cpu(pgpt->last_usable_lba),
515                        (unsigned long long)le64_to_cpu(agpt->last_usable_lba));
516 		error_found++;
517 	}
518 	if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) {
519 		pr_warn("GPT:disk_guids don't match.\n");
520 		error_found++;
521 	}
522 	if (le32_to_cpu(pgpt->num_partition_entries) !=
523             le32_to_cpu(agpt->num_partition_entries)) {
524 		pr_warn("GPT:num_partition_entries don't match: "
525 		       "0x%x != 0x%x\n",
526 		       le32_to_cpu(pgpt->num_partition_entries),
527 		       le32_to_cpu(agpt->num_partition_entries));
528 		error_found++;
529 	}
530 	if (le32_to_cpu(pgpt->sizeof_partition_entry) !=
531             le32_to_cpu(agpt->sizeof_partition_entry)) {
532 		pr_warn("GPT:sizeof_partition_entry values don't match: "
533 		       "0x%x != 0x%x\n",
534                        le32_to_cpu(pgpt->sizeof_partition_entry),
535 		       le32_to_cpu(agpt->sizeof_partition_entry));
536 		error_found++;
537 	}
538 	if (le32_to_cpu(pgpt->partition_entry_array_crc32) !=
539             le32_to_cpu(agpt->partition_entry_array_crc32)) {
540 		pr_warn("GPT:partition_entry_array_crc32 values don't match: "
541 		       "0x%x != 0x%x\n",
542                        le32_to_cpu(pgpt->partition_entry_array_crc32),
543 		       le32_to_cpu(agpt->partition_entry_array_crc32));
544 		error_found++;
545 	}
546 	if (le64_to_cpu(pgpt->alternate_lba) != lastlba) {
547 		pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n");
548 		pr_warn("GPT:%lld != %lld\n",
549 			(unsigned long long)le64_to_cpu(pgpt->alternate_lba),
550 			(unsigned long long)lastlba);
551 		error_found++;
552 	}
553 
554 	if (le64_to_cpu(agpt->my_lba) != lastlba) {
555 		pr_warn("GPT:Alternate GPT header not at the end of the disk.\n");
556 		pr_warn("GPT:%lld != %lld\n",
557 			(unsigned long long)le64_to_cpu(agpt->my_lba),
558 			(unsigned long long)lastlba);
559 		error_found++;
560 	}
561 
562 	if (error_found)
563 		pr_warn("GPT: Use GNU Parted to correct GPT errors.\n");
564 	return;
565 }
566 
567 /**
568  * find_valid_gpt() - Search disk for valid GPT headers and PTEs
569  * @state: disk parsed partitions
570  * @gpt: GPT header ptr, filled on return.
571  * @ptes: PTEs ptr, filled on return.
572  *
573  * Description: Returns 1 if valid, 0 on error.
574  * If valid, returns pointers to newly allocated GPT header and PTEs.
575  * Validity depends on PMBR being valid (or being overridden by the
576  * 'gpt' kernel command line option) and finding either the Primary
577  * GPT header and PTEs valid, or the Alternate GPT header and PTEs
578  * valid.  If the Primary GPT header is not valid, the Alternate GPT header
579  * is not checked unless the 'gpt' kernel command line option is passed.
580  * This protects against devices which misreport their size, and forces
581  * the user to decide to use the Alternate GPT.
582  */
583 static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt,
584 			  gpt_entry **ptes)
585 {
586 	int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
587 	gpt_header *pgpt = NULL, *agpt = NULL;
588 	gpt_entry *pptes = NULL, *aptes = NULL;
589 	legacy_mbr *legacymbr;
590 	sector_t total_sectors = i_size_read(state->bdev->bd_inode) >> 9;
591 	u64 lastlba;
592 
593 	if (!ptes)
594 		return 0;
595 
596 	lastlba = last_lba(state->bdev);
597         if (!force_gpt) {
598 		/* This will be added to the EFI Spec. per Intel after v1.02. */
599 		legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL);
600 		if (!legacymbr)
601 			goto fail;
602 
603 		read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr));
604 		good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
605 		kfree(legacymbr);
606 
607 		if (!good_pmbr)
608 			goto fail;
609 
610 		pr_debug("Device has a %s MBR\n",
611 			 good_pmbr == GPT_MBR_PROTECTIVE ?
612 						"protective" : "hybrid");
613 	}
614 
615 	good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA,
616 				 &pgpt, &pptes);
617         if (good_pgpt)
618 		good_agpt = is_gpt_valid(state,
619 					 le64_to_cpu(pgpt->alternate_lba),
620 					 &agpt, &aptes);
621         if (!good_agpt && force_gpt)
622                 good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes);
623 
624         /* The obviously unsuccessful case */
625         if (!good_pgpt && !good_agpt)
626                 goto fail;
627 
628         compare_gpts(pgpt, agpt, lastlba);
629 
630         /* The good cases */
631         if (good_pgpt) {
632                 *gpt  = pgpt;
633                 *ptes = pptes;
634                 kfree(agpt);
635                 kfree(aptes);
636 		if (!good_agpt)
637                         pr_warn("Alternate GPT is invalid, using primary GPT.\n");
638                 return 1;
639         }
640         else if (good_agpt) {
641                 *gpt  = agpt;
642                 *ptes = aptes;
643                 kfree(pgpt);
644                 kfree(pptes);
645 		pr_warn("Primary GPT is invalid, using alternate GPT.\n");
646                 return 1;
647         }
648 
649  fail:
650         kfree(pgpt);
651         kfree(agpt);
652         kfree(pptes);
653         kfree(aptes);
654         *gpt = NULL;
655         *ptes = NULL;
656         return 0;
657 }
658 
659 /**
660  * efi_partition(struct parsed_partitions *state)
661  * @state: disk parsed partitions
662  *
663  * Description: called from check.c, if the disk contains GPT
664  * partitions, sets up partition entries in the kernel.
665  *
666  * If the first block on the disk is a legacy MBR,
667  * it will get handled by msdos_partition().
668  * If it's a Protective MBR, we'll handle it here.
669  *
670  * We do not create a Linux partition for GPT, but
671  * only for the actual data partitions.
672  * Returns:
673  * -1 if unable to read the partition table
674  *  0 if this isn't our partition table
675  *  1 if successful
676  *
677  */
678 int efi_partition(struct parsed_partitions *state)
679 {
680 	gpt_header *gpt = NULL;
681 	gpt_entry *ptes = NULL;
682 	u32 i;
683 	unsigned ssz = bdev_logical_block_size(state->bdev) / 512;
684 
685 	if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) {
686 		kfree(gpt);
687 		kfree(ptes);
688 		return 0;
689 	}
690 
691 	pr_debug("GUID Partition Table is valid!  Yea!\n");
692 
693 	for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) {
694 		struct partition_meta_info *info;
695 		unsigned label_count = 0;
696 		unsigned label_max;
697 		u64 start = le64_to_cpu(ptes[i].starting_lba);
698 		u64 size = le64_to_cpu(ptes[i].ending_lba) -
699 			   le64_to_cpu(ptes[i].starting_lba) + 1ULL;
700 
701 		if (!is_pte_valid(&ptes[i], last_lba(state->bdev)))
702 			continue;
703 
704 		put_partition(state, i+1, start * ssz, size * ssz);
705 
706 		/* If this is a RAID volume, tell md */
707 		if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID))
708 			state->parts[i + 1].flags = ADDPART_FLAG_RAID;
709 
710 		info = &state->parts[i + 1].info;
711 		efi_guid_to_str(&ptes[i].unique_partition_guid, info->uuid);
712 
713 		/* Naively convert UTF16-LE to 7 bits. */
714 		label_max = min(ARRAY_SIZE(info->volname) - 1,
715 				ARRAY_SIZE(ptes[i].partition_name));
716 		info->volname[label_max] = 0;
717 		while (label_count < label_max) {
718 			u8 c = ptes[i].partition_name[label_count] & 0xff;
719 			if (c && !isprint(c))
720 				c = '!';
721 			info->volname[label_count] = c;
722 			label_count++;
723 		}
724 		state->parts[i + 1].has_info = true;
725 	}
726 	kfree(ptes);
727 	kfree(gpt);
728 	strlcat(state->pp_buf, "\n", PAGE_SIZE);
729 	return 1;
730 }
731