1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991-1998 Linus Torvalds 4 * Re-organised Feb 1998 Russell King 5 */ 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/ctype.h> 9 #include <linux/genhd.h> 10 #include <linux/vmalloc.h> 11 #include <linux/blktrace_api.h> 12 #include <linux/raid/detect.h> 13 #include "check.h" 14 15 static int (*check_part[])(struct parsed_partitions *) = { 16 /* 17 * Probe partition formats with tables at disk address 0 18 * that also have an ADFS boot block at 0xdc0. 19 */ 20 #ifdef CONFIG_ACORN_PARTITION_ICS 21 adfspart_check_ICS, 22 #endif 23 #ifdef CONFIG_ACORN_PARTITION_POWERTEC 24 adfspart_check_POWERTEC, 25 #endif 26 #ifdef CONFIG_ACORN_PARTITION_EESOX 27 adfspart_check_EESOX, 28 #endif 29 30 /* 31 * Now move on to formats that only have partition info at 32 * disk address 0xdc0. Since these may also have stale 33 * PC/BIOS partition tables, they need to come before 34 * the msdos entry. 35 */ 36 #ifdef CONFIG_ACORN_PARTITION_CUMANA 37 adfspart_check_CUMANA, 38 #endif 39 #ifdef CONFIG_ACORN_PARTITION_ADFS 40 adfspart_check_ADFS, 41 #endif 42 43 #ifdef CONFIG_CMDLINE_PARTITION 44 cmdline_partition, 45 #endif 46 #ifdef CONFIG_EFI_PARTITION 47 efi_partition, /* this must come before msdos */ 48 #endif 49 #ifdef CONFIG_SGI_PARTITION 50 sgi_partition, 51 #endif 52 #ifdef CONFIG_LDM_PARTITION 53 ldm_partition, /* this must come before msdos */ 54 #endif 55 #ifdef CONFIG_MSDOS_PARTITION 56 msdos_partition, 57 #endif 58 #ifdef CONFIG_OSF_PARTITION 59 osf_partition, 60 #endif 61 #ifdef CONFIG_SUN_PARTITION 62 sun_partition, 63 #endif 64 #ifdef CONFIG_AMIGA_PARTITION 65 amiga_partition, 66 #endif 67 #ifdef CONFIG_ATARI_PARTITION 68 atari_partition, 69 #endif 70 #ifdef CONFIG_MAC_PARTITION 71 mac_partition, 72 #endif 73 #ifdef CONFIG_ULTRIX_PARTITION 74 ultrix_partition, 75 #endif 76 #ifdef CONFIG_IBM_PARTITION 77 ibm_partition, 78 #endif 79 #ifdef CONFIG_KARMA_PARTITION 80 karma_partition, 81 #endif 82 #ifdef CONFIG_SYSV68_PARTITION 83 sysv68_partition, 84 #endif 85 NULL 86 }; 87 88 static struct parsed_partitions *allocate_partitions(struct gendisk *hd) 89 { 90 struct parsed_partitions *state; 91 int nr; 92 93 state = kzalloc(sizeof(*state), GFP_KERNEL); 94 if (!state) 95 return NULL; 96 97 nr = disk_max_parts(hd); 98 state->parts = vzalloc(array_size(nr, sizeof(state->parts[0]))); 99 if (!state->parts) { 100 kfree(state); 101 return NULL; 102 } 103 104 state->limit = nr; 105 106 return state; 107 } 108 109 static void free_partitions(struct parsed_partitions *state) 110 { 111 vfree(state->parts); 112 kfree(state); 113 } 114 115 static struct parsed_partitions *check_partition(struct gendisk *hd, 116 struct block_device *bdev) 117 { 118 struct parsed_partitions *state; 119 int i, res, err; 120 121 state = allocate_partitions(hd); 122 if (!state) 123 return NULL; 124 state->pp_buf = (char *)__get_free_page(GFP_KERNEL); 125 if (!state->pp_buf) { 126 free_partitions(state); 127 return NULL; 128 } 129 state->pp_buf[0] = '\0'; 130 131 state->bdev = bdev; 132 disk_name(hd, 0, state->name); 133 snprintf(state->pp_buf, PAGE_SIZE, " %s:", state->name); 134 if (isdigit(state->name[strlen(state->name)-1])) 135 sprintf(state->name, "p"); 136 137 i = res = err = 0; 138 while (!res && check_part[i]) { 139 memset(state->parts, 0, state->limit * sizeof(state->parts[0])); 140 res = check_part[i++](state); 141 if (res < 0) { 142 /* 143 * We have hit an I/O error which we don't report now. 144 * But record it, and let the others do their job. 145 */ 146 err = res; 147 res = 0; 148 } 149 150 } 151 if (res > 0) { 152 printk(KERN_INFO "%s", state->pp_buf); 153 154 free_page((unsigned long)state->pp_buf); 155 return state; 156 } 157 if (state->access_beyond_eod) 158 err = -ENOSPC; 159 /* 160 * The partition is unrecognized. So report I/O errors if there were any 161 */ 162 if (err) 163 res = err; 164 if (res) { 165 strlcat(state->pp_buf, 166 " unable to read partition table\n", PAGE_SIZE); 167 printk(KERN_INFO "%s", state->pp_buf); 168 } 169 170 free_page((unsigned long)state->pp_buf); 171 free_partitions(state); 172 return ERR_PTR(res); 173 } 174 175 static ssize_t part_partition_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct hd_struct *p = dev_to_part(dev); 179 180 return sprintf(buf, "%d\n", p->partno); 181 } 182 183 static ssize_t part_start_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct hd_struct *p = dev_to_part(dev); 187 188 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect); 189 } 190 191 static ssize_t part_ro_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct hd_struct *p = dev_to_part(dev); 195 return sprintf(buf, "%d\n", p->policy ? 1 : 0); 196 } 197 198 static ssize_t part_alignment_offset_show(struct device *dev, 199 struct device_attribute *attr, char *buf) 200 { 201 struct hd_struct *p = dev_to_part(dev); 202 return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset); 203 } 204 205 static ssize_t part_discard_alignment_show(struct device *dev, 206 struct device_attribute *attr, char *buf) 207 { 208 struct hd_struct *p = dev_to_part(dev); 209 return sprintf(buf, "%u\n", p->discard_alignment); 210 } 211 212 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL); 213 static DEVICE_ATTR(start, 0444, part_start_show, NULL); 214 static DEVICE_ATTR(size, 0444, part_size_show, NULL); 215 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL); 216 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL); 217 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL); 218 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); 219 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); 220 #ifdef CONFIG_FAIL_MAKE_REQUEST 221 static struct device_attribute dev_attr_fail = 222 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); 223 #endif 224 225 static struct attribute *part_attrs[] = { 226 &dev_attr_partition.attr, 227 &dev_attr_start.attr, 228 &dev_attr_size.attr, 229 &dev_attr_ro.attr, 230 &dev_attr_alignment_offset.attr, 231 &dev_attr_discard_alignment.attr, 232 &dev_attr_stat.attr, 233 &dev_attr_inflight.attr, 234 #ifdef CONFIG_FAIL_MAKE_REQUEST 235 &dev_attr_fail.attr, 236 #endif 237 NULL 238 }; 239 240 static struct attribute_group part_attr_group = { 241 .attrs = part_attrs, 242 }; 243 244 static const struct attribute_group *part_attr_groups[] = { 245 &part_attr_group, 246 #ifdef CONFIG_BLK_DEV_IO_TRACE 247 &blk_trace_attr_group, 248 #endif 249 NULL 250 }; 251 252 static void part_release(struct device *dev) 253 { 254 struct hd_struct *p = dev_to_part(dev); 255 blk_free_devt(dev->devt); 256 hd_free_part(p); 257 kfree(p); 258 } 259 260 static int part_uevent(struct device *dev, struct kobj_uevent_env *env) 261 { 262 struct hd_struct *part = dev_to_part(dev); 263 264 add_uevent_var(env, "PARTN=%u", part->partno); 265 if (part->info && part->info->volname[0]) 266 add_uevent_var(env, "PARTNAME=%s", part->info->volname); 267 return 0; 268 } 269 270 struct device_type part_type = { 271 .name = "partition", 272 .groups = part_attr_groups, 273 .release = part_release, 274 .uevent = part_uevent, 275 }; 276 277 static void hd_struct_free_work(struct work_struct *work) 278 { 279 struct hd_struct *part = 280 container_of(to_rcu_work(work), struct hd_struct, rcu_work); 281 struct gendisk *disk = part_to_disk(part); 282 283 /* 284 * Release the disk reference acquired in delete_partition here. 285 * We can't release it in hd_struct_free because the final put_device 286 * needs process context and thus can't be run directly from a 287 * percpu_ref ->release handler. 288 */ 289 put_device(disk_to_dev(disk)); 290 291 part->start_sect = 0; 292 part->nr_sects = 0; 293 part_stat_set_all(part, 0); 294 put_device(part_to_dev(part)); 295 } 296 297 static void hd_struct_free(struct percpu_ref *ref) 298 { 299 struct hd_struct *part = container_of(ref, struct hd_struct, ref); 300 struct gendisk *disk = part_to_disk(part); 301 struct disk_part_tbl *ptbl = 302 rcu_dereference_protected(disk->part_tbl, 1); 303 304 rcu_assign_pointer(ptbl->last_lookup, NULL); 305 306 INIT_RCU_WORK(&part->rcu_work, hd_struct_free_work); 307 queue_rcu_work(system_wq, &part->rcu_work); 308 } 309 310 int hd_ref_init(struct hd_struct *part) 311 { 312 if (percpu_ref_init(&part->ref, hd_struct_free, 0, GFP_KERNEL)) 313 return -ENOMEM; 314 return 0; 315 } 316 317 /* 318 * Must be called either with bd_mutex held, before a disk can be opened or 319 * after all disk users are gone. 320 */ 321 void delete_partition(struct gendisk *disk, struct hd_struct *part) 322 { 323 struct disk_part_tbl *ptbl = 324 rcu_dereference_protected(disk->part_tbl, 1); 325 326 /* 327 * ->part_tbl is referenced in this part's release handler, so 328 * we have to hold the disk device 329 */ 330 get_device(disk_to_dev(part_to_disk(part))); 331 rcu_assign_pointer(ptbl->part[part->partno], NULL); 332 kobject_put(part->holder_dir); 333 device_del(part_to_dev(part)); 334 335 /* 336 * Remove gendisk pointer from idr so that it cannot be looked up 337 * while RCU period before freeing gendisk is running to prevent 338 * use-after-free issues. Note that the device number stays 339 * "in-use" until we really free the gendisk. 340 */ 341 blk_invalidate_devt(part_devt(part)); 342 percpu_ref_kill(&part->ref); 343 } 344 345 static ssize_t whole_disk_show(struct device *dev, 346 struct device_attribute *attr, char *buf) 347 { 348 return 0; 349 } 350 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL); 351 352 /* 353 * Must be called either with bd_mutex held, before a disk can be opened or 354 * after all disk users are gone. 355 */ 356 static struct hd_struct *add_partition(struct gendisk *disk, int partno, 357 sector_t start, sector_t len, int flags, 358 struct partition_meta_info *info) 359 { 360 struct hd_struct *p; 361 dev_t devt = MKDEV(0, 0); 362 struct device *ddev = disk_to_dev(disk); 363 struct device *pdev; 364 struct disk_part_tbl *ptbl; 365 const char *dname; 366 int err; 367 368 /* 369 * Partitions are not supported on zoned block devices that are used as 370 * such. 371 */ 372 switch (disk->queue->limits.zoned) { 373 case BLK_ZONED_HM: 374 pr_warn("%s: partitions not supported on host managed zoned block device\n", 375 disk->disk_name); 376 return ERR_PTR(-ENXIO); 377 case BLK_ZONED_HA: 378 pr_info("%s: disabling host aware zoned block device support due to partitions\n", 379 disk->disk_name); 380 disk->queue->limits.zoned = BLK_ZONED_NONE; 381 break; 382 case BLK_ZONED_NONE: 383 break; 384 } 385 386 err = disk_expand_part_tbl(disk, partno); 387 if (err) 388 return ERR_PTR(err); 389 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 390 391 if (ptbl->part[partno]) 392 return ERR_PTR(-EBUSY); 393 394 p = kzalloc(sizeof(*p), GFP_KERNEL); 395 if (!p) 396 return ERR_PTR(-EBUSY); 397 398 p->dkstats = alloc_percpu(struct disk_stats); 399 if (!p->dkstats) { 400 err = -ENOMEM; 401 goto out_free; 402 } 403 404 hd_sects_seq_init(p); 405 pdev = part_to_dev(p); 406 407 p->start_sect = start; 408 p->alignment_offset = 409 queue_limit_alignment_offset(&disk->queue->limits, start); 410 p->discard_alignment = 411 queue_limit_discard_alignment(&disk->queue->limits, start); 412 p->nr_sects = len; 413 p->partno = partno; 414 p->policy = get_disk_ro(disk); 415 416 if (info) { 417 struct partition_meta_info *pinfo; 418 419 pinfo = kzalloc_node(sizeof(*pinfo), GFP_KERNEL, disk->node_id); 420 if (!pinfo) { 421 err = -ENOMEM; 422 goto out_free_stats; 423 } 424 memcpy(pinfo, info, sizeof(*info)); 425 p->info = pinfo; 426 } 427 428 dname = dev_name(ddev); 429 if (isdigit(dname[strlen(dname) - 1])) 430 dev_set_name(pdev, "%sp%d", dname, partno); 431 else 432 dev_set_name(pdev, "%s%d", dname, partno); 433 434 device_initialize(pdev); 435 pdev->class = &block_class; 436 pdev->type = &part_type; 437 pdev->parent = ddev; 438 439 err = blk_alloc_devt(p, &devt); 440 if (err) 441 goto out_free_info; 442 pdev->devt = devt; 443 444 /* delay uevent until 'holders' subdir is created */ 445 dev_set_uevent_suppress(pdev, 1); 446 err = device_add(pdev); 447 if (err) 448 goto out_put; 449 450 err = -ENOMEM; 451 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj); 452 if (!p->holder_dir) 453 goto out_del; 454 455 dev_set_uevent_suppress(pdev, 0); 456 if (flags & ADDPART_FLAG_WHOLEDISK) { 457 err = device_create_file(pdev, &dev_attr_whole_disk); 458 if (err) 459 goto out_del; 460 } 461 462 err = hd_ref_init(p); 463 if (err) { 464 if (flags & ADDPART_FLAG_WHOLEDISK) 465 goto out_remove_file; 466 goto out_del; 467 } 468 469 /* everything is up and running, commence */ 470 rcu_assign_pointer(ptbl->part[partno], p); 471 472 /* suppress uevent if the disk suppresses it */ 473 if (!dev_get_uevent_suppress(ddev)) 474 kobject_uevent(&pdev->kobj, KOBJ_ADD); 475 return p; 476 477 out_free_info: 478 kfree(p->info); 479 out_free_stats: 480 free_percpu(p->dkstats); 481 out_free: 482 kfree(p); 483 return ERR_PTR(err); 484 out_remove_file: 485 device_remove_file(pdev, &dev_attr_whole_disk); 486 out_del: 487 kobject_put(p->holder_dir); 488 device_del(pdev); 489 out_put: 490 put_device(pdev); 491 return ERR_PTR(err); 492 } 493 494 static bool partition_overlaps(struct gendisk *disk, sector_t start, 495 sector_t length, int skip_partno) 496 { 497 struct disk_part_iter piter; 498 struct hd_struct *part; 499 bool overlap = false; 500 501 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 502 while ((part = disk_part_iter_next(&piter))) { 503 if (part->partno == skip_partno || 504 start >= part->start_sect + part->nr_sects || 505 start + length <= part->start_sect) 506 continue; 507 overlap = true; 508 break; 509 } 510 511 disk_part_iter_exit(&piter); 512 return overlap; 513 } 514 515 int bdev_add_partition(struct block_device *bdev, int partno, 516 sector_t start, sector_t length) 517 { 518 struct hd_struct *part; 519 520 mutex_lock(&bdev->bd_mutex); 521 if (partition_overlaps(bdev->bd_disk, start, length, -1)) { 522 mutex_unlock(&bdev->bd_mutex); 523 return -EBUSY; 524 } 525 526 part = add_partition(bdev->bd_disk, partno, start, length, 527 ADDPART_FLAG_NONE, NULL); 528 mutex_unlock(&bdev->bd_mutex); 529 return PTR_ERR_OR_ZERO(part); 530 } 531 532 int bdev_del_partition(struct block_device *bdev, int partno) 533 { 534 struct block_device *bdevp; 535 struct hd_struct *part = NULL; 536 int ret; 537 538 bdevp = bdget_disk(bdev->bd_disk, partno); 539 if (!bdevp) 540 return -ENXIO; 541 542 mutex_lock(&bdevp->bd_mutex); 543 mutex_lock_nested(&bdev->bd_mutex, 1); 544 545 ret = -ENXIO; 546 part = disk_get_part(bdev->bd_disk, partno); 547 if (!part) 548 goto out_unlock; 549 550 ret = -EBUSY; 551 if (bdevp->bd_openers) 552 goto out_unlock; 553 554 sync_blockdev(bdevp); 555 invalidate_bdev(bdevp); 556 557 delete_partition(bdev->bd_disk, part); 558 ret = 0; 559 out_unlock: 560 mutex_unlock(&bdev->bd_mutex); 561 mutex_unlock(&bdevp->bd_mutex); 562 bdput(bdevp); 563 if (part) 564 disk_put_part(part); 565 return ret; 566 } 567 568 int bdev_resize_partition(struct block_device *bdev, int partno, 569 sector_t start, sector_t length) 570 { 571 struct block_device *bdevp; 572 struct hd_struct *part; 573 int ret = 0; 574 575 part = disk_get_part(bdev->bd_disk, partno); 576 if (!part) 577 return -ENXIO; 578 579 ret = -ENOMEM; 580 bdevp = bdget(part_devt(part)); 581 if (!bdevp) 582 goto out_put_part; 583 584 mutex_lock(&bdevp->bd_mutex); 585 mutex_lock_nested(&bdev->bd_mutex, 1); 586 587 ret = -EINVAL; 588 if (start != part->start_sect) 589 goto out_unlock; 590 591 ret = -EBUSY; 592 if (partition_overlaps(bdev->bd_disk, start, length, partno)) 593 goto out_unlock; 594 595 part_nr_sects_write(part, (sector_t)length); 596 i_size_write(bdevp->bd_inode, length << SECTOR_SHIFT); 597 598 ret = 0; 599 out_unlock: 600 mutex_unlock(&bdevp->bd_mutex); 601 mutex_unlock(&bdev->bd_mutex); 602 bdput(bdevp); 603 out_put_part: 604 disk_put_part(part); 605 return ret; 606 } 607 608 static bool disk_unlock_native_capacity(struct gendisk *disk) 609 { 610 const struct block_device_operations *bdops = disk->fops; 611 612 if (bdops->unlock_native_capacity && 613 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) { 614 printk(KERN_CONT "enabling native capacity\n"); 615 bdops->unlock_native_capacity(disk); 616 disk->flags |= GENHD_FL_NATIVE_CAPACITY; 617 return true; 618 } else { 619 printk(KERN_CONT "truncated\n"); 620 return false; 621 } 622 } 623 624 int blk_drop_partitions(struct block_device *bdev) 625 { 626 struct disk_part_iter piter; 627 struct hd_struct *part; 628 629 if (bdev->bd_part_count) 630 return -EBUSY; 631 632 sync_blockdev(bdev); 633 invalidate_bdev(bdev); 634 635 disk_part_iter_init(&piter, bdev->bd_disk, DISK_PITER_INCL_EMPTY); 636 while ((part = disk_part_iter_next(&piter))) 637 delete_partition(bdev->bd_disk, part); 638 disk_part_iter_exit(&piter); 639 640 return 0; 641 } 642 #ifdef CONFIG_S390 643 /* for historic reasons in the DASD driver */ 644 EXPORT_SYMBOL_GPL(blk_drop_partitions); 645 #endif 646 647 static bool blk_add_partition(struct gendisk *disk, struct block_device *bdev, 648 struct parsed_partitions *state, int p) 649 { 650 sector_t size = state->parts[p].size; 651 sector_t from = state->parts[p].from; 652 struct hd_struct *part; 653 654 if (!size) 655 return true; 656 657 if (from >= get_capacity(disk)) { 658 printk(KERN_WARNING 659 "%s: p%d start %llu is beyond EOD, ", 660 disk->disk_name, p, (unsigned long long) from); 661 if (disk_unlock_native_capacity(disk)) 662 return false; 663 return true; 664 } 665 666 if (from + size > get_capacity(disk)) { 667 printk(KERN_WARNING 668 "%s: p%d size %llu extends beyond EOD, ", 669 disk->disk_name, p, (unsigned long long) size); 670 671 if (disk_unlock_native_capacity(disk)) 672 return false; 673 674 /* 675 * We can not ignore partitions of broken tables created by for 676 * example camera firmware, but we limit them to the end of the 677 * disk to avoid creating invalid block devices. 678 */ 679 size = get_capacity(disk) - from; 680 } 681 682 part = add_partition(disk, p, from, size, state->parts[p].flags, 683 &state->parts[p].info); 684 if (IS_ERR(part) && PTR_ERR(part) != -ENXIO) { 685 printk(KERN_ERR " %s: p%d could not be added: %ld\n", 686 disk->disk_name, p, -PTR_ERR(part)); 687 return true; 688 } 689 690 if (IS_BUILTIN(CONFIG_BLK_DEV_MD) && 691 (state->parts[p].flags & ADDPART_FLAG_RAID)) 692 md_autodetect_dev(part_to_dev(part)->devt); 693 694 return true; 695 } 696 697 int blk_add_partitions(struct gendisk *disk, struct block_device *bdev) 698 { 699 struct parsed_partitions *state; 700 int ret = -EAGAIN, p, highest; 701 702 if (!disk_part_scan_enabled(disk)) 703 return 0; 704 705 state = check_partition(disk, bdev); 706 if (!state) 707 return 0; 708 if (IS_ERR(state)) { 709 /* 710 * I/O error reading the partition table. If we tried to read 711 * beyond EOD, retry after unlocking the native capacity. 712 */ 713 if (PTR_ERR(state) == -ENOSPC) { 714 printk(KERN_WARNING "%s: partition table beyond EOD, ", 715 disk->disk_name); 716 if (disk_unlock_native_capacity(disk)) 717 return -EAGAIN; 718 } 719 return -EIO; 720 } 721 722 /* 723 * Partitions are not supported on host managed zoned block devices. 724 */ 725 if (disk->queue->limits.zoned == BLK_ZONED_HM) { 726 pr_warn("%s: ignoring partition table on host managed zoned block device\n", 727 disk->disk_name); 728 ret = 0; 729 goto out_free_state; 730 } 731 732 /* 733 * If we read beyond EOD, try unlocking native capacity even if the 734 * partition table was successfully read as we could be missing some 735 * partitions. 736 */ 737 if (state->access_beyond_eod) { 738 printk(KERN_WARNING 739 "%s: partition table partially beyond EOD, ", 740 disk->disk_name); 741 if (disk_unlock_native_capacity(disk)) 742 goto out_free_state; 743 } 744 745 /* tell userspace that the media / partition table may have changed */ 746 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); 747 748 /* 749 * Detect the highest partition number and preallocate disk->part_tbl. 750 * This is an optimization and not strictly necessary. 751 */ 752 for (p = 1, highest = 0; p < state->limit; p++) 753 if (state->parts[p].size) 754 highest = p; 755 disk_expand_part_tbl(disk, highest); 756 757 for (p = 1; p < state->limit; p++) 758 if (!blk_add_partition(disk, bdev, state, p)) 759 goto out_free_state; 760 761 ret = 0; 762 out_free_state: 763 free_partitions(state); 764 return ret; 765 } 766 767 void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p) 768 { 769 struct address_space *mapping = state->bdev->bd_inode->i_mapping; 770 struct page *page; 771 772 if (n >= get_capacity(state->bdev->bd_disk)) { 773 state->access_beyond_eod = true; 774 return NULL; 775 } 776 777 page = read_mapping_page(mapping, 778 (pgoff_t)(n >> (PAGE_SHIFT - 9)), NULL); 779 if (IS_ERR(page)) 780 goto out; 781 if (PageError(page)) 782 goto out_put_page; 783 784 p->v = page; 785 return (unsigned char *)page_address(page) + 786 ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << SECTOR_SHIFT); 787 out_put_page: 788 put_page(page); 789 out: 790 p->v = NULL; 791 return NULL; 792 } 793