xref: /openbmc/linux/block/partitions/core.c (revision 852a53a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991-1998  Linus Torvalds
4  * Re-organised Feb 1998 Russell King
5  */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/ctype.h>
9 #include <linux/genhd.h>
10 #include <linux/vmalloc.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/raid/detect.h>
13 #include "check.h"
14 
15 static int (*check_part[])(struct parsed_partitions *) = {
16 	/*
17 	 * Probe partition formats with tables at disk address 0
18 	 * that also have an ADFS boot block at 0xdc0.
19 	 */
20 #ifdef CONFIG_ACORN_PARTITION_ICS
21 	adfspart_check_ICS,
22 #endif
23 #ifdef CONFIG_ACORN_PARTITION_POWERTEC
24 	adfspart_check_POWERTEC,
25 #endif
26 #ifdef CONFIG_ACORN_PARTITION_EESOX
27 	adfspart_check_EESOX,
28 #endif
29 
30 	/*
31 	 * Now move on to formats that only have partition info at
32 	 * disk address 0xdc0.  Since these may also have stale
33 	 * PC/BIOS partition tables, they need to come before
34 	 * the msdos entry.
35 	 */
36 #ifdef CONFIG_ACORN_PARTITION_CUMANA
37 	adfspart_check_CUMANA,
38 #endif
39 #ifdef CONFIG_ACORN_PARTITION_ADFS
40 	adfspart_check_ADFS,
41 #endif
42 
43 #ifdef CONFIG_CMDLINE_PARTITION
44 	cmdline_partition,
45 #endif
46 #ifdef CONFIG_EFI_PARTITION
47 	efi_partition,		/* this must come before msdos */
48 #endif
49 #ifdef CONFIG_SGI_PARTITION
50 	sgi_partition,
51 #endif
52 #ifdef CONFIG_LDM_PARTITION
53 	ldm_partition,		/* this must come before msdos */
54 #endif
55 #ifdef CONFIG_MSDOS_PARTITION
56 	msdos_partition,
57 #endif
58 #ifdef CONFIG_OSF_PARTITION
59 	osf_partition,
60 #endif
61 #ifdef CONFIG_SUN_PARTITION
62 	sun_partition,
63 #endif
64 #ifdef CONFIG_AMIGA_PARTITION
65 	amiga_partition,
66 #endif
67 #ifdef CONFIG_ATARI_PARTITION
68 	atari_partition,
69 #endif
70 #ifdef CONFIG_MAC_PARTITION
71 	mac_partition,
72 #endif
73 #ifdef CONFIG_ULTRIX_PARTITION
74 	ultrix_partition,
75 #endif
76 #ifdef CONFIG_IBM_PARTITION
77 	ibm_partition,
78 #endif
79 #ifdef CONFIG_KARMA_PARTITION
80 	karma_partition,
81 #endif
82 #ifdef CONFIG_SYSV68_PARTITION
83 	sysv68_partition,
84 #endif
85 	NULL
86 };
87 
88 static struct parsed_partitions *allocate_partitions(struct gendisk *hd)
89 {
90 	struct parsed_partitions *state;
91 	int nr;
92 
93 	state = kzalloc(sizeof(*state), GFP_KERNEL);
94 	if (!state)
95 		return NULL;
96 
97 	nr = disk_max_parts(hd);
98 	state->parts = vzalloc(array_size(nr, sizeof(state->parts[0])));
99 	if (!state->parts) {
100 		kfree(state);
101 		return NULL;
102 	}
103 
104 	state->limit = nr;
105 
106 	return state;
107 }
108 
109 static void free_partitions(struct parsed_partitions *state)
110 {
111 	vfree(state->parts);
112 	kfree(state);
113 }
114 
115 static struct parsed_partitions *check_partition(struct gendisk *hd,
116 		struct block_device *bdev)
117 {
118 	struct parsed_partitions *state;
119 	int i, res, err;
120 
121 	state = allocate_partitions(hd);
122 	if (!state)
123 		return NULL;
124 	state->pp_buf = (char *)__get_free_page(GFP_KERNEL);
125 	if (!state->pp_buf) {
126 		free_partitions(state);
127 		return NULL;
128 	}
129 	state->pp_buf[0] = '\0';
130 
131 	state->bdev = bdev;
132 	disk_name(hd, 0, state->name);
133 	snprintf(state->pp_buf, PAGE_SIZE, " %s:", state->name);
134 	if (isdigit(state->name[strlen(state->name)-1]))
135 		sprintf(state->name, "p");
136 
137 	i = res = err = 0;
138 	while (!res && check_part[i]) {
139 		memset(state->parts, 0, state->limit * sizeof(state->parts[0]));
140 		res = check_part[i++](state);
141 		if (res < 0) {
142 			/*
143 			 * We have hit an I/O error which we don't report now.
144 			 * But record it, and let the others do their job.
145 			 */
146 			err = res;
147 			res = 0;
148 		}
149 
150 	}
151 	if (res > 0) {
152 		printk(KERN_INFO "%s", state->pp_buf);
153 
154 		free_page((unsigned long)state->pp_buf);
155 		return state;
156 	}
157 	if (state->access_beyond_eod)
158 		err = -ENOSPC;
159 	/*
160 	 * The partition is unrecognized. So report I/O errors if there were any
161 	 */
162 	if (err)
163 		res = err;
164 	if (res) {
165 		strlcat(state->pp_buf,
166 			" unable to read partition table\n", PAGE_SIZE);
167 		printk(KERN_INFO "%s", state->pp_buf);
168 	}
169 
170 	free_page((unsigned long)state->pp_buf);
171 	free_partitions(state);
172 	return ERR_PTR(res);
173 }
174 
175 static ssize_t part_partition_show(struct device *dev,
176 				   struct device_attribute *attr, char *buf)
177 {
178 	struct hd_struct *p = dev_to_part(dev);
179 
180 	return sprintf(buf, "%d\n", p->partno);
181 }
182 
183 static ssize_t part_start_show(struct device *dev,
184 			       struct device_attribute *attr, char *buf)
185 {
186 	struct hd_struct *p = dev_to_part(dev);
187 
188 	return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
189 }
190 
191 static ssize_t part_ro_show(struct device *dev,
192 			    struct device_attribute *attr, char *buf)
193 {
194 	struct hd_struct *p = dev_to_part(dev);
195 	return sprintf(buf, "%d\n", p->policy ? 1 : 0);
196 }
197 
198 static ssize_t part_alignment_offset_show(struct device *dev,
199 					  struct device_attribute *attr, char *buf)
200 {
201 	struct hd_struct *p = dev_to_part(dev);
202 	return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
203 }
204 
205 static ssize_t part_discard_alignment_show(struct device *dev,
206 					   struct device_attribute *attr, char *buf)
207 {
208 	struct hd_struct *p = dev_to_part(dev);
209 	return sprintf(buf, "%u\n", p->discard_alignment);
210 }
211 
212 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL);
213 static DEVICE_ATTR(start, 0444, part_start_show, NULL);
214 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
215 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL);
216 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL);
217 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL);
218 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
219 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
220 #ifdef CONFIG_FAIL_MAKE_REQUEST
221 static struct device_attribute dev_attr_fail =
222 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
223 #endif
224 
225 static struct attribute *part_attrs[] = {
226 	&dev_attr_partition.attr,
227 	&dev_attr_start.attr,
228 	&dev_attr_size.attr,
229 	&dev_attr_ro.attr,
230 	&dev_attr_alignment_offset.attr,
231 	&dev_attr_discard_alignment.attr,
232 	&dev_attr_stat.attr,
233 	&dev_attr_inflight.attr,
234 #ifdef CONFIG_FAIL_MAKE_REQUEST
235 	&dev_attr_fail.attr,
236 #endif
237 	NULL
238 };
239 
240 static struct attribute_group part_attr_group = {
241 	.attrs = part_attrs,
242 };
243 
244 static const struct attribute_group *part_attr_groups[] = {
245 	&part_attr_group,
246 #ifdef CONFIG_BLK_DEV_IO_TRACE
247 	&blk_trace_attr_group,
248 #endif
249 	NULL
250 };
251 
252 static void part_release(struct device *dev)
253 {
254 	struct hd_struct *p = dev_to_part(dev);
255 	blk_free_devt(dev->devt);
256 	hd_free_part(p);
257 	kfree(p);
258 }
259 
260 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
261 {
262 	struct hd_struct *part = dev_to_part(dev);
263 
264 	add_uevent_var(env, "PARTN=%u", part->partno);
265 	if (part->info && part->info->volname[0])
266 		add_uevent_var(env, "PARTNAME=%s", part->info->volname);
267 	return 0;
268 }
269 
270 struct device_type part_type = {
271 	.name		= "partition",
272 	.groups		= part_attr_groups,
273 	.release	= part_release,
274 	.uevent		= part_uevent,
275 };
276 
277 static void hd_struct_free_work(struct work_struct *work)
278 {
279 	struct hd_struct *part =
280 		container_of(to_rcu_work(work), struct hd_struct, rcu_work);
281 
282 	part->start_sect = 0;
283 	part->nr_sects = 0;
284 	part_stat_set_all(part, 0);
285 	put_device(part_to_dev(part));
286 }
287 
288 static void hd_struct_free(struct percpu_ref *ref)
289 {
290 	struct hd_struct *part = container_of(ref, struct hd_struct, ref);
291 	struct gendisk *disk = part_to_disk(part);
292 	struct disk_part_tbl *ptbl =
293 		rcu_dereference_protected(disk->part_tbl, 1);
294 
295 	rcu_assign_pointer(ptbl->last_lookup, NULL);
296 	put_device(disk_to_dev(disk));
297 
298 	INIT_RCU_WORK(&part->rcu_work, hd_struct_free_work);
299 	queue_rcu_work(system_wq, &part->rcu_work);
300 }
301 
302 int hd_ref_init(struct hd_struct *part)
303 {
304 	if (percpu_ref_init(&part->ref, hd_struct_free, 0, GFP_KERNEL))
305 		return -ENOMEM;
306 	return 0;
307 }
308 
309 /*
310  * Must be called either with bd_mutex held, before a disk can be opened or
311  * after all disk users are gone.
312  */
313 void delete_partition(struct gendisk *disk, struct hd_struct *part)
314 {
315 	struct disk_part_tbl *ptbl =
316 		rcu_dereference_protected(disk->part_tbl, 1);
317 
318 	/*
319 	 * ->part_tbl is referenced in this part's release handler, so
320 	 *  we have to hold the disk device
321 	 */
322 	get_device(disk_to_dev(part_to_disk(part)));
323 	rcu_assign_pointer(ptbl->part[part->partno], NULL);
324 	kobject_put(part->holder_dir);
325 	device_del(part_to_dev(part));
326 
327 	/*
328 	 * Remove gendisk pointer from idr so that it cannot be looked up
329 	 * while RCU period before freeing gendisk is running to prevent
330 	 * use-after-free issues. Note that the device number stays
331 	 * "in-use" until we really free the gendisk.
332 	 */
333 	blk_invalidate_devt(part_devt(part));
334 	percpu_ref_kill(&part->ref);
335 }
336 
337 static ssize_t whole_disk_show(struct device *dev,
338 			       struct device_attribute *attr, char *buf)
339 {
340 	return 0;
341 }
342 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL);
343 
344 /*
345  * Must be called either with bd_mutex held, before a disk can be opened or
346  * after all disk users are gone.
347  */
348 static struct hd_struct *add_partition(struct gendisk *disk, int partno,
349 				sector_t start, sector_t len, int flags,
350 				struct partition_meta_info *info)
351 {
352 	struct hd_struct *p;
353 	dev_t devt = MKDEV(0, 0);
354 	struct device *ddev = disk_to_dev(disk);
355 	struct device *pdev;
356 	struct disk_part_tbl *ptbl;
357 	const char *dname;
358 	int err;
359 
360 	/*
361 	 * Partitions are not supported on zoned block devices that are used as
362 	 * such.
363 	 */
364 	switch (disk->queue->limits.zoned) {
365 	case BLK_ZONED_HM:
366 		pr_warn("%s: partitions not supported on host managed zoned block device\n",
367 			disk->disk_name);
368 		return ERR_PTR(-ENXIO);
369 	case BLK_ZONED_HA:
370 		pr_info("%s: disabling host aware zoned block device support due to partitions\n",
371 			disk->disk_name);
372 		disk->queue->limits.zoned = BLK_ZONED_NONE;
373 		break;
374 	case BLK_ZONED_NONE:
375 		break;
376 	}
377 
378 	err = disk_expand_part_tbl(disk, partno);
379 	if (err)
380 		return ERR_PTR(err);
381 	ptbl = rcu_dereference_protected(disk->part_tbl, 1);
382 
383 	if (ptbl->part[partno])
384 		return ERR_PTR(-EBUSY);
385 
386 	p = kzalloc(sizeof(*p), GFP_KERNEL);
387 	if (!p)
388 		return ERR_PTR(-EBUSY);
389 
390 	p->dkstats = alloc_percpu(struct disk_stats);
391 	if (!p->dkstats) {
392 		err = -ENOMEM;
393 		goto out_free;
394 	}
395 
396 	hd_sects_seq_init(p);
397 	pdev = part_to_dev(p);
398 
399 	p->start_sect = start;
400 	p->alignment_offset =
401 		queue_limit_alignment_offset(&disk->queue->limits, start);
402 	p->discard_alignment =
403 		queue_limit_discard_alignment(&disk->queue->limits, start);
404 	p->nr_sects = len;
405 	p->partno = partno;
406 	p->policy = get_disk_ro(disk);
407 
408 	if (info) {
409 		struct partition_meta_info *pinfo;
410 
411 		pinfo = kzalloc_node(sizeof(*pinfo), GFP_KERNEL, disk->node_id);
412 		if (!pinfo) {
413 			err = -ENOMEM;
414 			goto out_free_stats;
415 		}
416 		memcpy(pinfo, info, sizeof(*info));
417 		p->info = pinfo;
418 	}
419 
420 	dname = dev_name(ddev);
421 	if (isdigit(dname[strlen(dname) - 1]))
422 		dev_set_name(pdev, "%sp%d", dname, partno);
423 	else
424 		dev_set_name(pdev, "%s%d", dname, partno);
425 
426 	device_initialize(pdev);
427 	pdev->class = &block_class;
428 	pdev->type = &part_type;
429 	pdev->parent = ddev;
430 
431 	err = blk_alloc_devt(p, &devt);
432 	if (err)
433 		goto out_free_info;
434 	pdev->devt = devt;
435 
436 	/* delay uevent until 'holders' subdir is created */
437 	dev_set_uevent_suppress(pdev, 1);
438 	err = device_add(pdev);
439 	if (err)
440 		goto out_put;
441 
442 	err = -ENOMEM;
443 	p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
444 	if (!p->holder_dir)
445 		goto out_del;
446 
447 	dev_set_uevent_suppress(pdev, 0);
448 	if (flags & ADDPART_FLAG_WHOLEDISK) {
449 		err = device_create_file(pdev, &dev_attr_whole_disk);
450 		if (err)
451 			goto out_del;
452 	}
453 
454 	err = hd_ref_init(p);
455 	if (err) {
456 		if (flags & ADDPART_FLAG_WHOLEDISK)
457 			goto out_remove_file;
458 		goto out_del;
459 	}
460 
461 	/* everything is up and running, commence */
462 	rcu_assign_pointer(ptbl->part[partno], p);
463 
464 	/* suppress uevent if the disk suppresses it */
465 	if (!dev_get_uevent_suppress(ddev))
466 		kobject_uevent(&pdev->kobj, KOBJ_ADD);
467 	return p;
468 
469 out_free_info:
470 	kfree(p->info);
471 out_free_stats:
472 	free_percpu(p->dkstats);
473 out_free:
474 	kfree(p);
475 	return ERR_PTR(err);
476 out_remove_file:
477 	device_remove_file(pdev, &dev_attr_whole_disk);
478 out_del:
479 	kobject_put(p->holder_dir);
480 	device_del(pdev);
481 out_put:
482 	put_device(pdev);
483 	return ERR_PTR(err);
484 }
485 
486 static bool partition_overlaps(struct gendisk *disk, sector_t start,
487 		sector_t length, int skip_partno)
488 {
489 	struct disk_part_iter piter;
490 	struct hd_struct *part;
491 	bool overlap = false;
492 
493 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
494 	while ((part = disk_part_iter_next(&piter))) {
495 		if (part->partno == skip_partno ||
496 		    start >= part->start_sect + part->nr_sects ||
497 		    start + length <= part->start_sect)
498 			continue;
499 		overlap = true;
500 		break;
501 	}
502 
503 	disk_part_iter_exit(&piter);
504 	return overlap;
505 }
506 
507 int bdev_add_partition(struct block_device *bdev, int partno,
508 		sector_t start, sector_t length)
509 {
510 	struct hd_struct *part;
511 
512 	mutex_lock(&bdev->bd_mutex);
513 	if (partition_overlaps(bdev->bd_disk, start, length, -1)) {
514 		mutex_unlock(&bdev->bd_mutex);
515 		return -EBUSY;
516 	}
517 
518 	part = add_partition(bdev->bd_disk, partno, start, length,
519 			ADDPART_FLAG_NONE, NULL);
520 	mutex_unlock(&bdev->bd_mutex);
521 	return PTR_ERR_OR_ZERO(part);
522 }
523 
524 int bdev_del_partition(struct block_device *bdev, int partno)
525 {
526 	struct block_device *bdevp;
527 	struct hd_struct *part;
528 	int ret = 0;
529 
530 	part = disk_get_part(bdev->bd_disk, partno);
531 	if (!part)
532 		return -ENXIO;
533 
534 	ret = -ENOMEM;
535 	bdevp = bdget(part_devt(part));
536 	if (!bdevp)
537 		goto out_put_part;
538 
539 	mutex_lock(&bdevp->bd_mutex);
540 
541 	ret = -EBUSY;
542 	if (bdevp->bd_openers)
543 		goto out_unlock;
544 
545 	sync_blockdev(bdevp);
546 	invalidate_bdev(bdevp);
547 
548 	mutex_lock_nested(&bdev->bd_mutex, 1);
549 	delete_partition(bdev->bd_disk, part);
550 	mutex_unlock(&bdev->bd_mutex);
551 
552 	ret = 0;
553 out_unlock:
554 	mutex_unlock(&bdevp->bd_mutex);
555 	bdput(bdevp);
556 out_put_part:
557 	disk_put_part(part);
558 	return ret;
559 }
560 
561 int bdev_resize_partition(struct block_device *bdev, int partno,
562 		sector_t start, sector_t length)
563 {
564 	struct block_device *bdevp;
565 	struct hd_struct *part;
566 	int ret = 0;
567 
568 	part = disk_get_part(bdev->bd_disk, partno);
569 	if (!part)
570 		return -ENXIO;
571 
572 	ret = -ENOMEM;
573 	bdevp = bdget(part_devt(part));
574 	if (!bdevp)
575 		goto out_put_part;
576 
577 	mutex_lock(&bdevp->bd_mutex);
578 	mutex_lock_nested(&bdev->bd_mutex, 1);
579 
580 	ret = -EINVAL;
581 	if (start != part->start_sect)
582 		goto out_unlock;
583 
584 	ret = -EBUSY;
585 	if (partition_overlaps(bdev->bd_disk, start, length, partno))
586 		goto out_unlock;
587 
588 	part_nr_sects_write(part, (sector_t)length);
589 	i_size_write(bdevp->bd_inode, length << SECTOR_SHIFT);
590 
591 	ret = 0;
592 out_unlock:
593 	mutex_unlock(&bdevp->bd_mutex);
594 	mutex_unlock(&bdev->bd_mutex);
595 	bdput(bdevp);
596 out_put_part:
597 	disk_put_part(part);
598 	return ret;
599 }
600 
601 static bool disk_unlock_native_capacity(struct gendisk *disk)
602 {
603 	const struct block_device_operations *bdops = disk->fops;
604 
605 	if (bdops->unlock_native_capacity &&
606 	    !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
607 		printk(KERN_CONT "enabling native capacity\n");
608 		bdops->unlock_native_capacity(disk);
609 		disk->flags |= GENHD_FL_NATIVE_CAPACITY;
610 		return true;
611 	} else {
612 		printk(KERN_CONT "truncated\n");
613 		return false;
614 	}
615 }
616 
617 int blk_drop_partitions(struct block_device *bdev)
618 {
619 	struct disk_part_iter piter;
620 	struct hd_struct *part;
621 
622 	if (bdev->bd_part_count)
623 		return -EBUSY;
624 
625 	sync_blockdev(bdev);
626 	invalidate_bdev(bdev);
627 
628 	disk_part_iter_init(&piter, bdev->bd_disk, DISK_PITER_INCL_EMPTY);
629 	while ((part = disk_part_iter_next(&piter)))
630 		delete_partition(bdev->bd_disk, part);
631 	disk_part_iter_exit(&piter);
632 
633 	return 0;
634 }
635 #ifdef CONFIG_S390
636 /* for historic reasons in the DASD driver */
637 EXPORT_SYMBOL_GPL(blk_drop_partitions);
638 #endif
639 
640 static bool blk_add_partition(struct gendisk *disk, struct block_device *bdev,
641 		struct parsed_partitions *state, int p)
642 {
643 	sector_t size = state->parts[p].size;
644 	sector_t from = state->parts[p].from;
645 	struct hd_struct *part;
646 
647 	if (!size)
648 		return true;
649 
650 	if (from >= get_capacity(disk)) {
651 		printk(KERN_WARNING
652 		       "%s: p%d start %llu is beyond EOD, ",
653 		       disk->disk_name, p, (unsigned long long) from);
654 		if (disk_unlock_native_capacity(disk))
655 			return false;
656 		return true;
657 	}
658 
659 	if (from + size > get_capacity(disk)) {
660 		printk(KERN_WARNING
661 		       "%s: p%d size %llu extends beyond EOD, ",
662 		       disk->disk_name, p, (unsigned long long) size);
663 
664 		if (disk_unlock_native_capacity(disk))
665 			return false;
666 
667 		/*
668 		 * We can not ignore partitions of broken tables created by for
669 		 * example camera firmware, but we limit them to the end of the
670 		 * disk to avoid creating invalid block devices.
671 		 */
672 		size = get_capacity(disk) - from;
673 	}
674 
675 	part = add_partition(disk, p, from, size, state->parts[p].flags,
676 			     &state->parts[p].info);
677 	if (IS_ERR(part) && PTR_ERR(part) != -ENXIO) {
678 		printk(KERN_ERR " %s: p%d could not be added: %ld\n",
679 		       disk->disk_name, p, -PTR_ERR(part));
680 		return true;
681 	}
682 
683 	if (IS_BUILTIN(CONFIG_BLK_DEV_MD) &&
684 	    (state->parts[p].flags & ADDPART_FLAG_RAID))
685 		md_autodetect_dev(part_to_dev(part)->devt);
686 
687 	return true;
688 }
689 
690 int blk_add_partitions(struct gendisk *disk, struct block_device *bdev)
691 {
692 	struct parsed_partitions *state;
693 	int ret = -EAGAIN, p, highest;
694 
695 	if (!disk_part_scan_enabled(disk))
696 		return 0;
697 
698 	state = check_partition(disk, bdev);
699 	if (!state)
700 		return 0;
701 	if (IS_ERR(state)) {
702 		/*
703 		 * I/O error reading the partition table.  If we tried to read
704 		 * beyond EOD, retry after unlocking the native capacity.
705 		 */
706 		if (PTR_ERR(state) == -ENOSPC) {
707 			printk(KERN_WARNING "%s: partition table beyond EOD, ",
708 			       disk->disk_name);
709 			if (disk_unlock_native_capacity(disk))
710 				return -EAGAIN;
711 		}
712 		return -EIO;
713 	}
714 
715 	/*
716 	 * Partitions are not supported on host managed zoned block devices.
717 	 */
718 	if (disk->queue->limits.zoned == BLK_ZONED_HM) {
719 		pr_warn("%s: ignoring partition table on host managed zoned block device\n",
720 			disk->disk_name);
721 		ret = 0;
722 		goto out_free_state;
723 	}
724 
725 	/*
726 	 * If we read beyond EOD, try unlocking native capacity even if the
727 	 * partition table was successfully read as we could be missing some
728 	 * partitions.
729 	 */
730 	if (state->access_beyond_eod) {
731 		printk(KERN_WARNING
732 		       "%s: partition table partially beyond EOD, ",
733 		       disk->disk_name);
734 		if (disk_unlock_native_capacity(disk))
735 			goto out_free_state;
736 	}
737 
738 	/* tell userspace that the media / partition table may have changed */
739 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
740 
741 	/*
742 	 * Detect the highest partition number and preallocate disk->part_tbl.
743 	 * This is an optimization and not strictly necessary.
744 	 */
745 	for (p = 1, highest = 0; p < state->limit; p++)
746 		if (state->parts[p].size)
747 			highest = p;
748 	disk_expand_part_tbl(disk, highest);
749 
750 	for (p = 1; p < state->limit; p++)
751 		if (!blk_add_partition(disk, bdev, state, p))
752 			goto out_free_state;
753 
754 	ret = 0;
755 out_free_state:
756 	free_partitions(state);
757 	return ret;
758 }
759 
760 void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p)
761 {
762 	struct address_space *mapping = state->bdev->bd_inode->i_mapping;
763 	struct page *page;
764 
765 	if (n >= get_capacity(state->bdev->bd_disk)) {
766 		state->access_beyond_eod = true;
767 		return NULL;
768 	}
769 
770 	page = read_mapping_page(mapping,
771 			(pgoff_t)(n >> (PAGE_SHIFT - 9)), NULL);
772 	if (IS_ERR(page))
773 		goto out;
774 	if (PageError(page))
775 		goto out_put_page;
776 
777 	p->v = page;
778 	return (unsigned char *)page_address(page) +
779 			((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << SECTOR_SHIFT);
780 out_put_page:
781 	put_page(page);
782 out:
783 	p->v = NULL;
784 	return NULL;
785 }
786