1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991-1998 Linus Torvalds 4 * Re-organised Feb 1998 Russell King 5 */ 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/ctype.h> 9 #include <linux/genhd.h> 10 #include <linux/vmalloc.h> 11 #include <linux/blktrace_api.h> 12 #include <linux/raid/detect.h> 13 #include "check.h" 14 15 static int (*check_part[])(struct parsed_partitions *) = { 16 /* 17 * Probe partition formats with tables at disk address 0 18 * that also have an ADFS boot block at 0xdc0. 19 */ 20 #ifdef CONFIG_ACORN_PARTITION_ICS 21 adfspart_check_ICS, 22 #endif 23 #ifdef CONFIG_ACORN_PARTITION_POWERTEC 24 adfspart_check_POWERTEC, 25 #endif 26 #ifdef CONFIG_ACORN_PARTITION_EESOX 27 adfspart_check_EESOX, 28 #endif 29 30 /* 31 * Now move on to formats that only have partition info at 32 * disk address 0xdc0. Since these may also have stale 33 * PC/BIOS partition tables, they need to come before 34 * the msdos entry. 35 */ 36 #ifdef CONFIG_ACORN_PARTITION_CUMANA 37 adfspart_check_CUMANA, 38 #endif 39 #ifdef CONFIG_ACORN_PARTITION_ADFS 40 adfspart_check_ADFS, 41 #endif 42 43 #ifdef CONFIG_CMDLINE_PARTITION 44 cmdline_partition, 45 #endif 46 #ifdef CONFIG_EFI_PARTITION 47 efi_partition, /* this must come before msdos */ 48 #endif 49 #ifdef CONFIG_SGI_PARTITION 50 sgi_partition, 51 #endif 52 #ifdef CONFIG_LDM_PARTITION 53 ldm_partition, /* this must come before msdos */ 54 #endif 55 #ifdef CONFIG_MSDOS_PARTITION 56 msdos_partition, 57 #endif 58 #ifdef CONFIG_OSF_PARTITION 59 osf_partition, 60 #endif 61 #ifdef CONFIG_SUN_PARTITION 62 sun_partition, 63 #endif 64 #ifdef CONFIG_AMIGA_PARTITION 65 amiga_partition, 66 #endif 67 #ifdef CONFIG_ATARI_PARTITION 68 atari_partition, 69 #endif 70 #ifdef CONFIG_MAC_PARTITION 71 mac_partition, 72 #endif 73 #ifdef CONFIG_ULTRIX_PARTITION 74 ultrix_partition, 75 #endif 76 #ifdef CONFIG_IBM_PARTITION 77 ibm_partition, 78 #endif 79 #ifdef CONFIG_KARMA_PARTITION 80 karma_partition, 81 #endif 82 #ifdef CONFIG_SYSV68_PARTITION 83 sysv68_partition, 84 #endif 85 NULL 86 }; 87 88 static struct parsed_partitions *allocate_partitions(struct gendisk *hd) 89 { 90 struct parsed_partitions *state; 91 int nr; 92 93 state = kzalloc(sizeof(*state), GFP_KERNEL); 94 if (!state) 95 return NULL; 96 97 nr = disk_max_parts(hd); 98 state->parts = vzalloc(array_size(nr, sizeof(state->parts[0]))); 99 if (!state->parts) { 100 kfree(state); 101 return NULL; 102 } 103 104 state->limit = nr; 105 106 return state; 107 } 108 109 static void free_partitions(struct parsed_partitions *state) 110 { 111 vfree(state->parts); 112 kfree(state); 113 } 114 115 static struct parsed_partitions *check_partition(struct gendisk *hd, 116 struct block_device *bdev) 117 { 118 struct parsed_partitions *state; 119 int i, res, err; 120 121 state = allocate_partitions(hd); 122 if (!state) 123 return NULL; 124 state->pp_buf = (char *)__get_free_page(GFP_KERNEL); 125 if (!state->pp_buf) { 126 free_partitions(state); 127 return NULL; 128 } 129 state->pp_buf[0] = '\0'; 130 131 state->bdev = bdev; 132 disk_name(hd, 0, state->name); 133 snprintf(state->pp_buf, PAGE_SIZE, " %s:", state->name); 134 if (isdigit(state->name[strlen(state->name)-1])) 135 sprintf(state->name, "p"); 136 137 i = res = err = 0; 138 while (!res && check_part[i]) { 139 memset(state->parts, 0, state->limit * sizeof(state->parts[0])); 140 res = check_part[i++](state); 141 if (res < 0) { 142 /* 143 * We have hit an I/O error which we don't report now. 144 * But record it, and let the others do their job. 145 */ 146 err = res; 147 res = 0; 148 } 149 150 } 151 if (res > 0) { 152 printk(KERN_INFO "%s", state->pp_buf); 153 154 free_page((unsigned long)state->pp_buf); 155 return state; 156 } 157 if (state->access_beyond_eod) 158 err = -ENOSPC; 159 /* 160 * The partition is unrecognized. So report I/O errors if there were any 161 */ 162 if (err) 163 res = err; 164 if (res) { 165 strlcat(state->pp_buf, 166 " unable to read partition table\n", PAGE_SIZE); 167 printk(KERN_INFO "%s", state->pp_buf); 168 } 169 170 free_page((unsigned long)state->pp_buf); 171 free_partitions(state); 172 return ERR_PTR(res); 173 } 174 175 static ssize_t part_partition_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct hd_struct *p = dev_to_part(dev); 179 180 return sprintf(buf, "%d\n", p->partno); 181 } 182 183 static ssize_t part_start_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct hd_struct *p = dev_to_part(dev); 187 188 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect); 189 } 190 191 static ssize_t part_ro_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct hd_struct *p = dev_to_part(dev); 195 return sprintf(buf, "%d\n", p->policy ? 1 : 0); 196 } 197 198 static ssize_t part_alignment_offset_show(struct device *dev, 199 struct device_attribute *attr, char *buf) 200 { 201 struct hd_struct *p = dev_to_part(dev); 202 203 return sprintf(buf, "%u\n", 204 queue_limit_alignment_offset(&part_to_disk(p)->queue->limits, 205 p->start_sect)); 206 } 207 208 static ssize_t part_discard_alignment_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct hd_struct *p = dev_to_part(dev); 212 213 return sprintf(buf, "%u\n", 214 queue_limit_discard_alignment(&part_to_disk(p)->queue->limits, 215 p->start_sect)); 216 } 217 218 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL); 219 static DEVICE_ATTR(start, 0444, part_start_show, NULL); 220 static DEVICE_ATTR(size, 0444, part_size_show, NULL); 221 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL); 222 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL); 223 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL); 224 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); 225 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); 226 #ifdef CONFIG_FAIL_MAKE_REQUEST 227 static struct device_attribute dev_attr_fail = 228 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); 229 #endif 230 231 static struct attribute *part_attrs[] = { 232 &dev_attr_partition.attr, 233 &dev_attr_start.attr, 234 &dev_attr_size.attr, 235 &dev_attr_ro.attr, 236 &dev_attr_alignment_offset.attr, 237 &dev_attr_discard_alignment.attr, 238 &dev_attr_stat.attr, 239 &dev_attr_inflight.attr, 240 #ifdef CONFIG_FAIL_MAKE_REQUEST 241 &dev_attr_fail.attr, 242 #endif 243 NULL 244 }; 245 246 static struct attribute_group part_attr_group = { 247 .attrs = part_attrs, 248 }; 249 250 static const struct attribute_group *part_attr_groups[] = { 251 &part_attr_group, 252 #ifdef CONFIG_BLK_DEV_IO_TRACE 253 &blk_trace_attr_group, 254 #endif 255 NULL 256 }; 257 258 static void part_release(struct device *dev) 259 { 260 struct hd_struct *p = dev_to_part(dev); 261 blk_free_devt(dev->devt); 262 hd_free_part(p); 263 kfree(p); 264 } 265 266 static int part_uevent(struct device *dev, struct kobj_uevent_env *env) 267 { 268 struct hd_struct *part = dev_to_part(dev); 269 270 add_uevent_var(env, "PARTN=%u", part->partno); 271 if (part->info && part->info->volname[0]) 272 add_uevent_var(env, "PARTNAME=%s", part->info->volname); 273 return 0; 274 } 275 276 struct device_type part_type = { 277 .name = "partition", 278 .groups = part_attr_groups, 279 .release = part_release, 280 .uevent = part_uevent, 281 }; 282 283 static void hd_struct_free_work(struct work_struct *work) 284 { 285 struct hd_struct *part = 286 container_of(to_rcu_work(work), struct hd_struct, rcu_work); 287 struct gendisk *disk = part_to_disk(part); 288 289 /* 290 * Release the disk reference acquired in delete_partition here. 291 * We can't release it in hd_struct_free because the final put_device 292 * needs process context and thus can't be run directly from a 293 * percpu_ref ->release handler. 294 */ 295 put_device(disk_to_dev(disk)); 296 297 part->start_sect = 0; 298 part->nr_sects = 0; 299 part_stat_set_all(part, 0); 300 put_device(part_to_dev(part)); 301 } 302 303 static void hd_struct_free(struct percpu_ref *ref) 304 { 305 struct hd_struct *part = container_of(ref, struct hd_struct, ref); 306 struct gendisk *disk = part_to_disk(part); 307 struct disk_part_tbl *ptbl = 308 rcu_dereference_protected(disk->part_tbl, 1); 309 310 rcu_assign_pointer(ptbl->last_lookup, NULL); 311 312 INIT_RCU_WORK(&part->rcu_work, hd_struct_free_work); 313 queue_rcu_work(system_wq, &part->rcu_work); 314 } 315 316 int hd_ref_init(struct hd_struct *part) 317 { 318 if (percpu_ref_init(&part->ref, hd_struct_free, 0, GFP_KERNEL)) 319 return -ENOMEM; 320 return 0; 321 } 322 323 /* 324 * Must be called either with bd_mutex held, before a disk can be opened or 325 * after all disk users are gone. 326 */ 327 void delete_partition(struct hd_struct *part) 328 { 329 struct gendisk *disk = part_to_disk(part); 330 struct disk_part_tbl *ptbl = 331 rcu_dereference_protected(disk->part_tbl, 1); 332 333 /* 334 * ->part_tbl is referenced in this part's release handler, so 335 * we have to hold the disk device 336 */ 337 get_device(disk_to_dev(disk)); 338 rcu_assign_pointer(ptbl->part[part->partno], NULL); 339 kobject_put(part->holder_dir); 340 device_del(part_to_dev(part)); 341 342 /* 343 * Remove gendisk pointer from idr so that it cannot be looked up 344 * while RCU period before freeing gendisk is running to prevent 345 * use-after-free issues. Note that the device number stays 346 * "in-use" until we really free the gendisk. 347 */ 348 blk_invalidate_devt(part_devt(part)); 349 percpu_ref_kill(&part->ref); 350 } 351 352 static ssize_t whole_disk_show(struct device *dev, 353 struct device_attribute *attr, char *buf) 354 { 355 return 0; 356 } 357 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL); 358 359 /* 360 * Must be called either with bd_mutex held, before a disk can be opened or 361 * after all disk users are gone. 362 */ 363 static struct hd_struct *add_partition(struct gendisk *disk, int partno, 364 sector_t start, sector_t len, int flags, 365 struct partition_meta_info *info) 366 { 367 struct hd_struct *p; 368 dev_t devt = MKDEV(0, 0); 369 struct device *ddev = disk_to_dev(disk); 370 struct device *pdev; 371 struct disk_part_tbl *ptbl; 372 const char *dname; 373 int err; 374 375 /* 376 * Partitions are not supported on zoned block devices that are used as 377 * such. 378 */ 379 switch (disk->queue->limits.zoned) { 380 case BLK_ZONED_HM: 381 pr_warn("%s: partitions not supported on host managed zoned block device\n", 382 disk->disk_name); 383 return ERR_PTR(-ENXIO); 384 case BLK_ZONED_HA: 385 pr_info("%s: disabling host aware zoned block device support due to partitions\n", 386 disk->disk_name); 387 disk->queue->limits.zoned = BLK_ZONED_NONE; 388 break; 389 case BLK_ZONED_NONE: 390 break; 391 } 392 393 err = disk_expand_part_tbl(disk, partno); 394 if (err) 395 return ERR_PTR(err); 396 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 397 398 if (ptbl->part[partno]) 399 return ERR_PTR(-EBUSY); 400 401 p = kzalloc(sizeof(*p), GFP_KERNEL); 402 if (!p) 403 return ERR_PTR(-EBUSY); 404 405 p->dkstats = alloc_percpu(struct disk_stats); 406 if (!p->dkstats) { 407 err = -ENOMEM; 408 goto out_free; 409 } 410 411 hd_sects_seq_init(p); 412 pdev = part_to_dev(p); 413 414 p->start_sect = start; 415 p->nr_sects = len; 416 p->partno = partno; 417 p->policy = get_disk_ro(disk); 418 419 if (info) { 420 struct partition_meta_info *pinfo; 421 422 pinfo = kzalloc_node(sizeof(*pinfo), GFP_KERNEL, disk->node_id); 423 if (!pinfo) { 424 err = -ENOMEM; 425 goto out_free_stats; 426 } 427 memcpy(pinfo, info, sizeof(*info)); 428 p->info = pinfo; 429 } 430 431 dname = dev_name(ddev); 432 if (isdigit(dname[strlen(dname) - 1])) 433 dev_set_name(pdev, "%sp%d", dname, partno); 434 else 435 dev_set_name(pdev, "%s%d", dname, partno); 436 437 device_initialize(pdev); 438 pdev->class = &block_class; 439 pdev->type = &part_type; 440 pdev->parent = ddev; 441 442 err = blk_alloc_devt(p, &devt); 443 if (err) 444 goto out_free_info; 445 pdev->devt = devt; 446 447 /* delay uevent until 'holders' subdir is created */ 448 dev_set_uevent_suppress(pdev, 1); 449 err = device_add(pdev); 450 if (err) 451 goto out_put; 452 453 err = -ENOMEM; 454 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj); 455 if (!p->holder_dir) 456 goto out_del; 457 458 dev_set_uevent_suppress(pdev, 0); 459 if (flags & ADDPART_FLAG_WHOLEDISK) { 460 err = device_create_file(pdev, &dev_attr_whole_disk); 461 if (err) 462 goto out_del; 463 } 464 465 err = hd_ref_init(p); 466 if (err) { 467 if (flags & ADDPART_FLAG_WHOLEDISK) 468 goto out_remove_file; 469 goto out_del; 470 } 471 472 /* everything is up and running, commence */ 473 rcu_assign_pointer(ptbl->part[partno], p); 474 475 /* suppress uevent if the disk suppresses it */ 476 if (!dev_get_uevent_suppress(ddev)) 477 kobject_uevent(&pdev->kobj, KOBJ_ADD); 478 return p; 479 480 out_free_info: 481 kfree(p->info); 482 out_free_stats: 483 free_percpu(p->dkstats); 484 out_free: 485 kfree(p); 486 return ERR_PTR(err); 487 out_remove_file: 488 device_remove_file(pdev, &dev_attr_whole_disk); 489 out_del: 490 kobject_put(p->holder_dir); 491 device_del(pdev); 492 out_put: 493 put_device(pdev); 494 return ERR_PTR(err); 495 } 496 497 static bool partition_overlaps(struct gendisk *disk, sector_t start, 498 sector_t length, int skip_partno) 499 { 500 struct disk_part_iter piter; 501 struct hd_struct *part; 502 bool overlap = false; 503 504 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 505 while ((part = disk_part_iter_next(&piter))) { 506 if (part->partno == skip_partno || 507 start >= part->start_sect + part->nr_sects || 508 start + length <= part->start_sect) 509 continue; 510 overlap = true; 511 break; 512 } 513 514 disk_part_iter_exit(&piter); 515 return overlap; 516 } 517 518 int bdev_add_partition(struct block_device *bdev, int partno, 519 sector_t start, sector_t length) 520 { 521 struct hd_struct *part; 522 523 mutex_lock(&bdev->bd_mutex); 524 if (partition_overlaps(bdev->bd_disk, start, length, -1)) { 525 mutex_unlock(&bdev->bd_mutex); 526 return -EBUSY; 527 } 528 529 part = add_partition(bdev->bd_disk, partno, start, length, 530 ADDPART_FLAG_NONE, NULL); 531 mutex_unlock(&bdev->bd_mutex); 532 return PTR_ERR_OR_ZERO(part); 533 } 534 535 int bdev_del_partition(struct block_device *bdev, int partno) 536 { 537 struct block_device *bdevp; 538 struct hd_struct *part = NULL; 539 int ret; 540 541 bdevp = bdget_disk(bdev->bd_disk, partno); 542 if (!bdevp) 543 return -ENXIO; 544 545 mutex_lock(&bdevp->bd_mutex); 546 mutex_lock_nested(&bdev->bd_mutex, 1); 547 548 ret = -ENXIO; 549 part = disk_get_part(bdev->bd_disk, partno); 550 if (!part) 551 goto out_unlock; 552 553 ret = -EBUSY; 554 if (bdevp->bd_openers) 555 goto out_unlock; 556 557 sync_blockdev(bdevp); 558 invalidate_bdev(bdevp); 559 560 delete_partition(part); 561 ret = 0; 562 out_unlock: 563 mutex_unlock(&bdev->bd_mutex); 564 mutex_unlock(&bdevp->bd_mutex); 565 bdput(bdevp); 566 if (part) 567 disk_put_part(part); 568 return ret; 569 } 570 571 int bdev_resize_partition(struct block_device *bdev, int partno, 572 sector_t start, sector_t length) 573 { 574 struct block_device *bdevp; 575 struct hd_struct *part; 576 int ret = 0; 577 578 part = disk_get_part(bdev->bd_disk, partno); 579 if (!part) 580 return -ENXIO; 581 582 ret = -ENOMEM; 583 bdevp = bdget_part(part); 584 if (!bdevp) 585 goto out_put_part; 586 587 mutex_lock(&bdevp->bd_mutex); 588 mutex_lock_nested(&bdev->bd_mutex, 1); 589 590 ret = -EINVAL; 591 if (start != part->start_sect) 592 goto out_unlock; 593 594 ret = -EBUSY; 595 if (partition_overlaps(bdev->bd_disk, start, length, partno)) 596 goto out_unlock; 597 598 part_nr_sects_write(part, length); 599 bd_set_nr_sectors(bdevp, length); 600 601 ret = 0; 602 out_unlock: 603 mutex_unlock(&bdevp->bd_mutex); 604 mutex_unlock(&bdev->bd_mutex); 605 bdput(bdevp); 606 out_put_part: 607 disk_put_part(part); 608 return ret; 609 } 610 611 static bool disk_unlock_native_capacity(struct gendisk *disk) 612 { 613 const struct block_device_operations *bdops = disk->fops; 614 615 if (bdops->unlock_native_capacity && 616 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) { 617 printk(KERN_CONT "enabling native capacity\n"); 618 bdops->unlock_native_capacity(disk); 619 disk->flags |= GENHD_FL_NATIVE_CAPACITY; 620 return true; 621 } else { 622 printk(KERN_CONT "truncated\n"); 623 return false; 624 } 625 } 626 627 int blk_drop_partitions(struct block_device *bdev) 628 { 629 struct disk_part_iter piter; 630 struct hd_struct *part; 631 632 if (bdev->bd_part_count) 633 return -EBUSY; 634 635 sync_blockdev(bdev); 636 invalidate_bdev(bdev); 637 638 disk_part_iter_init(&piter, bdev->bd_disk, DISK_PITER_INCL_EMPTY); 639 while ((part = disk_part_iter_next(&piter))) 640 delete_partition(part); 641 disk_part_iter_exit(&piter); 642 643 return 0; 644 } 645 #ifdef CONFIG_S390 646 /* for historic reasons in the DASD driver */ 647 EXPORT_SYMBOL_GPL(blk_drop_partitions); 648 #endif 649 650 static bool blk_add_partition(struct gendisk *disk, struct block_device *bdev, 651 struct parsed_partitions *state, int p) 652 { 653 sector_t size = state->parts[p].size; 654 sector_t from = state->parts[p].from; 655 struct hd_struct *part; 656 657 if (!size) 658 return true; 659 660 if (from >= get_capacity(disk)) { 661 printk(KERN_WARNING 662 "%s: p%d start %llu is beyond EOD, ", 663 disk->disk_name, p, (unsigned long long) from); 664 if (disk_unlock_native_capacity(disk)) 665 return false; 666 return true; 667 } 668 669 if (from + size > get_capacity(disk)) { 670 printk(KERN_WARNING 671 "%s: p%d size %llu extends beyond EOD, ", 672 disk->disk_name, p, (unsigned long long) size); 673 674 if (disk_unlock_native_capacity(disk)) 675 return false; 676 677 /* 678 * We can not ignore partitions of broken tables created by for 679 * example camera firmware, but we limit them to the end of the 680 * disk to avoid creating invalid block devices. 681 */ 682 size = get_capacity(disk) - from; 683 } 684 685 part = add_partition(disk, p, from, size, state->parts[p].flags, 686 &state->parts[p].info); 687 if (IS_ERR(part) && PTR_ERR(part) != -ENXIO) { 688 printk(KERN_ERR " %s: p%d could not be added: %ld\n", 689 disk->disk_name, p, -PTR_ERR(part)); 690 return true; 691 } 692 693 if (IS_BUILTIN(CONFIG_BLK_DEV_MD) && 694 (state->parts[p].flags & ADDPART_FLAG_RAID)) 695 md_autodetect_dev(part_to_dev(part)->devt); 696 697 return true; 698 } 699 700 int blk_add_partitions(struct gendisk *disk, struct block_device *bdev) 701 { 702 struct parsed_partitions *state; 703 int ret = -EAGAIN, p, highest; 704 705 if (!disk_part_scan_enabled(disk)) 706 return 0; 707 708 state = check_partition(disk, bdev); 709 if (!state) 710 return 0; 711 if (IS_ERR(state)) { 712 /* 713 * I/O error reading the partition table. If we tried to read 714 * beyond EOD, retry after unlocking the native capacity. 715 */ 716 if (PTR_ERR(state) == -ENOSPC) { 717 printk(KERN_WARNING "%s: partition table beyond EOD, ", 718 disk->disk_name); 719 if (disk_unlock_native_capacity(disk)) 720 return -EAGAIN; 721 } 722 return -EIO; 723 } 724 725 /* 726 * Partitions are not supported on host managed zoned block devices. 727 */ 728 if (disk->queue->limits.zoned == BLK_ZONED_HM) { 729 pr_warn("%s: ignoring partition table on host managed zoned block device\n", 730 disk->disk_name); 731 ret = 0; 732 goto out_free_state; 733 } 734 735 /* 736 * If we read beyond EOD, try unlocking native capacity even if the 737 * partition table was successfully read as we could be missing some 738 * partitions. 739 */ 740 if (state->access_beyond_eod) { 741 printk(KERN_WARNING 742 "%s: partition table partially beyond EOD, ", 743 disk->disk_name); 744 if (disk_unlock_native_capacity(disk)) 745 goto out_free_state; 746 } 747 748 /* tell userspace that the media / partition table may have changed */ 749 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); 750 751 /* 752 * Detect the highest partition number and preallocate disk->part_tbl. 753 * This is an optimization and not strictly necessary. 754 */ 755 for (p = 1, highest = 0; p < state->limit; p++) 756 if (state->parts[p].size) 757 highest = p; 758 disk_expand_part_tbl(disk, highest); 759 760 for (p = 1; p < state->limit; p++) 761 if (!blk_add_partition(disk, bdev, state, p)) 762 goto out_free_state; 763 764 ret = 0; 765 out_free_state: 766 free_partitions(state); 767 return ret; 768 } 769 770 void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p) 771 { 772 struct address_space *mapping = state->bdev->bd_inode->i_mapping; 773 struct page *page; 774 775 if (n >= get_capacity(state->bdev->bd_disk)) { 776 state->access_beyond_eod = true; 777 return NULL; 778 } 779 780 page = read_mapping_page(mapping, 781 (pgoff_t)(n >> (PAGE_SHIFT - 9)), NULL); 782 if (IS_ERR(page)) 783 goto out; 784 if (PageError(page)) 785 goto out_put_page; 786 787 p->v = page; 788 return (unsigned char *)page_address(page) + 789 ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << SECTOR_SHIFT); 790 out_put_page: 791 put_page(page); 792 out: 793 p->v = NULL; 794 return NULL; 795 } 796