xref: /openbmc/linux/block/mq-deadline.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
4  *  for the blk-mq scheduling framework
5  *
6  *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
7  */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/init.h>
15 #include <linux/compiler.h>
16 #include <linux/rbtree.h>
17 #include <linux/sbitmap.h>
18 
19 #include <trace/events/block.h>
20 
21 #include "elevator.h"
22 #include "blk.h"
23 #include "blk-mq.h"
24 #include "blk-mq-debugfs.h"
25 #include "blk-mq-sched.h"
26 
27 /*
28  * See Documentation/block/deadline-iosched.rst
29  */
30 static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
31 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
32 /*
33  * Time after which to dispatch lower priority requests even if higher
34  * priority requests are pending.
35  */
36 static const int prio_aging_expire = 10 * HZ;
37 static const int writes_starved = 2;    /* max times reads can starve a write */
38 static const int fifo_batch = 16;       /* # of sequential requests treated as one
39 				     by the above parameters. For throughput. */
40 
41 enum dd_data_dir {
42 	DD_READ		= READ,
43 	DD_WRITE	= WRITE,
44 };
45 
46 enum { DD_DIR_COUNT = 2 };
47 
48 enum dd_prio {
49 	DD_RT_PRIO	= 0,
50 	DD_BE_PRIO	= 1,
51 	DD_IDLE_PRIO	= 2,
52 	DD_PRIO_MAX	= 2,
53 };
54 
55 enum { DD_PRIO_COUNT = 3 };
56 
57 /*
58  * I/O statistics per I/O priority. It is fine if these counters overflow.
59  * What matters is that these counters are at least as wide as
60  * log2(max_outstanding_requests).
61  */
62 struct io_stats_per_prio {
63 	uint32_t inserted;
64 	uint32_t merged;
65 	uint32_t dispatched;
66 	atomic_t completed;
67 };
68 
69 /*
70  * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
71  * present on both sort_list[] and fifo_list[].
72  */
73 struct dd_per_prio {
74 	struct list_head dispatch;
75 	struct rb_root sort_list[DD_DIR_COUNT];
76 	struct list_head fifo_list[DD_DIR_COUNT];
77 	/* Next request in FIFO order. Read, write or both are NULL. */
78 	struct request *next_rq[DD_DIR_COUNT];
79 	struct io_stats_per_prio stats;
80 };
81 
82 struct deadline_data {
83 	/*
84 	 * run time data
85 	 */
86 
87 	struct dd_per_prio per_prio[DD_PRIO_COUNT];
88 
89 	/* Data direction of latest dispatched request. */
90 	enum dd_data_dir last_dir;
91 	unsigned int batching;		/* number of sequential requests made */
92 	unsigned int starved;		/* times reads have starved writes */
93 
94 	/*
95 	 * settings that change how the i/o scheduler behaves
96 	 */
97 	int fifo_expire[DD_DIR_COUNT];
98 	int fifo_batch;
99 	int writes_starved;
100 	int front_merges;
101 	u32 async_depth;
102 	int prio_aging_expire;
103 
104 	spinlock_t lock;
105 	spinlock_t zone_lock;
106 };
107 
108 /* Maps an I/O priority class to a deadline scheduler priority. */
109 static const enum dd_prio ioprio_class_to_prio[] = {
110 	[IOPRIO_CLASS_NONE]	= DD_BE_PRIO,
111 	[IOPRIO_CLASS_RT]	= DD_RT_PRIO,
112 	[IOPRIO_CLASS_BE]	= DD_BE_PRIO,
113 	[IOPRIO_CLASS_IDLE]	= DD_IDLE_PRIO,
114 };
115 
116 static inline struct rb_root *
117 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
118 {
119 	return &per_prio->sort_list[rq_data_dir(rq)];
120 }
121 
122 /*
123  * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
124  * request.
125  */
126 static u8 dd_rq_ioclass(struct request *rq)
127 {
128 	return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
129 }
130 
131 /*
132  * get the request before `rq' in sector-sorted order
133  */
134 static inline struct request *
135 deadline_earlier_request(struct request *rq)
136 {
137 	struct rb_node *node = rb_prev(&rq->rb_node);
138 
139 	if (node)
140 		return rb_entry_rq(node);
141 
142 	return NULL;
143 }
144 
145 /*
146  * get the request after `rq' in sector-sorted order
147  */
148 static inline struct request *
149 deadline_latter_request(struct request *rq)
150 {
151 	struct rb_node *node = rb_next(&rq->rb_node);
152 
153 	if (node)
154 		return rb_entry_rq(node);
155 
156 	return NULL;
157 }
158 
159 static void
160 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
161 {
162 	struct rb_root *root = deadline_rb_root(per_prio, rq);
163 
164 	elv_rb_add(root, rq);
165 }
166 
167 static inline void
168 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
169 {
170 	const enum dd_data_dir data_dir = rq_data_dir(rq);
171 
172 	if (per_prio->next_rq[data_dir] == rq)
173 		per_prio->next_rq[data_dir] = deadline_latter_request(rq);
174 
175 	elv_rb_del(deadline_rb_root(per_prio, rq), rq);
176 }
177 
178 /*
179  * remove rq from rbtree and fifo.
180  */
181 static void deadline_remove_request(struct request_queue *q,
182 				    struct dd_per_prio *per_prio,
183 				    struct request *rq)
184 {
185 	list_del_init(&rq->queuelist);
186 
187 	/*
188 	 * We might not be on the rbtree, if we are doing an insert merge
189 	 */
190 	if (!RB_EMPTY_NODE(&rq->rb_node))
191 		deadline_del_rq_rb(per_prio, rq);
192 
193 	elv_rqhash_del(q, rq);
194 	if (q->last_merge == rq)
195 		q->last_merge = NULL;
196 }
197 
198 static void dd_request_merged(struct request_queue *q, struct request *req,
199 			      enum elv_merge type)
200 {
201 	struct deadline_data *dd = q->elevator->elevator_data;
202 	const u8 ioprio_class = dd_rq_ioclass(req);
203 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
204 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
205 
206 	/*
207 	 * if the merge was a front merge, we need to reposition request
208 	 */
209 	if (type == ELEVATOR_FRONT_MERGE) {
210 		elv_rb_del(deadline_rb_root(per_prio, req), req);
211 		deadline_add_rq_rb(per_prio, req);
212 	}
213 }
214 
215 /*
216  * Callback function that is invoked after @next has been merged into @req.
217  */
218 static void dd_merged_requests(struct request_queue *q, struct request *req,
219 			       struct request *next)
220 {
221 	struct deadline_data *dd = q->elevator->elevator_data;
222 	const u8 ioprio_class = dd_rq_ioclass(next);
223 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
224 
225 	lockdep_assert_held(&dd->lock);
226 
227 	dd->per_prio[prio].stats.merged++;
228 
229 	/*
230 	 * if next expires before rq, assign its expire time to rq
231 	 * and move into next position (next will be deleted) in fifo
232 	 */
233 	if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
234 		if (time_before((unsigned long)next->fifo_time,
235 				(unsigned long)req->fifo_time)) {
236 			list_move(&req->queuelist, &next->queuelist);
237 			req->fifo_time = next->fifo_time;
238 		}
239 	}
240 
241 	/*
242 	 * kill knowledge of next, this one is a goner
243 	 */
244 	deadline_remove_request(q, &dd->per_prio[prio], next);
245 }
246 
247 /*
248  * move an entry to dispatch queue
249  */
250 static void
251 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
252 		      struct request *rq)
253 {
254 	const enum dd_data_dir data_dir = rq_data_dir(rq);
255 
256 	per_prio->next_rq[data_dir] = deadline_latter_request(rq);
257 
258 	/*
259 	 * take it off the sort and fifo list
260 	 */
261 	deadline_remove_request(rq->q, per_prio, rq);
262 }
263 
264 /* Number of requests queued for a given priority level. */
265 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
266 {
267 	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
268 
269 	lockdep_assert_held(&dd->lock);
270 
271 	return stats->inserted - atomic_read(&stats->completed);
272 }
273 
274 /*
275  * deadline_check_fifo returns 0 if there are no expired requests on the fifo,
276  * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir])
277  */
278 static inline int deadline_check_fifo(struct dd_per_prio *per_prio,
279 				      enum dd_data_dir data_dir)
280 {
281 	struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
282 
283 	/*
284 	 * rq is expired!
285 	 */
286 	if (time_after_eq(jiffies, (unsigned long)rq->fifo_time))
287 		return 1;
288 
289 	return 0;
290 }
291 
292 /*
293  * Check if rq has a sequential request preceding it.
294  */
295 static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq)
296 {
297 	struct request *prev = deadline_earlier_request(rq);
298 
299 	if (!prev)
300 		return false;
301 
302 	return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq);
303 }
304 
305 /*
306  * Skip all write requests that are sequential from @rq, even if we cross
307  * a zone boundary.
308  */
309 static struct request *deadline_skip_seq_writes(struct deadline_data *dd,
310 						struct request *rq)
311 {
312 	sector_t pos = blk_rq_pos(rq);
313 	sector_t skipped_sectors = 0;
314 
315 	while (rq) {
316 		if (blk_rq_pos(rq) != pos + skipped_sectors)
317 			break;
318 		skipped_sectors += blk_rq_sectors(rq);
319 		rq = deadline_latter_request(rq);
320 	}
321 
322 	return rq;
323 }
324 
325 /*
326  * For the specified data direction, return the next request to
327  * dispatch using arrival ordered lists.
328  */
329 static struct request *
330 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
331 		      enum dd_data_dir data_dir)
332 {
333 	struct request *rq;
334 	unsigned long flags;
335 
336 	if (list_empty(&per_prio->fifo_list[data_dir]))
337 		return NULL;
338 
339 	rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
340 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
341 		return rq;
342 
343 	/*
344 	 * Look for a write request that can be dispatched, that is one with
345 	 * an unlocked target zone. For some HDDs, breaking a sequential
346 	 * write stream can lead to lower throughput, so make sure to preserve
347 	 * sequential write streams, even if that stream crosses into the next
348 	 * zones and these zones are unlocked.
349 	 */
350 	spin_lock_irqsave(&dd->zone_lock, flags);
351 	list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) {
352 		if (blk_req_can_dispatch_to_zone(rq) &&
353 		    (blk_queue_nonrot(rq->q) ||
354 		     !deadline_is_seq_write(dd, rq)))
355 			goto out;
356 	}
357 	rq = NULL;
358 out:
359 	spin_unlock_irqrestore(&dd->zone_lock, flags);
360 
361 	return rq;
362 }
363 
364 /*
365  * For the specified data direction, return the next request to
366  * dispatch using sector position sorted lists.
367  */
368 static struct request *
369 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
370 		      enum dd_data_dir data_dir)
371 {
372 	struct request *rq;
373 	unsigned long flags;
374 
375 	rq = per_prio->next_rq[data_dir];
376 	if (!rq)
377 		return NULL;
378 
379 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
380 		return rq;
381 
382 	/*
383 	 * Look for a write request that can be dispatched, that is one with
384 	 * an unlocked target zone. For some HDDs, breaking a sequential
385 	 * write stream can lead to lower throughput, so make sure to preserve
386 	 * sequential write streams, even if that stream crosses into the next
387 	 * zones and these zones are unlocked.
388 	 */
389 	spin_lock_irqsave(&dd->zone_lock, flags);
390 	while (rq) {
391 		if (blk_req_can_dispatch_to_zone(rq))
392 			break;
393 		if (blk_queue_nonrot(rq->q))
394 			rq = deadline_latter_request(rq);
395 		else
396 			rq = deadline_skip_seq_writes(dd, rq);
397 	}
398 	spin_unlock_irqrestore(&dd->zone_lock, flags);
399 
400 	return rq;
401 }
402 
403 /*
404  * Returns true if and only if @rq started after @latest_start where
405  * @latest_start is in jiffies.
406  */
407 static bool started_after(struct deadline_data *dd, struct request *rq,
408 			  unsigned long latest_start)
409 {
410 	unsigned long start_time = (unsigned long)rq->fifo_time;
411 
412 	start_time -= dd->fifo_expire[rq_data_dir(rq)];
413 
414 	return time_after(start_time, latest_start);
415 }
416 
417 /*
418  * deadline_dispatch_requests selects the best request according to
419  * read/write expire, fifo_batch, etc and with a start time <= @latest_start.
420  */
421 static struct request *__dd_dispatch_request(struct deadline_data *dd,
422 					     struct dd_per_prio *per_prio,
423 					     unsigned long latest_start)
424 {
425 	struct request *rq, *next_rq;
426 	enum dd_data_dir data_dir;
427 	enum dd_prio prio;
428 	u8 ioprio_class;
429 
430 	lockdep_assert_held(&dd->lock);
431 
432 	if (!list_empty(&per_prio->dispatch)) {
433 		rq = list_first_entry(&per_prio->dispatch, struct request,
434 				      queuelist);
435 		if (started_after(dd, rq, latest_start))
436 			return NULL;
437 		list_del_init(&rq->queuelist);
438 		goto done;
439 	}
440 
441 	/*
442 	 * batches are currently reads XOR writes
443 	 */
444 	rq = deadline_next_request(dd, per_prio, dd->last_dir);
445 	if (rq && dd->batching < dd->fifo_batch)
446 		/* we have a next request are still entitled to batch */
447 		goto dispatch_request;
448 
449 	/*
450 	 * at this point we are not running a batch. select the appropriate
451 	 * data direction (read / write)
452 	 */
453 
454 	if (!list_empty(&per_prio->fifo_list[DD_READ])) {
455 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
456 
457 		if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
458 		    (dd->starved++ >= dd->writes_starved))
459 			goto dispatch_writes;
460 
461 		data_dir = DD_READ;
462 
463 		goto dispatch_find_request;
464 	}
465 
466 	/*
467 	 * there are either no reads or writes have been starved
468 	 */
469 
470 	if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
471 dispatch_writes:
472 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
473 
474 		dd->starved = 0;
475 
476 		data_dir = DD_WRITE;
477 
478 		goto dispatch_find_request;
479 	}
480 
481 	return NULL;
482 
483 dispatch_find_request:
484 	/*
485 	 * we are not running a batch, find best request for selected data_dir
486 	 */
487 	next_rq = deadline_next_request(dd, per_prio, data_dir);
488 	if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
489 		/*
490 		 * A deadline has expired, the last request was in the other
491 		 * direction, or we have run out of higher-sectored requests.
492 		 * Start again from the request with the earliest expiry time.
493 		 */
494 		rq = deadline_fifo_request(dd, per_prio, data_dir);
495 	} else {
496 		/*
497 		 * The last req was the same dir and we have a next request in
498 		 * sort order. No expired requests so continue on from here.
499 		 */
500 		rq = next_rq;
501 	}
502 
503 	/*
504 	 * For a zoned block device, if we only have writes queued and none of
505 	 * them can be dispatched, rq will be NULL.
506 	 */
507 	if (!rq)
508 		return NULL;
509 
510 	dd->last_dir = data_dir;
511 	dd->batching = 0;
512 
513 dispatch_request:
514 	if (started_after(dd, rq, latest_start))
515 		return NULL;
516 
517 	/*
518 	 * rq is the selected appropriate request.
519 	 */
520 	dd->batching++;
521 	deadline_move_request(dd, per_prio, rq);
522 done:
523 	ioprio_class = dd_rq_ioclass(rq);
524 	prio = ioprio_class_to_prio[ioprio_class];
525 	dd->per_prio[prio].stats.dispatched++;
526 	/*
527 	 * If the request needs its target zone locked, do it.
528 	 */
529 	blk_req_zone_write_lock(rq);
530 	rq->rq_flags |= RQF_STARTED;
531 	return rq;
532 }
533 
534 /*
535  * Check whether there are any requests with priority other than DD_RT_PRIO
536  * that were inserted more than prio_aging_expire jiffies ago.
537  */
538 static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
539 						      unsigned long now)
540 {
541 	struct request *rq;
542 	enum dd_prio prio;
543 	int prio_cnt;
544 
545 	lockdep_assert_held(&dd->lock);
546 
547 	prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
548 		   !!dd_queued(dd, DD_IDLE_PRIO);
549 	if (prio_cnt < 2)
550 		return NULL;
551 
552 	for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
553 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
554 					   now - dd->prio_aging_expire);
555 		if (rq)
556 			return rq;
557 	}
558 
559 	return NULL;
560 }
561 
562 /*
563  * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
564  *
565  * One confusing aspect here is that we get called for a specific
566  * hardware queue, but we may return a request that is for a
567  * different hardware queue. This is because mq-deadline has shared
568  * state for all hardware queues, in terms of sorting, FIFOs, etc.
569  */
570 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
571 {
572 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
573 	const unsigned long now = jiffies;
574 	struct request *rq;
575 	enum dd_prio prio;
576 
577 	spin_lock(&dd->lock);
578 	rq = dd_dispatch_prio_aged_requests(dd, now);
579 	if (rq)
580 		goto unlock;
581 
582 	/*
583 	 * Next, dispatch requests in priority order. Ignore lower priority
584 	 * requests if any higher priority requests are pending.
585 	 */
586 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
587 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
588 		if (rq || dd_queued(dd, prio))
589 			break;
590 	}
591 
592 unlock:
593 	spin_unlock(&dd->lock);
594 
595 	return rq;
596 }
597 
598 /*
599  * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
600  * function is used by __blk_mq_get_tag().
601  */
602 static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
603 {
604 	struct deadline_data *dd = data->q->elevator->elevator_data;
605 
606 	/* Do not throttle synchronous reads. */
607 	if (op_is_sync(opf) && !op_is_write(opf))
608 		return;
609 
610 	/*
611 	 * Throttle asynchronous requests and writes such that these requests
612 	 * do not block the allocation of synchronous requests.
613 	 */
614 	data->shallow_depth = dd->async_depth;
615 }
616 
617 /* Called by blk_mq_update_nr_requests(). */
618 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
619 {
620 	struct request_queue *q = hctx->queue;
621 	struct deadline_data *dd = q->elevator->elevator_data;
622 	struct blk_mq_tags *tags = hctx->sched_tags;
623 
624 	dd->async_depth = max(1UL, 3 * q->nr_requests / 4);
625 
626 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth);
627 }
628 
629 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
630 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
631 {
632 	dd_depth_updated(hctx);
633 	return 0;
634 }
635 
636 static void dd_exit_sched(struct elevator_queue *e)
637 {
638 	struct deadline_data *dd = e->elevator_data;
639 	enum dd_prio prio;
640 
641 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
642 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
643 		const struct io_stats_per_prio *stats = &per_prio->stats;
644 		uint32_t queued;
645 
646 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
647 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
648 
649 		spin_lock(&dd->lock);
650 		queued = dd_queued(dd, prio);
651 		spin_unlock(&dd->lock);
652 
653 		WARN_ONCE(queued != 0,
654 			  "statistics for priority %d: i %u m %u d %u c %u\n",
655 			  prio, stats->inserted, stats->merged,
656 			  stats->dispatched, atomic_read(&stats->completed));
657 	}
658 
659 	kfree(dd);
660 }
661 
662 /*
663  * initialize elevator private data (deadline_data).
664  */
665 static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
666 {
667 	struct deadline_data *dd;
668 	struct elevator_queue *eq;
669 	enum dd_prio prio;
670 	int ret = -ENOMEM;
671 
672 	eq = elevator_alloc(q, e);
673 	if (!eq)
674 		return ret;
675 
676 	dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
677 	if (!dd)
678 		goto put_eq;
679 
680 	eq->elevator_data = dd;
681 
682 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
683 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
684 
685 		INIT_LIST_HEAD(&per_prio->dispatch);
686 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
687 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
688 		per_prio->sort_list[DD_READ] = RB_ROOT;
689 		per_prio->sort_list[DD_WRITE] = RB_ROOT;
690 	}
691 	dd->fifo_expire[DD_READ] = read_expire;
692 	dd->fifo_expire[DD_WRITE] = write_expire;
693 	dd->writes_starved = writes_starved;
694 	dd->front_merges = 1;
695 	dd->last_dir = DD_WRITE;
696 	dd->fifo_batch = fifo_batch;
697 	dd->prio_aging_expire = prio_aging_expire;
698 	spin_lock_init(&dd->lock);
699 	spin_lock_init(&dd->zone_lock);
700 
701 	/* We dispatch from request queue wide instead of hw queue */
702 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
703 
704 	q->elevator = eq;
705 	return 0;
706 
707 put_eq:
708 	kobject_put(&eq->kobj);
709 	return ret;
710 }
711 
712 /*
713  * Try to merge @bio into an existing request. If @bio has been merged into
714  * an existing request, store the pointer to that request into *@rq.
715  */
716 static int dd_request_merge(struct request_queue *q, struct request **rq,
717 			    struct bio *bio)
718 {
719 	struct deadline_data *dd = q->elevator->elevator_data;
720 	const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
721 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
722 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
723 	sector_t sector = bio_end_sector(bio);
724 	struct request *__rq;
725 
726 	if (!dd->front_merges)
727 		return ELEVATOR_NO_MERGE;
728 
729 	__rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
730 	if (__rq) {
731 		BUG_ON(sector != blk_rq_pos(__rq));
732 
733 		if (elv_bio_merge_ok(__rq, bio)) {
734 			*rq = __rq;
735 			if (blk_discard_mergable(__rq))
736 				return ELEVATOR_DISCARD_MERGE;
737 			return ELEVATOR_FRONT_MERGE;
738 		}
739 	}
740 
741 	return ELEVATOR_NO_MERGE;
742 }
743 
744 /*
745  * Attempt to merge a bio into an existing request. This function is called
746  * before @bio is associated with a request.
747  */
748 static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
749 		unsigned int nr_segs)
750 {
751 	struct deadline_data *dd = q->elevator->elevator_data;
752 	struct request *free = NULL;
753 	bool ret;
754 
755 	spin_lock(&dd->lock);
756 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
757 	spin_unlock(&dd->lock);
758 
759 	if (free)
760 		blk_mq_free_request(free);
761 
762 	return ret;
763 }
764 
765 /*
766  * add rq to rbtree and fifo
767  */
768 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
769 			      blk_insert_t flags)
770 {
771 	struct request_queue *q = hctx->queue;
772 	struct deadline_data *dd = q->elevator->elevator_data;
773 	const enum dd_data_dir data_dir = rq_data_dir(rq);
774 	u16 ioprio = req_get_ioprio(rq);
775 	u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
776 	struct dd_per_prio *per_prio;
777 	enum dd_prio prio;
778 	LIST_HEAD(free);
779 
780 	lockdep_assert_held(&dd->lock);
781 
782 	/*
783 	 * This may be a requeue of a write request that has locked its
784 	 * target zone. If it is the case, this releases the zone lock.
785 	 */
786 	blk_req_zone_write_unlock(rq);
787 
788 	prio = ioprio_class_to_prio[ioprio_class];
789 	per_prio = &dd->per_prio[prio];
790 	if (!rq->elv.priv[0]) {
791 		per_prio->stats.inserted++;
792 		rq->elv.priv[0] = (void *)(uintptr_t)1;
793 	}
794 
795 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
796 		blk_mq_free_requests(&free);
797 		return;
798 	}
799 
800 	trace_block_rq_insert(rq);
801 
802 	if (flags & BLK_MQ_INSERT_AT_HEAD) {
803 		list_add(&rq->queuelist, &per_prio->dispatch);
804 		rq->fifo_time = jiffies;
805 	} else {
806 		deadline_add_rq_rb(per_prio, rq);
807 
808 		if (rq_mergeable(rq)) {
809 			elv_rqhash_add(q, rq);
810 			if (!q->last_merge)
811 				q->last_merge = rq;
812 		}
813 
814 		/*
815 		 * set expire time and add to fifo list
816 		 */
817 		rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
818 		list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]);
819 	}
820 }
821 
822 /*
823  * Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list().
824  */
825 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
826 			       struct list_head *list,
827 			       blk_insert_t flags)
828 {
829 	struct request_queue *q = hctx->queue;
830 	struct deadline_data *dd = q->elevator->elevator_data;
831 
832 	spin_lock(&dd->lock);
833 	while (!list_empty(list)) {
834 		struct request *rq;
835 
836 		rq = list_first_entry(list, struct request, queuelist);
837 		list_del_init(&rq->queuelist);
838 		dd_insert_request(hctx, rq, flags);
839 	}
840 	spin_unlock(&dd->lock);
841 }
842 
843 /* Callback from inside blk_mq_rq_ctx_init(). */
844 static void dd_prepare_request(struct request *rq)
845 {
846 	rq->elv.priv[0] = NULL;
847 }
848 
849 static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx)
850 {
851 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
852 	enum dd_prio p;
853 
854 	for (p = 0; p <= DD_PRIO_MAX; p++)
855 		if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE]))
856 			return true;
857 
858 	return false;
859 }
860 
861 /*
862  * Callback from inside blk_mq_free_request().
863  *
864  * For zoned block devices, write unlock the target zone of
865  * completed write requests. Do this while holding the zone lock
866  * spinlock so that the zone is never unlocked while deadline_fifo_request()
867  * or deadline_next_request() are executing. This function is called for
868  * all requests, whether or not these requests complete successfully.
869  *
870  * For a zoned block device, __dd_dispatch_request() may have stopped
871  * dispatching requests if all the queued requests are write requests directed
872  * at zones that are already locked due to on-going write requests. To ensure
873  * write request dispatch progress in this case, mark the queue as needing a
874  * restart to ensure that the queue is run again after completion of the
875  * request and zones being unlocked.
876  */
877 static void dd_finish_request(struct request *rq)
878 {
879 	struct request_queue *q = rq->q;
880 	struct deadline_data *dd = q->elevator->elevator_data;
881 	const u8 ioprio_class = dd_rq_ioclass(rq);
882 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
883 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
884 
885 	/*
886 	 * The block layer core may call dd_finish_request() without having
887 	 * called dd_insert_requests(). Skip requests that bypassed I/O
888 	 * scheduling. See also blk_mq_request_bypass_insert().
889 	 */
890 	if (!rq->elv.priv[0])
891 		return;
892 
893 	atomic_inc(&per_prio->stats.completed);
894 
895 	if (blk_queue_is_zoned(q)) {
896 		unsigned long flags;
897 
898 		spin_lock_irqsave(&dd->zone_lock, flags);
899 		blk_req_zone_write_unlock(rq);
900 		spin_unlock_irqrestore(&dd->zone_lock, flags);
901 
902 		if (dd_has_write_work(rq->mq_hctx))
903 			blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
904 	}
905 }
906 
907 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
908 {
909 	return !list_empty_careful(&per_prio->dispatch) ||
910 		!list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
911 		!list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
912 }
913 
914 static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
915 {
916 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
917 	enum dd_prio prio;
918 
919 	for (prio = 0; prio <= DD_PRIO_MAX; prio++)
920 		if (dd_has_work_for_prio(&dd->per_prio[prio]))
921 			return true;
922 
923 	return false;
924 }
925 
926 /*
927  * sysfs parts below
928  */
929 #define SHOW_INT(__FUNC, __VAR)						\
930 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
931 {									\
932 	struct deadline_data *dd = e->elevator_data;			\
933 									\
934 	return sysfs_emit(page, "%d\n", __VAR);				\
935 }
936 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
937 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
938 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
939 SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
940 SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
941 SHOW_INT(deadline_front_merges_show, dd->front_merges);
942 SHOW_INT(deadline_async_depth_show, dd->async_depth);
943 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
944 #undef SHOW_INT
945 #undef SHOW_JIFFIES
946 
947 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
948 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
949 {									\
950 	struct deadline_data *dd = e->elevator_data;			\
951 	int __data, __ret;						\
952 									\
953 	__ret = kstrtoint(page, 0, &__data);				\
954 	if (__ret < 0)							\
955 		return __ret;						\
956 	if (__data < (MIN))						\
957 		__data = (MIN);						\
958 	else if (__data > (MAX))					\
959 		__data = (MAX);						\
960 	*(__PTR) = __CONV(__data);					\
961 	return count;							\
962 }
963 #define STORE_INT(__FUNC, __PTR, MIN, MAX)				\
964 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
965 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)				\
966 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
967 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
968 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
969 STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
970 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
971 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
972 STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
973 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
974 #undef STORE_FUNCTION
975 #undef STORE_INT
976 #undef STORE_JIFFIES
977 
978 #define DD_ATTR(name) \
979 	__ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
980 
981 static struct elv_fs_entry deadline_attrs[] = {
982 	DD_ATTR(read_expire),
983 	DD_ATTR(write_expire),
984 	DD_ATTR(writes_starved),
985 	DD_ATTR(front_merges),
986 	DD_ATTR(async_depth),
987 	DD_ATTR(fifo_batch),
988 	DD_ATTR(prio_aging_expire),
989 	__ATTR_NULL
990 };
991 
992 #ifdef CONFIG_BLK_DEBUG_FS
993 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)		\
994 static void *deadline_##name##_fifo_start(struct seq_file *m,		\
995 					  loff_t *pos)			\
996 	__acquires(&dd->lock)						\
997 {									\
998 	struct request_queue *q = m->private;				\
999 	struct deadline_data *dd = q->elevator->elevator_data;		\
1000 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1001 									\
1002 	spin_lock(&dd->lock);						\
1003 	return seq_list_start(&per_prio->fifo_list[data_dir], *pos);	\
1004 }									\
1005 									\
1006 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,	\
1007 					 loff_t *pos)			\
1008 {									\
1009 	struct request_queue *q = m->private;				\
1010 	struct deadline_data *dd = q->elevator->elevator_data;		\
1011 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1012 									\
1013 	return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);	\
1014 }									\
1015 									\
1016 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)	\
1017 	__releases(&dd->lock)						\
1018 {									\
1019 	struct request_queue *q = m->private;				\
1020 	struct deadline_data *dd = q->elevator->elevator_data;		\
1021 									\
1022 	spin_unlock(&dd->lock);						\
1023 }									\
1024 									\
1025 static const struct seq_operations deadline_##name##_fifo_seq_ops = {	\
1026 	.start	= deadline_##name##_fifo_start,				\
1027 	.next	= deadline_##name##_fifo_next,				\
1028 	.stop	= deadline_##name##_fifo_stop,				\
1029 	.show	= blk_mq_debugfs_rq_show,				\
1030 };									\
1031 									\
1032 static int deadline_##name##_next_rq_show(void *data,			\
1033 					  struct seq_file *m)		\
1034 {									\
1035 	struct request_queue *q = data;					\
1036 	struct deadline_data *dd = q->elevator->elevator_data;		\
1037 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1038 	struct request *rq = per_prio->next_rq[data_dir];		\
1039 									\
1040 	if (rq)								\
1041 		__blk_mq_debugfs_rq_show(m, rq);			\
1042 	return 0;							\
1043 }
1044 
1045 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
1046 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
1047 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
1048 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
1049 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
1050 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
1051 #undef DEADLINE_DEBUGFS_DDIR_ATTRS
1052 
1053 static int deadline_batching_show(void *data, struct seq_file *m)
1054 {
1055 	struct request_queue *q = data;
1056 	struct deadline_data *dd = q->elevator->elevator_data;
1057 
1058 	seq_printf(m, "%u\n", dd->batching);
1059 	return 0;
1060 }
1061 
1062 static int deadline_starved_show(void *data, struct seq_file *m)
1063 {
1064 	struct request_queue *q = data;
1065 	struct deadline_data *dd = q->elevator->elevator_data;
1066 
1067 	seq_printf(m, "%u\n", dd->starved);
1068 	return 0;
1069 }
1070 
1071 static int dd_async_depth_show(void *data, struct seq_file *m)
1072 {
1073 	struct request_queue *q = data;
1074 	struct deadline_data *dd = q->elevator->elevator_data;
1075 
1076 	seq_printf(m, "%u\n", dd->async_depth);
1077 	return 0;
1078 }
1079 
1080 static int dd_queued_show(void *data, struct seq_file *m)
1081 {
1082 	struct request_queue *q = data;
1083 	struct deadline_data *dd = q->elevator->elevator_data;
1084 	u32 rt, be, idle;
1085 
1086 	spin_lock(&dd->lock);
1087 	rt = dd_queued(dd, DD_RT_PRIO);
1088 	be = dd_queued(dd, DD_BE_PRIO);
1089 	idle = dd_queued(dd, DD_IDLE_PRIO);
1090 	spin_unlock(&dd->lock);
1091 
1092 	seq_printf(m, "%u %u %u\n", rt, be, idle);
1093 
1094 	return 0;
1095 }
1096 
1097 /* Number of requests owned by the block driver for a given priority. */
1098 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
1099 {
1100 	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
1101 
1102 	lockdep_assert_held(&dd->lock);
1103 
1104 	return stats->dispatched + stats->merged -
1105 		atomic_read(&stats->completed);
1106 }
1107 
1108 static int dd_owned_by_driver_show(void *data, struct seq_file *m)
1109 {
1110 	struct request_queue *q = data;
1111 	struct deadline_data *dd = q->elevator->elevator_data;
1112 	u32 rt, be, idle;
1113 
1114 	spin_lock(&dd->lock);
1115 	rt = dd_owned_by_driver(dd, DD_RT_PRIO);
1116 	be = dd_owned_by_driver(dd, DD_BE_PRIO);
1117 	idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
1118 	spin_unlock(&dd->lock);
1119 
1120 	seq_printf(m, "%u %u %u\n", rt, be, idle);
1121 
1122 	return 0;
1123 }
1124 
1125 #define DEADLINE_DISPATCH_ATTR(prio)					\
1126 static void *deadline_dispatch##prio##_start(struct seq_file *m,	\
1127 					     loff_t *pos)		\
1128 	__acquires(&dd->lock)						\
1129 {									\
1130 	struct request_queue *q = m->private;				\
1131 	struct deadline_data *dd = q->elevator->elevator_data;		\
1132 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1133 									\
1134 	spin_lock(&dd->lock);						\
1135 	return seq_list_start(&per_prio->dispatch, *pos);		\
1136 }									\
1137 									\
1138 static void *deadline_dispatch##prio##_next(struct seq_file *m,		\
1139 					    void *v, loff_t *pos)	\
1140 {									\
1141 	struct request_queue *q = m->private;				\
1142 	struct deadline_data *dd = q->elevator->elevator_data;		\
1143 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1144 									\
1145 	return seq_list_next(v, &per_prio->dispatch, pos);		\
1146 }									\
1147 									\
1148 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v)	\
1149 	__releases(&dd->lock)						\
1150 {									\
1151 	struct request_queue *q = m->private;				\
1152 	struct deadline_data *dd = q->elevator->elevator_data;		\
1153 									\
1154 	spin_unlock(&dd->lock);						\
1155 }									\
1156 									\
1157 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1158 	.start	= deadline_dispatch##prio##_start,			\
1159 	.next	= deadline_dispatch##prio##_next,			\
1160 	.stop	= deadline_dispatch##prio##_stop,			\
1161 	.show	= blk_mq_debugfs_rq_show,				\
1162 }
1163 
1164 DEADLINE_DISPATCH_ATTR(0);
1165 DEADLINE_DISPATCH_ATTR(1);
1166 DEADLINE_DISPATCH_ATTR(2);
1167 #undef DEADLINE_DISPATCH_ATTR
1168 
1169 #define DEADLINE_QUEUE_DDIR_ATTRS(name)					\
1170 	{#name "_fifo_list", 0400,					\
1171 			.seq_ops = &deadline_##name##_fifo_seq_ops}
1172 #define DEADLINE_NEXT_RQ_ATTR(name)					\
1173 	{#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1174 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1175 	DEADLINE_QUEUE_DDIR_ATTRS(read0),
1176 	DEADLINE_QUEUE_DDIR_ATTRS(write0),
1177 	DEADLINE_QUEUE_DDIR_ATTRS(read1),
1178 	DEADLINE_QUEUE_DDIR_ATTRS(write1),
1179 	DEADLINE_QUEUE_DDIR_ATTRS(read2),
1180 	DEADLINE_QUEUE_DDIR_ATTRS(write2),
1181 	DEADLINE_NEXT_RQ_ATTR(read0),
1182 	DEADLINE_NEXT_RQ_ATTR(write0),
1183 	DEADLINE_NEXT_RQ_ATTR(read1),
1184 	DEADLINE_NEXT_RQ_ATTR(write1),
1185 	DEADLINE_NEXT_RQ_ATTR(read2),
1186 	DEADLINE_NEXT_RQ_ATTR(write2),
1187 	{"batching", 0400, deadline_batching_show},
1188 	{"starved", 0400, deadline_starved_show},
1189 	{"async_depth", 0400, dd_async_depth_show},
1190 	{"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1191 	{"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1192 	{"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1193 	{"owned_by_driver", 0400, dd_owned_by_driver_show},
1194 	{"queued", 0400, dd_queued_show},
1195 	{},
1196 };
1197 #undef DEADLINE_QUEUE_DDIR_ATTRS
1198 #endif
1199 
1200 static struct elevator_type mq_deadline = {
1201 	.ops = {
1202 		.depth_updated		= dd_depth_updated,
1203 		.limit_depth		= dd_limit_depth,
1204 		.insert_requests	= dd_insert_requests,
1205 		.dispatch_request	= dd_dispatch_request,
1206 		.prepare_request	= dd_prepare_request,
1207 		.finish_request		= dd_finish_request,
1208 		.next_request		= elv_rb_latter_request,
1209 		.former_request		= elv_rb_former_request,
1210 		.bio_merge		= dd_bio_merge,
1211 		.request_merge		= dd_request_merge,
1212 		.requests_merged	= dd_merged_requests,
1213 		.request_merged		= dd_request_merged,
1214 		.has_work		= dd_has_work,
1215 		.init_sched		= dd_init_sched,
1216 		.exit_sched		= dd_exit_sched,
1217 		.init_hctx		= dd_init_hctx,
1218 	},
1219 
1220 #ifdef CONFIG_BLK_DEBUG_FS
1221 	.queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1222 #endif
1223 	.elevator_attrs = deadline_attrs,
1224 	.elevator_name = "mq-deadline",
1225 	.elevator_alias = "deadline",
1226 	.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1227 	.elevator_owner = THIS_MODULE,
1228 };
1229 MODULE_ALIAS("mq-deadline-iosched");
1230 
1231 static int __init deadline_init(void)
1232 {
1233 	return elv_register(&mq_deadline);
1234 }
1235 
1236 static void __exit deadline_exit(void)
1237 {
1238 	elv_unregister(&mq_deadline);
1239 }
1240 
1241 module_init(deadline_init);
1242 module_exit(deadline_exit);
1243 
1244 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1245 MODULE_LICENSE("GPL");
1246 MODULE_DESCRIPTION("MQ deadline IO scheduler");
1247