xref: /openbmc/linux/block/mq-deadline.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
4  *  for the blk-mq scheduling framework
5  *
6  *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
7  */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/bio.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/rbtree.h>
19 #include <linux/sbitmap.h>
20 
21 #include <trace/events/block.h>
22 
23 #include "blk.h"
24 #include "blk-mq.h"
25 #include "blk-mq-debugfs.h"
26 #include "blk-mq-tag.h"
27 #include "blk-mq-sched.h"
28 
29 /*
30  * See Documentation/block/deadline-iosched.rst
31  */
32 static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
33 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
34 /*
35  * Time after which to dispatch lower priority requests even if higher
36  * priority requests are pending.
37  */
38 static const int aging_expire = 10 * HZ;
39 static const int writes_starved = 2;    /* max times reads can starve a write */
40 static const int fifo_batch = 16;       /* # of sequential requests treated as one
41 				     by the above parameters. For throughput. */
42 
43 enum dd_data_dir {
44 	DD_READ		= READ,
45 	DD_WRITE	= WRITE,
46 };
47 
48 enum { DD_DIR_COUNT = 2 };
49 
50 enum dd_prio {
51 	DD_RT_PRIO	= 0,
52 	DD_BE_PRIO	= 1,
53 	DD_IDLE_PRIO	= 2,
54 	DD_PRIO_MAX	= 2,
55 };
56 
57 enum { DD_PRIO_COUNT = 3 };
58 
59 /* I/O statistics per I/O priority. */
60 struct io_stats_per_prio {
61 	local_t inserted;
62 	local_t merged;
63 	local_t dispatched;
64 	local_t completed;
65 };
66 
67 /* I/O statistics for all I/O priorities (enum dd_prio). */
68 struct io_stats {
69 	struct io_stats_per_prio stats[DD_PRIO_COUNT];
70 };
71 
72 /*
73  * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
74  * present on both sort_list[] and fifo_list[].
75  */
76 struct dd_per_prio {
77 	struct list_head dispatch;
78 	struct rb_root sort_list[DD_DIR_COUNT];
79 	struct list_head fifo_list[DD_DIR_COUNT];
80 	/* Next request in FIFO order. Read, write or both are NULL. */
81 	struct request *next_rq[DD_DIR_COUNT];
82 };
83 
84 struct deadline_data {
85 	/*
86 	 * run time data
87 	 */
88 
89 	struct dd_per_prio per_prio[DD_PRIO_COUNT];
90 
91 	/* Data direction of latest dispatched request. */
92 	enum dd_data_dir last_dir;
93 	unsigned int batching;		/* number of sequential requests made */
94 	unsigned int starved;		/* times reads have starved writes */
95 
96 	struct io_stats __percpu *stats;
97 
98 	/*
99 	 * settings that change how the i/o scheduler behaves
100 	 */
101 	int fifo_expire[DD_DIR_COUNT];
102 	int fifo_batch;
103 	int writes_starved;
104 	int front_merges;
105 	u32 async_depth;
106 	int aging_expire;
107 
108 	spinlock_t lock;
109 	spinlock_t zone_lock;
110 };
111 
112 /* Count one event of type 'event_type' and with I/O priority 'prio' */
113 #define dd_count(dd, event_type, prio) do {				\
114 	struct io_stats *io_stats = get_cpu_ptr((dd)->stats);		\
115 									\
116 	BUILD_BUG_ON(!__same_type((dd), struct deadline_data *));	\
117 	BUILD_BUG_ON(!__same_type((prio), enum dd_prio));		\
118 	local_inc(&io_stats->stats[(prio)].event_type);			\
119 	put_cpu_ptr(io_stats);						\
120 } while (0)
121 
122 /*
123  * Returns the total number of dd_count(dd, event_type, prio) calls across all
124  * CPUs. No locking or barriers since it is fine if the returned sum is slightly
125  * outdated.
126  */
127 #define dd_sum(dd, event_type, prio) ({					\
128 	unsigned int cpu;						\
129 	u32 sum = 0;							\
130 									\
131 	BUILD_BUG_ON(!__same_type((dd), struct deadline_data *));	\
132 	BUILD_BUG_ON(!__same_type((prio), enum dd_prio));		\
133 	for_each_present_cpu(cpu)					\
134 		sum += local_read(&per_cpu_ptr((dd)->stats, cpu)->	\
135 				  stats[(prio)].event_type);		\
136 	sum;								\
137 })
138 
139 /* Maps an I/O priority class to a deadline scheduler priority. */
140 static const enum dd_prio ioprio_class_to_prio[] = {
141 	[IOPRIO_CLASS_NONE]	= DD_BE_PRIO,
142 	[IOPRIO_CLASS_RT]	= DD_RT_PRIO,
143 	[IOPRIO_CLASS_BE]	= DD_BE_PRIO,
144 	[IOPRIO_CLASS_IDLE]	= DD_IDLE_PRIO,
145 };
146 
147 static inline struct rb_root *
148 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
149 {
150 	return &per_prio->sort_list[rq_data_dir(rq)];
151 }
152 
153 /*
154  * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
155  * request.
156  */
157 static u8 dd_rq_ioclass(struct request *rq)
158 {
159 	return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
160 }
161 
162 /*
163  * get the request after `rq' in sector-sorted order
164  */
165 static inline struct request *
166 deadline_latter_request(struct request *rq)
167 {
168 	struct rb_node *node = rb_next(&rq->rb_node);
169 
170 	if (node)
171 		return rb_entry_rq(node);
172 
173 	return NULL;
174 }
175 
176 static void
177 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
178 {
179 	struct rb_root *root = deadline_rb_root(per_prio, rq);
180 
181 	elv_rb_add(root, rq);
182 }
183 
184 static inline void
185 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
186 {
187 	const enum dd_data_dir data_dir = rq_data_dir(rq);
188 
189 	if (per_prio->next_rq[data_dir] == rq)
190 		per_prio->next_rq[data_dir] = deadline_latter_request(rq);
191 
192 	elv_rb_del(deadline_rb_root(per_prio, rq), rq);
193 }
194 
195 /*
196  * remove rq from rbtree and fifo.
197  */
198 static void deadline_remove_request(struct request_queue *q,
199 				    struct dd_per_prio *per_prio,
200 				    struct request *rq)
201 {
202 	list_del_init(&rq->queuelist);
203 
204 	/*
205 	 * We might not be on the rbtree, if we are doing an insert merge
206 	 */
207 	if (!RB_EMPTY_NODE(&rq->rb_node))
208 		deadline_del_rq_rb(per_prio, rq);
209 
210 	elv_rqhash_del(q, rq);
211 	if (q->last_merge == rq)
212 		q->last_merge = NULL;
213 }
214 
215 static void dd_request_merged(struct request_queue *q, struct request *req,
216 			      enum elv_merge type)
217 {
218 	struct deadline_data *dd = q->elevator->elevator_data;
219 	const u8 ioprio_class = dd_rq_ioclass(req);
220 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
221 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
222 
223 	/*
224 	 * if the merge was a front merge, we need to reposition request
225 	 */
226 	if (type == ELEVATOR_FRONT_MERGE) {
227 		elv_rb_del(deadline_rb_root(per_prio, req), req);
228 		deadline_add_rq_rb(per_prio, req);
229 	}
230 }
231 
232 /*
233  * Callback function that is invoked after @next has been merged into @req.
234  */
235 static void dd_merged_requests(struct request_queue *q, struct request *req,
236 			       struct request *next)
237 {
238 	struct deadline_data *dd = q->elevator->elevator_data;
239 	const u8 ioprio_class = dd_rq_ioclass(next);
240 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
241 
242 	dd_count(dd, merged, prio);
243 
244 	/*
245 	 * if next expires before rq, assign its expire time to rq
246 	 * and move into next position (next will be deleted) in fifo
247 	 */
248 	if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
249 		if (time_before((unsigned long)next->fifo_time,
250 				(unsigned long)req->fifo_time)) {
251 			list_move(&req->queuelist, &next->queuelist);
252 			req->fifo_time = next->fifo_time;
253 		}
254 	}
255 
256 	/*
257 	 * kill knowledge of next, this one is a goner
258 	 */
259 	deadline_remove_request(q, &dd->per_prio[prio], next);
260 }
261 
262 /*
263  * move an entry to dispatch queue
264  */
265 static void
266 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
267 		      struct request *rq)
268 {
269 	const enum dd_data_dir data_dir = rq_data_dir(rq);
270 
271 	per_prio->next_rq[data_dir] = deadline_latter_request(rq);
272 
273 	/*
274 	 * take it off the sort and fifo list
275 	 */
276 	deadline_remove_request(rq->q, per_prio, rq);
277 }
278 
279 /* Number of requests queued for a given priority level. */
280 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
281 {
282 	return dd_sum(dd, inserted, prio) - dd_sum(dd, completed, prio);
283 }
284 
285 /*
286  * deadline_check_fifo returns 0 if there are no expired requests on the fifo,
287  * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir])
288  */
289 static inline int deadline_check_fifo(struct dd_per_prio *per_prio,
290 				      enum dd_data_dir data_dir)
291 {
292 	struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
293 
294 	/*
295 	 * rq is expired!
296 	 */
297 	if (time_after_eq(jiffies, (unsigned long)rq->fifo_time))
298 		return 1;
299 
300 	return 0;
301 }
302 
303 /*
304  * For the specified data direction, return the next request to
305  * dispatch using arrival ordered lists.
306  */
307 static struct request *
308 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
309 		      enum dd_data_dir data_dir)
310 {
311 	struct request *rq;
312 	unsigned long flags;
313 
314 	if (list_empty(&per_prio->fifo_list[data_dir]))
315 		return NULL;
316 
317 	rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
318 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
319 		return rq;
320 
321 	/*
322 	 * Look for a write request that can be dispatched, that is one with
323 	 * an unlocked target zone.
324 	 */
325 	spin_lock_irqsave(&dd->zone_lock, flags);
326 	list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) {
327 		if (blk_req_can_dispatch_to_zone(rq))
328 			goto out;
329 	}
330 	rq = NULL;
331 out:
332 	spin_unlock_irqrestore(&dd->zone_lock, flags);
333 
334 	return rq;
335 }
336 
337 /*
338  * For the specified data direction, return the next request to
339  * dispatch using sector position sorted lists.
340  */
341 static struct request *
342 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
343 		      enum dd_data_dir data_dir)
344 {
345 	struct request *rq;
346 	unsigned long flags;
347 
348 	rq = per_prio->next_rq[data_dir];
349 	if (!rq)
350 		return NULL;
351 
352 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
353 		return rq;
354 
355 	/*
356 	 * Look for a write request that can be dispatched, that is one with
357 	 * an unlocked target zone.
358 	 */
359 	spin_lock_irqsave(&dd->zone_lock, flags);
360 	while (rq) {
361 		if (blk_req_can_dispatch_to_zone(rq))
362 			break;
363 		rq = deadline_latter_request(rq);
364 	}
365 	spin_unlock_irqrestore(&dd->zone_lock, flags);
366 
367 	return rq;
368 }
369 
370 /*
371  * deadline_dispatch_requests selects the best request according to
372  * read/write expire, fifo_batch, etc and with a start time <= @latest.
373  */
374 static struct request *__dd_dispatch_request(struct deadline_data *dd,
375 					     struct dd_per_prio *per_prio,
376 					     u64 latest_start_ns)
377 {
378 	struct request *rq, *next_rq;
379 	enum dd_data_dir data_dir;
380 	enum dd_prio prio;
381 	u8 ioprio_class;
382 
383 	lockdep_assert_held(&dd->lock);
384 
385 	if (!list_empty(&per_prio->dispatch)) {
386 		rq = list_first_entry(&per_prio->dispatch, struct request,
387 				      queuelist);
388 		if (rq->start_time_ns > latest_start_ns)
389 			return NULL;
390 		list_del_init(&rq->queuelist);
391 		goto done;
392 	}
393 
394 	/*
395 	 * batches are currently reads XOR writes
396 	 */
397 	rq = deadline_next_request(dd, per_prio, dd->last_dir);
398 	if (rq && dd->batching < dd->fifo_batch)
399 		/* we have a next request are still entitled to batch */
400 		goto dispatch_request;
401 
402 	/*
403 	 * at this point we are not running a batch. select the appropriate
404 	 * data direction (read / write)
405 	 */
406 
407 	if (!list_empty(&per_prio->fifo_list[DD_READ])) {
408 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
409 
410 		if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
411 		    (dd->starved++ >= dd->writes_starved))
412 			goto dispatch_writes;
413 
414 		data_dir = DD_READ;
415 
416 		goto dispatch_find_request;
417 	}
418 
419 	/*
420 	 * there are either no reads or writes have been starved
421 	 */
422 
423 	if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
424 dispatch_writes:
425 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
426 
427 		dd->starved = 0;
428 
429 		data_dir = DD_WRITE;
430 
431 		goto dispatch_find_request;
432 	}
433 
434 	return NULL;
435 
436 dispatch_find_request:
437 	/*
438 	 * we are not running a batch, find best request for selected data_dir
439 	 */
440 	next_rq = deadline_next_request(dd, per_prio, data_dir);
441 	if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
442 		/*
443 		 * A deadline has expired, the last request was in the other
444 		 * direction, or we have run out of higher-sectored requests.
445 		 * Start again from the request with the earliest expiry time.
446 		 */
447 		rq = deadline_fifo_request(dd, per_prio, data_dir);
448 	} else {
449 		/*
450 		 * The last req was the same dir and we have a next request in
451 		 * sort order. No expired requests so continue on from here.
452 		 */
453 		rq = next_rq;
454 	}
455 
456 	/*
457 	 * For a zoned block device, if we only have writes queued and none of
458 	 * them can be dispatched, rq will be NULL.
459 	 */
460 	if (!rq)
461 		return NULL;
462 
463 	dd->last_dir = data_dir;
464 	dd->batching = 0;
465 
466 dispatch_request:
467 	if (rq->start_time_ns > latest_start_ns)
468 		return NULL;
469 	/*
470 	 * rq is the selected appropriate request.
471 	 */
472 	dd->batching++;
473 	deadline_move_request(dd, per_prio, rq);
474 done:
475 	ioprio_class = dd_rq_ioclass(rq);
476 	prio = ioprio_class_to_prio[ioprio_class];
477 	dd_count(dd, dispatched, prio);
478 	/*
479 	 * If the request needs its target zone locked, do it.
480 	 */
481 	blk_req_zone_write_lock(rq);
482 	rq->rq_flags |= RQF_STARTED;
483 	return rq;
484 }
485 
486 /*
487  * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
488  *
489  * One confusing aspect here is that we get called for a specific
490  * hardware queue, but we may return a request that is for a
491  * different hardware queue. This is because mq-deadline has shared
492  * state for all hardware queues, in terms of sorting, FIFOs, etc.
493  */
494 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
495 {
496 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
497 	const u64 now_ns = ktime_get_ns();
498 	struct request *rq = NULL;
499 	enum dd_prio prio;
500 
501 	spin_lock(&dd->lock);
502 	/*
503 	 * Start with dispatching requests whose deadline expired more than
504 	 * aging_expire jiffies ago.
505 	 */
506 	for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
507 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now_ns -
508 					   jiffies_to_nsecs(dd->aging_expire));
509 		if (rq)
510 			goto unlock;
511 	}
512 	/*
513 	 * Next, dispatch requests in priority order. Ignore lower priority
514 	 * requests if any higher priority requests are pending.
515 	 */
516 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
517 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now_ns);
518 		if (rq || dd_queued(dd, prio))
519 			break;
520 	}
521 
522 unlock:
523 	spin_unlock(&dd->lock);
524 
525 	return rq;
526 }
527 
528 /*
529  * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
530  * function is used by __blk_mq_get_tag().
531  */
532 static void dd_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
533 {
534 	struct deadline_data *dd = data->q->elevator->elevator_data;
535 
536 	/* Do not throttle synchronous reads. */
537 	if (op_is_sync(op) && !op_is_write(op))
538 		return;
539 
540 	/*
541 	 * Throttle asynchronous requests and writes such that these requests
542 	 * do not block the allocation of synchronous requests.
543 	 */
544 	data->shallow_depth = dd->async_depth;
545 }
546 
547 /* Called by blk_mq_update_nr_requests(). */
548 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
549 {
550 	struct request_queue *q = hctx->queue;
551 	struct deadline_data *dd = q->elevator->elevator_data;
552 	struct blk_mq_tags *tags = hctx->sched_tags;
553 
554 	dd->async_depth = max(1UL, 3 * q->nr_requests / 4);
555 
556 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, dd->async_depth);
557 }
558 
559 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
560 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
561 {
562 	dd_depth_updated(hctx);
563 	return 0;
564 }
565 
566 static void dd_exit_sched(struct elevator_queue *e)
567 {
568 	struct deadline_data *dd = e->elevator_data;
569 	enum dd_prio prio;
570 
571 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
572 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
573 
574 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
575 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
576 	}
577 
578 	free_percpu(dd->stats);
579 
580 	kfree(dd);
581 }
582 
583 /*
584  * initialize elevator private data (deadline_data).
585  */
586 static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
587 {
588 	struct deadline_data *dd;
589 	struct elevator_queue *eq;
590 	enum dd_prio prio;
591 	int ret = -ENOMEM;
592 
593 	eq = elevator_alloc(q, e);
594 	if (!eq)
595 		return ret;
596 
597 	dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
598 	if (!dd)
599 		goto put_eq;
600 
601 	eq->elevator_data = dd;
602 
603 	dd->stats = alloc_percpu_gfp(typeof(*dd->stats),
604 				     GFP_KERNEL | __GFP_ZERO);
605 	if (!dd->stats)
606 		goto free_dd;
607 
608 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
609 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
610 
611 		INIT_LIST_HEAD(&per_prio->dispatch);
612 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
613 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
614 		per_prio->sort_list[DD_READ] = RB_ROOT;
615 		per_prio->sort_list[DD_WRITE] = RB_ROOT;
616 	}
617 	dd->fifo_expire[DD_READ] = read_expire;
618 	dd->fifo_expire[DD_WRITE] = write_expire;
619 	dd->writes_starved = writes_starved;
620 	dd->front_merges = 1;
621 	dd->last_dir = DD_WRITE;
622 	dd->fifo_batch = fifo_batch;
623 	dd->aging_expire = aging_expire;
624 	spin_lock_init(&dd->lock);
625 	spin_lock_init(&dd->zone_lock);
626 
627 	q->elevator = eq;
628 	return 0;
629 
630 free_dd:
631 	kfree(dd);
632 
633 put_eq:
634 	kobject_put(&eq->kobj);
635 	return ret;
636 }
637 
638 /*
639  * Try to merge @bio into an existing request. If @bio has been merged into
640  * an existing request, store the pointer to that request into *@rq.
641  */
642 static int dd_request_merge(struct request_queue *q, struct request **rq,
643 			    struct bio *bio)
644 {
645 	struct deadline_data *dd = q->elevator->elevator_data;
646 	const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
647 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
648 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
649 	sector_t sector = bio_end_sector(bio);
650 	struct request *__rq;
651 
652 	if (!dd->front_merges)
653 		return ELEVATOR_NO_MERGE;
654 
655 	__rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
656 	if (__rq) {
657 		BUG_ON(sector != blk_rq_pos(__rq));
658 
659 		if (elv_bio_merge_ok(__rq, bio)) {
660 			*rq = __rq;
661 			return ELEVATOR_FRONT_MERGE;
662 		}
663 	}
664 
665 	return ELEVATOR_NO_MERGE;
666 }
667 
668 /*
669  * Attempt to merge a bio into an existing request. This function is called
670  * before @bio is associated with a request.
671  */
672 static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
673 		unsigned int nr_segs)
674 {
675 	struct deadline_data *dd = q->elevator->elevator_data;
676 	struct request *free = NULL;
677 	bool ret;
678 
679 	spin_lock(&dd->lock);
680 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
681 	spin_unlock(&dd->lock);
682 
683 	if (free)
684 		blk_mq_free_request(free);
685 
686 	return ret;
687 }
688 
689 /*
690  * add rq to rbtree and fifo
691  */
692 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
693 			      bool at_head)
694 {
695 	struct request_queue *q = hctx->queue;
696 	struct deadline_data *dd = q->elevator->elevator_data;
697 	const enum dd_data_dir data_dir = rq_data_dir(rq);
698 	u16 ioprio = req_get_ioprio(rq);
699 	u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
700 	struct dd_per_prio *per_prio;
701 	enum dd_prio prio;
702 	LIST_HEAD(free);
703 
704 	lockdep_assert_held(&dd->lock);
705 
706 	/*
707 	 * This may be a requeue of a write request that has locked its
708 	 * target zone. If it is the case, this releases the zone lock.
709 	 */
710 	blk_req_zone_write_unlock(rq);
711 
712 	prio = ioprio_class_to_prio[ioprio_class];
713 	dd_count(dd, inserted, prio);
714 
715 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
716 		blk_mq_free_requests(&free);
717 		return;
718 	}
719 
720 	trace_block_rq_insert(rq);
721 
722 	per_prio = &dd->per_prio[prio];
723 	if (at_head) {
724 		list_add(&rq->queuelist, &per_prio->dispatch);
725 	} else {
726 		deadline_add_rq_rb(per_prio, rq);
727 
728 		if (rq_mergeable(rq)) {
729 			elv_rqhash_add(q, rq);
730 			if (!q->last_merge)
731 				q->last_merge = rq;
732 		}
733 
734 		/*
735 		 * set expire time and add to fifo list
736 		 */
737 		rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
738 		list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]);
739 	}
740 }
741 
742 /*
743  * Called from blk_mq_sched_insert_request() or blk_mq_sched_insert_requests().
744  */
745 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
746 			       struct list_head *list, bool at_head)
747 {
748 	struct request_queue *q = hctx->queue;
749 	struct deadline_data *dd = q->elevator->elevator_data;
750 
751 	spin_lock(&dd->lock);
752 	while (!list_empty(list)) {
753 		struct request *rq;
754 
755 		rq = list_first_entry(list, struct request, queuelist);
756 		list_del_init(&rq->queuelist);
757 		dd_insert_request(hctx, rq, at_head);
758 	}
759 	spin_unlock(&dd->lock);
760 }
761 
762 /*
763  * Nothing to do here. This is defined only to ensure that .finish_request
764  * method is called upon request completion.
765  */
766 static void dd_prepare_request(struct request *rq)
767 {
768 }
769 
770 /*
771  * Callback from inside blk_mq_free_request().
772  *
773  * For zoned block devices, write unlock the target zone of
774  * completed write requests. Do this while holding the zone lock
775  * spinlock so that the zone is never unlocked while deadline_fifo_request()
776  * or deadline_next_request() are executing. This function is called for
777  * all requests, whether or not these requests complete successfully.
778  *
779  * For a zoned block device, __dd_dispatch_request() may have stopped
780  * dispatching requests if all the queued requests are write requests directed
781  * at zones that are already locked due to on-going write requests. To ensure
782  * write request dispatch progress in this case, mark the queue as needing a
783  * restart to ensure that the queue is run again after completion of the
784  * request and zones being unlocked.
785  */
786 static void dd_finish_request(struct request *rq)
787 {
788 	struct request_queue *q = rq->q;
789 	struct deadline_data *dd = q->elevator->elevator_data;
790 	const u8 ioprio_class = dd_rq_ioclass(rq);
791 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
792 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
793 
794 	dd_count(dd, completed, prio);
795 
796 	if (blk_queue_is_zoned(q)) {
797 		unsigned long flags;
798 
799 		spin_lock_irqsave(&dd->zone_lock, flags);
800 		blk_req_zone_write_unlock(rq);
801 		if (!list_empty(&per_prio->fifo_list[DD_WRITE]))
802 			blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
803 		spin_unlock_irqrestore(&dd->zone_lock, flags);
804 	}
805 }
806 
807 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
808 {
809 	return !list_empty_careful(&per_prio->dispatch) ||
810 		!list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
811 		!list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
812 }
813 
814 static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
815 {
816 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
817 	enum dd_prio prio;
818 
819 	for (prio = 0; prio <= DD_PRIO_MAX; prio++)
820 		if (dd_has_work_for_prio(&dd->per_prio[prio]))
821 			return true;
822 
823 	return false;
824 }
825 
826 /*
827  * sysfs parts below
828  */
829 #define SHOW_INT(__FUNC, __VAR)						\
830 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
831 {									\
832 	struct deadline_data *dd = e->elevator_data;			\
833 									\
834 	return sysfs_emit(page, "%d\n", __VAR);				\
835 }
836 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
837 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
838 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
839 SHOW_JIFFIES(deadline_aging_expire_show, dd->aging_expire);
840 SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
841 SHOW_INT(deadline_front_merges_show, dd->front_merges);
842 SHOW_INT(deadline_async_depth_show, dd->front_merges);
843 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
844 #undef SHOW_INT
845 #undef SHOW_JIFFIES
846 
847 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
848 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
849 {									\
850 	struct deadline_data *dd = e->elevator_data;			\
851 	int __data, __ret;						\
852 									\
853 	__ret = kstrtoint(page, 0, &__data);				\
854 	if (__ret < 0)							\
855 		return __ret;						\
856 	if (__data < (MIN))						\
857 		__data = (MIN);						\
858 	else if (__data > (MAX))					\
859 		__data = (MAX);						\
860 	*(__PTR) = __CONV(__data);					\
861 	return count;							\
862 }
863 #define STORE_INT(__FUNC, __PTR, MIN, MAX)				\
864 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
865 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)				\
866 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
867 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
868 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
869 STORE_JIFFIES(deadline_aging_expire_store, &dd->aging_expire, 0, INT_MAX);
870 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
871 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
872 STORE_INT(deadline_async_depth_store, &dd->front_merges, 1, INT_MAX);
873 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
874 #undef STORE_FUNCTION
875 #undef STORE_INT
876 #undef STORE_JIFFIES
877 
878 #define DD_ATTR(name) \
879 	__ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
880 
881 static struct elv_fs_entry deadline_attrs[] = {
882 	DD_ATTR(read_expire),
883 	DD_ATTR(write_expire),
884 	DD_ATTR(writes_starved),
885 	DD_ATTR(front_merges),
886 	DD_ATTR(async_depth),
887 	DD_ATTR(fifo_batch),
888 	DD_ATTR(aging_expire),
889 	__ATTR_NULL
890 };
891 
892 #ifdef CONFIG_BLK_DEBUG_FS
893 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)		\
894 static void *deadline_##name##_fifo_start(struct seq_file *m,		\
895 					  loff_t *pos)			\
896 	__acquires(&dd->lock)						\
897 {									\
898 	struct request_queue *q = m->private;				\
899 	struct deadline_data *dd = q->elevator->elevator_data;		\
900 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
901 									\
902 	spin_lock(&dd->lock);						\
903 	return seq_list_start(&per_prio->fifo_list[data_dir], *pos);	\
904 }									\
905 									\
906 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,	\
907 					 loff_t *pos)			\
908 {									\
909 	struct request_queue *q = m->private;				\
910 	struct deadline_data *dd = q->elevator->elevator_data;		\
911 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
912 									\
913 	return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);	\
914 }									\
915 									\
916 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)	\
917 	__releases(&dd->lock)						\
918 {									\
919 	struct request_queue *q = m->private;				\
920 	struct deadline_data *dd = q->elevator->elevator_data;		\
921 									\
922 	spin_unlock(&dd->lock);						\
923 }									\
924 									\
925 static const struct seq_operations deadline_##name##_fifo_seq_ops = {	\
926 	.start	= deadline_##name##_fifo_start,				\
927 	.next	= deadline_##name##_fifo_next,				\
928 	.stop	= deadline_##name##_fifo_stop,				\
929 	.show	= blk_mq_debugfs_rq_show,				\
930 };									\
931 									\
932 static int deadline_##name##_next_rq_show(void *data,			\
933 					  struct seq_file *m)		\
934 {									\
935 	struct request_queue *q = data;					\
936 	struct deadline_data *dd = q->elevator->elevator_data;		\
937 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
938 	struct request *rq = per_prio->next_rq[data_dir];		\
939 									\
940 	if (rq)								\
941 		__blk_mq_debugfs_rq_show(m, rq);			\
942 	return 0;							\
943 }
944 
945 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
946 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
947 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
948 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
949 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
950 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
951 #undef DEADLINE_DEBUGFS_DDIR_ATTRS
952 
953 static int deadline_batching_show(void *data, struct seq_file *m)
954 {
955 	struct request_queue *q = data;
956 	struct deadline_data *dd = q->elevator->elevator_data;
957 
958 	seq_printf(m, "%u\n", dd->batching);
959 	return 0;
960 }
961 
962 static int deadline_starved_show(void *data, struct seq_file *m)
963 {
964 	struct request_queue *q = data;
965 	struct deadline_data *dd = q->elevator->elevator_data;
966 
967 	seq_printf(m, "%u\n", dd->starved);
968 	return 0;
969 }
970 
971 static int dd_async_depth_show(void *data, struct seq_file *m)
972 {
973 	struct request_queue *q = data;
974 	struct deadline_data *dd = q->elevator->elevator_data;
975 
976 	seq_printf(m, "%u\n", dd->async_depth);
977 	return 0;
978 }
979 
980 static int dd_queued_show(void *data, struct seq_file *m)
981 {
982 	struct request_queue *q = data;
983 	struct deadline_data *dd = q->elevator->elevator_data;
984 
985 	seq_printf(m, "%u %u %u\n", dd_queued(dd, DD_RT_PRIO),
986 		   dd_queued(dd, DD_BE_PRIO),
987 		   dd_queued(dd, DD_IDLE_PRIO));
988 	return 0;
989 }
990 
991 /* Number of requests owned by the block driver for a given priority. */
992 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
993 {
994 	return dd_sum(dd, dispatched, prio) + dd_sum(dd, merged, prio)
995 		- dd_sum(dd, completed, prio);
996 }
997 
998 static int dd_owned_by_driver_show(void *data, struct seq_file *m)
999 {
1000 	struct request_queue *q = data;
1001 	struct deadline_data *dd = q->elevator->elevator_data;
1002 
1003 	seq_printf(m, "%u %u %u\n", dd_owned_by_driver(dd, DD_RT_PRIO),
1004 		   dd_owned_by_driver(dd, DD_BE_PRIO),
1005 		   dd_owned_by_driver(dd, DD_IDLE_PRIO));
1006 	return 0;
1007 }
1008 
1009 #define DEADLINE_DISPATCH_ATTR(prio)					\
1010 static void *deadline_dispatch##prio##_start(struct seq_file *m,	\
1011 					     loff_t *pos)		\
1012 	__acquires(&dd->lock)						\
1013 {									\
1014 	struct request_queue *q = m->private;				\
1015 	struct deadline_data *dd = q->elevator->elevator_data;		\
1016 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1017 									\
1018 	spin_lock(&dd->lock);						\
1019 	return seq_list_start(&per_prio->dispatch, *pos);		\
1020 }									\
1021 									\
1022 static void *deadline_dispatch##prio##_next(struct seq_file *m,		\
1023 					    void *v, loff_t *pos)	\
1024 {									\
1025 	struct request_queue *q = m->private;				\
1026 	struct deadline_data *dd = q->elevator->elevator_data;		\
1027 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1028 									\
1029 	return seq_list_next(v, &per_prio->dispatch, pos);		\
1030 }									\
1031 									\
1032 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v)	\
1033 	__releases(&dd->lock)						\
1034 {									\
1035 	struct request_queue *q = m->private;				\
1036 	struct deadline_data *dd = q->elevator->elevator_data;		\
1037 									\
1038 	spin_unlock(&dd->lock);						\
1039 }									\
1040 									\
1041 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1042 	.start	= deadline_dispatch##prio##_start,			\
1043 	.next	= deadline_dispatch##prio##_next,			\
1044 	.stop	= deadline_dispatch##prio##_stop,			\
1045 	.show	= blk_mq_debugfs_rq_show,				\
1046 }
1047 
1048 DEADLINE_DISPATCH_ATTR(0);
1049 DEADLINE_DISPATCH_ATTR(1);
1050 DEADLINE_DISPATCH_ATTR(2);
1051 #undef DEADLINE_DISPATCH_ATTR
1052 
1053 #define DEADLINE_QUEUE_DDIR_ATTRS(name)					\
1054 	{#name "_fifo_list", 0400,					\
1055 			.seq_ops = &deadline_##name##_fifo_seq_ops}
1056 #define DEADLINE_NEXT_RQ_ATTR(name)					\
1057 	{#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1058 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1059 	DEADLINE_QUEUE_DDIR_ATTRS(read0),
1060 	DEADLINE_QUEUE_DDIR_ATTRS(write0),
1061 	DEADLINE_QUEUE_DDIR_ATTRS(read1),
1062 	DEADLINE_QUEUE_DDIR_ATTRS(write1),
1063 	DEADLINE_QUEUE_DDIR_ATTRS(read2),
1064 	DEADLINE_QUEUE_DDIR_ATTRS(write2),
1065 	DEADLINE_NEXT_RQ_ATTR(read0),
1066 	DEADLINE_NEXT_RQ_ATTR(write0),
1067 	DEADLINE_NEXT_RQ_ATTR(read1),
1068 	DEADLINE_NEXT_RQ_ATTR(write1),
1069 	DEADLINE_NEXT_RQ_ATTR(read2),
1070 	DEADLINE_NEXT_RQ_ATTR(write2),
1071 	{"batching", 0400, deadline_batching_show},
1072 	{"starved", 0400, deadline_starved_show},
1073 	{"async_depth", 0400, dd_async_depth_show},
1074 	{"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1075 	{"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1076 	{"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1077 	{"owned_by_driver", 0400, dd_owned_by_driver_show},
1078 	{"queued", 0400, dd_queued_show},
1079 	{},
1080 };
1081 #undef DEADLINE_QUEUE_DDIR_ATTRS
1082 #endif
1083 
1084 static struct elevator_type mq_deadline = {
1085 	.ops = {
1086 		.depth_updated		= dd_depth_updated,
1087 		.limit_depth		= dd_limit_depth,
1088 		.insert_requests	= dd_insert_requests,
1089 		.dispatch_request	= dd_dispatch_request,
1090 		.prepare_request	= dd_prepare_request,
1091 		.finish_request		= dd_finish_request,
1092 		.next_request		= elv_rb_latter_request,
1093 		.former_request		= elv_rb_former_request,
1094 		.bio_merge		= dd_bio_merge,
1095 		.request_merge		= dd_request_merge,
1096 		.requests_merged	= dd_merged_requests,
1097 		.request_merged		= dd_request_merged,
1098 		.has_work		= dd_has_work,
1099 		.init_sched		= dd_init_sched,
1100 		.exit_sched		= dd_exit_sched,
1101 		.init_hctx		= dd_init_hctx,
1102 	},
1103 
1104 #ifdef CONFIG_BLK_DEBUG_FS
1105 	.queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1106 #endif
1107 	.elevator_attrs = deadline_attrs,
1108 	.elevator_name = "mq-deadline",
1109 	.elevator_alias = "deadline",
1110 	.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1111 	.elevator_owner = THIS_MODULE,
1112 };
1113 MODULE_ALIAS("mq-deadline-iosched");
1114 
1115 static int __init deadline_init(void)
1116 {
1117 	return elv_register(&mq_deadline);
1118 }
1119 
1120 static void __exit deadline_exit(void)
1121 {
1122 	elv_unregister(&mq_deadline);
1123 }
1124 
1125 module_init(deadline_init);
1126 module_exit(deadline_exit);
1127 
1128 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1129 MODULE_LICENSE("GPL");
1130 MODULE_DESCRIPTION("MQ deadline IO scheduler");
1131