1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler, 4 * for the blk-mq scheduling framework 5 * 6 * Copyright (C) 2016 Jens Axboe <axboe@kernel.dk> 7 */ 8 #include <linux/kernel.h> 9 #include <linux/fs.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/bio.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/compiler.h> 17 #include <linux/rbtree.h> 18 #include <linux/sbitmap.h> 19 20 #include <trace/events/block.h> 21 22 #include "elevator.h" 23 #include "blk.h" 24 #include "blk-mq.h" 25 #include "blk-mq-debugfs.h" 26 #include "blk-mq-tag.h" 27 #include "blk-mq-sched.h" 28 29 /* 30 * See Documentation/block/deadline-iosched.rst 31 */ 32 static const int read_expire = HZ / 2; /* max time before a read is submitted. */ 33 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */ 34 /* 35 * Time after which to dispatch lower priority requests even if higher 36 * priority requests are pending. 37 */ 38 static const int prio_aging_expire = 10 * HZ; 39 static const int writes_starved = 2; /* max times reads can starve a write */ 40 static const int fifo_batch = 16; /* # of sequential requests treated as one 41 by the above parameters. For throughput. */ 42 43 enum dd_data_dir { 44 DD_READ = READ, 45 DD_WRITE = WRITE, 46 }; 47 48 enum { DD_DIR_COUNT = 2 }; 49 50 enum dd_prio { 51 DD_RT_PRIO = 0, 52 DD_BE_PRIO = 1, 53 DD_IDLE_PRIO = 2, 54 DD_PRIO_MAX = 2, 55 }; 56 57 enum { DD_PRIO_COUNT = 3 }; 58 59 /* 60 * I/O statistics per I/O priority. It is fine if these counters overflow. 61 * What matters is that these counters are at least as wide as 62 * log2(max_outstanding_requests). 63 */ 64 struct io_stats_per_prio { 65 uint32_t inserted; 66 uint32_t merged; 67 uint32_t dispatched; 68 atomic_t completed; 69 }; 70 71 /* 72 * Deadline scheduler data per I/O priority (enum dd_prio). Requests are 73 * present on both sort_list[] and fifo_list[]. 74 */ 75 struct dd_per_prio { 76 struct list_head dispatch; 77 struct rb_root sort_list[DD_DIR_COUNT]; 78 struct list_head fifo_list[DD_DIR_COUNT]; 79 /* Next request in FIFO order. Read, write or both are NULL. */ 80 struct request *next_rq[DD_DIR_COUNT]; 81 struct io_stats_per_prio stats; 82 }; 83 84 struct deadline_data { 85 /* 86 * run time data 87 */ 88 89 struct dd_per_prio per_prio[DD_PRIO_COUNT]; 90 91 /* Data direction of latest dispatched request. */ 92 enum dd_data_dir last_dir; 93 unsigned int batching; /* number of sequential requests made */ 94 unsigned int starved; /* times reads have starved writes */ 95 96 /* 97 * settings that change how the i/o scheduler behaves 98 */ 99 int fifo_expire[DD_DIR_COUNT]; 100 int fifo_batch; 101 int writes_starved; 102 int front_merges; 103 u32 async_depth; 104 int prio_aging_expire; 105 106 spinlock_t lock; 107 spinlock_t zone_lock; 108 }; 109 110 /* Maps an I/O priority class to a deadline scheduler priority. */ 111 static const enum dd_prio ioprio_class_to_prio[] = { 112 [IOPRIO_CLASS_NONE] = DD_BE_PRIO, 113 [IOPRIO_CLASS_RT] = DD_RT_PRIO, 114 [IOPRIO_CLASS_BE] = DD_BE_PRIO, 115 [IOPRIO_CLASS_IDLE] = DD_IDLE_PRIO, 116 }; 117 118 static inline struct rb_root * 119 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq) 120 { 121 return &per_prio->sort_list[rq_data_dir(rq)]; 122 } 123 124 /* 125 * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a 126 * request. 127 */ 128 static u8 dd_rq_ioclass(struct request *rq) 129 { 130 return IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); 131 } 132 133 /* 134 * get the request after `rq' in sector-sorted order 135 */ 136 static inline struct request * 137 deadline_latter_request(struct request *rq) 138 { 139 struct rb_node *node = rb_next(&rq->rb_node); 140 141 if (node) 142 return rb_entry_rq(node); 143 144 return NULL; 145 } 146 147 static void 148 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq) 149 { 150 struct rb_root *root = deadline_rb_root(per_prio, rq); 151 152 elv_rb_add(root, rq); 153 } 154 155 static inline void 156 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq) 157 { 158 const enum dd_data_dir data_dir = rq_data_dir(rq); 159 160 if (per_prio->next_rq[data_dir] == rq) 161 per_prio->next_rq[data_dir] = deadline_latter_request(rq); 162 163 elv_rb_del(deadline_rb_root(per_prio, rq), rq); 164 } 165 166 /* 167 * remove rq from rbtree and fifo. 168 */ 169 static void deadline_remove_request(struct request_queue *q, 170 struct dd_per_prio *per_prio, 171 struct request *rq) 172 { 173 list_del_init(&rq->queuelist); 174 175 /* 176 * We might not be on the rbtree, if we are doing an insert merge 177 */ 178 if (!RB_EMPTY_NODE(&rq->rb_node)) 179 deadline_del_rq_rb(per_prio, rq); 180 181 elv_rqhash_del(q, rq); 182 if (q->last_merge == rq) 183 q->last_merge = NULL; 184 } 185 186 static void dd_request_merged(struct request_queue *q, struct request *req, 187 enum elv_merge type) 188 { 189 struct deadline_data *dd = q->elevator->elevator_data; 190 const u8 ioprio_class = dd_rq_ioclass(req); 191 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 192 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 193 194 /* 195 * if the merge was a front merge, we need to reposition request 196 */ 197 if (type == ELEVATOR_FRONT_MERGE) { 198 elv_rb_del(deadline_rb_root(per_prio, req), req); 199 deadline_add_rq_rb(per_prio, req); 200 } 201 } 202 203 /* 204 * Callback function that is invoked after @next has been merged into @req. 205 */ 206 static void dd_merged_requests(struct request_queue *q, struct request *req, 207 struct request *next) 208 { 209 struct deadline_data *dd = q->elevator->elevator_data; 210 const u8 ioprio_class = dd_rq_ioclass(next); 211 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 212 213 lockdep_assert_held(&dd->lock); 214 215 dd->per_prio[prio].stats.merged++; 216 217 /* 218 * if next expires before rq, assign its expire time to rq 219 * and move into next position (next will be deleted) in fifo 220 */ 221 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) { 222 if (time_before((unsigned long)next->fifo_time, 223 (unsigned long)req->fifo_time)) { 224 list_move(&req->queuelist, &next->queuelist); 225 req->fifo_time = next->fifo_time; 226 } 227 } 228 229 /* 230 * kill knowledge of next, this one is a goner 231 */ 232 deadline_remove_request(q, &dd->per_prio[prio], next); 233 } 234 235 /* 236 * move an entry to dispatch queue 237 */ 238 static void 239 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio, 240 struct request *rq) 241 { 242 const enum dd_data_dir data_dir = rq_data_dir(rq); 243 244 per_prio->next_rq[data_dir] = deadline_latter_request(rq); 245 246 /* 247 * take it off the sort and fifo list 248 */ 249 deadline_remove_request(rq->q, per_prio, rq); 250 } 251 252 /* Number of requests queued for a given priority level. */ 253 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio) 254 { 255 const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats; 256 257 lockdep_assert_held(&dd->lock); 258 259 return stats->inserted - atomic_read(&stats->completed); 260 } 261 262 /* 263 * deadline_check_fifo returns 0 if there are no expired requests on the fifo, 264 * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir]) 265 */ 266 static inline int deadline_check_fifo(struct dd_per_prio *per_prio, 267 enum dd_data_dir data_dir) 268 { 269 struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next); 270 271 /* 272 * rq is expired! 273 */ 274 if (time_after_eq(jiffies, (unsigned long)rq->fifo_time)) 275 return 1; 276 277 return 0; 278 } 279 280 /* 281 * For the specified data direction, return the next request to 282 * dispatch using arrival ordered lists. 283 */ 284 static struct request * 285 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio, 286 enum dd_data_dir data_dir) 287 { 288 struct request *rq; 289 unsigned long flags; 290 291 if (list_empty(&per_prio->fifo_list[data_dir])) 292 return NULL; 293 294 rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next); 295 if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q)) 296 return rq; 297 298 /* 299 * Look for a write request that can be dispatched, that is one with 300 * an unlocked target zone. 301 */ 302 spin_lock_irqsave(&dd->zone_lock, flags); 303 list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) { 304 if (blk_req_can_dispatch_to_zone(rq)) 305 goto out; 306 } 307 rq = NULL; 308 out: 309 spin_unlock_irqrestore(&dd->zone_lock, flags); 310 311 return rq; 312 } 313 314 /* 315 * For the specified data direction, return the next request to 316 * dispatch using sector position sorted lists. 317 */ 318 static struct request * 319 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio, 320 enum dd_data_dir data_dir) 321 { 322 struct request *rq; 323 unsigned long flags; 324 325 rq = per_prio->next_rq[data_dir]; 326 if (!rq) 327 return NULL; 328 329 if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q)) 330 return rq; 331 332 /* 333 * Look for a write request that can be dispatched, that is one with 334 * an unlocked target zone. 335 */ 336 spin_lock_irqsave(&dd->zone_lock, flags); 337 while (rq) { 338 if (blk_req_can_dispatch_to_zone(rq)) 339 break; 340 rq = deadline_latter_request(rq); 341 } 342 spin_unlock_irqrestore(&dd->zone_lock, flags); 343 344 return rq; 345 } 346 347 /* 348 * Returns true if and only if @rq started after @latest_start where 349 * @latest_start is in jiffies. 350 */ 351 static bool started_after(struct deadline_data *dd, struct request *rq, 352 unsigned long latest_start) 353 { 354 unsigned long start_time = (unsigned long)rq->fifo_time; 355 356 start_time -= dd->fifo_expire[rq_data_dir(rq)]; 357 358 return time_after(start_time, latest_start); 359 } 360 361 /* 362 * deadline_dispatch_requests selects the best request according to 363 * read/write expire, fifo_batch, etc and with a start time <= @latest_start. 364 */ 365 static struct request *__dd_dispatch_request(struct deadline_data *dd, 366 struct dd_per_prio *per_prio, 367 unsigned long latest_start) 368 { 369 struct request *rq, *next_rq; 370 enum dd_data_dir data_dir; 371 enum dd_prio prio; 372 u8 ioprio_class; 373 374 lockdep_assert_held(&dd->lock); 375 376 if (!list_empty(&per_prio->dispatch)) { 377 rq = list_first_entry(&per_prio->dispatch, struct request, 378 queuelist); 379 if (started_after(dd, rq, latest_start)) 380 return NULL; 381 list_del_init(&rq->queuelist); 382 goto done; 383 } 384 385 /* 386 * batches are currently reads XOR writes 387 */ 388 rq = deadline_next_request(dd, per_prio, dd->last_dir); 389 if (rq && dd->batching < dd->fifo_batch) 390 /* we have a next request are still entitled to batch */ 391 goto dispatch_request; 392 393 /* 394 * at this point we are not running a batch. select the appropriate 395 * data direction (read / write) 396 */ 397 398 if (!list_empty(&per_prio->fifo_list[DD_READ])) { 399 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ])); 400 401 if (deadline_fifo_request(dd, per_prio, DD_WRITE) && 402 (dd->starved++ >= dd->writes_starved)) 403 goto dispatch_writes; 404 405 data_dir = DD_READ; 406 407 goto dispatch_find_request; 408 } 409 410 /* 411 * there are either no reads or writes have been starved 412 */ 413 414 if (!list_empty(&per_prio->fifo_list[DD_WRITE])) { 415 dispatch_writes: 416 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE])); 417 418 dd->starved = 0; 419 420 data_dir = DD_WRITE; 421 422 goto dispatch_find_request; 423 } 424 425 return NULL; 426 427 dispatch_find_request: 428 /* 429 * we are not running a batch, find best request for selected data_dir 430 */ 431 next_rq = deadline_next_request(dd, per_prio, data_dir); 432 if (deadline_check_fifo(per_prio, data_dir) || !next_rq) { 433 /* 434 * A deadline has expired, the last request was in the other 435 * direction, or we have run out of higher-sectored requests. 436 * Start again from the request with the earliest expiry time. 437 */ 438 rq = deadline_fifo_request(dd, per_prio, data_dir); 439 } else { 440 /* 441 * The last req was the same dir and we have a next request in 442 * sort order. No expired requests so continue on from here. 443 */ 444 rq = next_rq; 445 } 446 447 /* 448 * For a zoned block device, if we only have writes queued and none of 449 * them can be dispatched, rq will be NULL. 450 */ 451 if (!rq) 452 return NULL; 453 454 dd->last_dir = data_dir; 455 dd->batching = 0; 456 457 dispatch_request: 458 if (started_after(dd, rq, latest_start)) 459 return NULL; 460 461 /* 462 * rq is the selected appropriate request. 463 */ 464 dd->batching++; 465 deadline_move_request(dd, per_prio, rq); 466 done: 467 ioprio_class = dd_rq_ioclass(rq); 468 prio = ioprio_class_to_prio[ioprio_class]; 469 dd->per_prio[prio].stats.dispatched++; 470 /* 471 * If the request needs its target zone locked, do it. 472 */ 473 blk_req_zone_write_lock(rq); 474 rq->rq_flags |= RQF_STARTED; 475 return rq; 476 } 477 478 /* 479 * Check whether there are any requests with priority other than DD_RT_PRIO 480 * that were inserted more than prio_aging_expire jiffies ago. 481 */ 482 static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd, 483 unsigned long now) 484 { 485 struct request *rq; 486 enum dd_prio prio; 487 int prio_cnt; 488 489 lockdep_assert_held(&dd->lock); 490 491 prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) + 492 !!dd_queued(dd, DD_IDLE_PRIO); 493 if (prio_cnt < 2) 494 return NULL; 495 496 for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) { 497 rq = __dd_dispatch_request(dd, &dd->per_prio[prio], 498 now - dd->prio_aging_expire); 499 if (rq) 500 return rq; 501 } 502 503 return NULL; 504 } 505 506 /* 507 * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests(). 508 * 509 * One confusing aspect here is that we get called for a specific 510 * hardware queue, but we may return a request that is for a 511 * different hardware queue. This is because mq-deadline has shared 512 * state for all hardware queues, in terms of sorting, FIFOs, etc. 513 */ 514 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx) 515 { 516 struct deadline_data *dd = hctx->queue->elevator->elevator_data; 517 const unsigned long now = jiffies; 518 struct request *rq; 519 enum dd_prio prio; 520 521 spin_lock(&dd->lock); 522 rq = dd_dispatch_prio_aged_requests(dd, now); 523 if (rq) 524 goto unlock; 525 526 /* 527 * Next, dispatch requests in priority order. Ignore lower priority 528 * requests if any higher priority requests are pending. 529 */ 530 for (prio = 0; prio <= DD_PRIO_MAX; prio++) { 531 rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now); 532 if (rq || dd_queued(dd, prio)) 533 break; 534 } 535 536 unlock: 537 spin_unlock(&dd->lock); 538 539 return rq; 540 } 541 542 /* 543 * Called by __blk_mq_alloc_request(). The shallow_depth value set by this 544 * function is used by __blk_mq_get_tag(). 545 */ 546 static void dd_limit_depth(unsigned int op, struct blk_mq_alloc_data *data) 547 { 548 struct deadline_data *dd = data->q->elevator->elevator_data; 549 550 /* Do not throttle synchronous reads. */ 551 if (op_is_sync(op) && !op_is_write(op)) 552 return; 553 554 /* 555 * Throttle asynchronous requests and writes such that these requests 556 * do not block the allocation of synchronous requests. 557 */ 558 data->shallow_depth = dd->async_depth; 559 } 560 561 /* Called by blk_mq_update_nr_requests(). */ 562 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx) 563 { 564 struct request_queue *q = hctx->queue; 565 struct deadline_data *dd = q->elevator->elevator_data; 566 struct blk_mq_tags *tags = hctx->sched_tags; 567 568 dd->async_depth = max(1UL, 3 * q->nr_requests / 4); 569 570 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth); 571 } 572 573 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */ 574 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 575 { 576 dd_depth_updated(hctx); 577 return 0; 578 } 579 580 static void dd_exit_sched(struct elevator_queue *e) 581 { 582 struct deadline_data *dd = e->elevator_data; 583 enum dd_prio prio; 584 585 for (prio = 0; prio <= DD_PRIO_MAX; prio++) { 586 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 587 const struct io_stats_per_prio *stats = &per_prio->stats; 588 uint32_t queued; 589 590 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ])); 591 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE])); 592 593 spin_lock(&dd->lock); 594 queued = dd_queued(dd, prio); 595 spin_unlock(&dd->lock); 596 597 WARN_ONCE(queued != 0, 598 "statistics for priority %d: i %u m %u d %u c %u\n", 599 prio, stats->inserted, stats->merged, 600 stats->dispatched, atomic_read(&stats->completed)); 601 } 602 603 kfree(dd); 604 } 605 606 /* 607 * initialize elevator private data (deadline_data). 608 */ 609 static int dd_init_sched(struct request_queue *q, struct elevator_type *e) 610 { 611 struct deadline_data *dd; 612 struct elevator_queue *eq; 613 enum dd_prio prio; 614 int ret = -ENOMEM; 615 616 eq = elevator_alloc(q, e); 617 if (!eq) 618 return ret; 619 620 dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node); 621 if (!dd) 622 goto put_eq; 623 624 eq->elevator_data = dd; 625 626 for (prio = 0; prio <= DD_PRIO_MAX; prio++) { 627 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 628 629 INIT_LIST_HEAD(&per_prio->dispatch); 630 INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]); 631 INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]); 632 per_prio->sort_list[DD_READ] = RB_ROOT; 633 per_prio->sort_list[DD_WRITE] = RB_ROOT; 634 } 635 dd->fifo_expire[DD_READ] = read_expire; 636 dd->fifo_expire[DD_WRITE] = write_expire; 637 dd->writes_starved = writes_starved; 638 dd->front_merges = 1; 639 dd->last_dir = DD_WRITE; 640 dd->fifo_batch = fifo_batch; 641 dd->prio_aging_expire = prio_aging_expire; 642 spin_lock_init(&dd->lock); 643 spin_lock_init(&dd->zone_lock); 644 645 /* We dispatch from request queue wide instead of hw queue */ 646 blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q); 647 648 q->elevator = eq; 649 return 0; 650 651 put_eq: 652 kobject_put(&eq->kobj); 653 return ret; 654 } 655 656 /* 657 * Try to merge @bio into an existing request. If @bio has been merged into 658 * an existing request, store the pointer to that request into *@rq. 659 */ 660 static int dd_request_merge(struct request_queue *q, struct request **rq, 661 struct bio *bio) 662 { 663 struct deadline_data *dd = q->elevator->elevator_data; 664 const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio); 665 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 666 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 667 sector_t sector = bio_end_sector(bio); 668 struct request *__rq; 669 670 if (!dd->front_merges) 671 return ELEVATOR_NO_MERGE; 672 673 __rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector); 674 if (__rq) { 675 BUG_ON(sector != blk_rq_pos(__rq)); 676 677 if (elv_bio_merge_ok(__rq, bio)) { 678 *rq = __rq; 679 if (blk_discard_mergable(__rq)) 680 return ELEVATOR_DISCARD_MERGE; 681 return ELEVATOR_FRONT_MERGE; 682 } 683 } 684 685 return ELEVATOR_NO_MERGE; 686 } 687 688 /* 689 * Attempt to merge a bio into an existing request. This function is called 690 * before @bio is associated with a request. 691 */ 692 static bool dd_bio_merge(struct request_queue *q, struct bio *bio, 693 unsigned int nr_segs) 694 { 695 struct deadline_data *dd = q->elevator->elevator_data; 696 struct request *free = NULL; 697 bool ret; 698 699 spin_lock(&dd->lock); 700 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free); 701 spin_unlock(&dd->lock); 702 703 if (free) 704 blk_mq_free_request(free); 705 706 return ret; 707 } 708 709 /* 710 * add rq to rbtree and fifo 711 */ 712 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 713 bool at_head) 714 { 715 struct request_queue *q = hctx->queue; 716 struct deadline_data *dd = q->elevator->elevator_data; 717 const enum dd_data_dir data_dir = rq_data_dir(rq); 718 u16 ioprio = req_get_ioprio(rq); 719 u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio); 720 struct dd_per_prio *per_prio; 721 enum dd_prio prio; 722 LIST_HEAD(free); 723 724 lockdep_assert_held(&dd->lock); 725 726 /* 727 * This may be a requeue of a write request that has locked its 728 * target zone. If it is the case, this releases the zone lock. 729 */ 730 blk_req_zone_write_unlock(rq); 731 732 prio = ioprio_class_to_prio[ioprio_class]; 733 per_prio = &dd->per_prio[prio]; 734 if (!rq->elv.priv[0]) { 735 per_prio->stats.inserted++; 736 rq->elv.priv[0] = (void *)(uintptr_t)1; 737 } 738 739 if (blk_mq_sched_try_insert_merge(q, rq, &free)) { 740 blk_mq_free_requests(&free); 741 return; 742 } 743 744 trace_block_rq_insert(rq); 745 746 if (at_head) { 747 list_add(&rq->queuelist, &per_prio->dispatch); 748 rq->fifo_time = jiffies; 749 } else { 750 deadline_add_rq_rb(per_prio, rq); 751 752 if (rq_mergeable(rq)) { 753 elv_rqhash_add(q, rq); 754 if (!q->last_merge) 755 q->last_merge = rq; 756 } 757 758 /* 759 * set expire time and add to fifo list 760 */ 761 rq->fifo_time = jiffies + dd->fifo_expire[data_dir]; 762 list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]); 763 } 764 } 765 766 /* 767 * Called from blk_mq_sched_insert_request() or blk_mq_sched_insert_requests(). 768 */ 769 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx, 770 struct list_head *list, bool at_head) 771 { 772 struct request_queue *q = hctx->queue; 773 struct deadline_data *dd = q->elevator->elevator_data; 774 775 spin_lock(&dd->lock); 776 while (!list_empty(list)) { 777 struct request *rq; 778 779 rq = list_first_entry(list, struct request, queuelist); 780 list_del_init(&rq->queuelist); 781 dd_insert_request(hctx, rq, at_head); 782 } 783 spin_unlock(&dd->lock); 784 } 785 786 /* Callback from inside blk_mq_rq_ctx_init(). */ 787 static void dd_prepare_request(struct request *rq) 788 { 789 rq->elv.priv[0] = NULL; 790 } 791 792 /* 793 * Callback from inside blk_mq_free_request(). 794 * 795 * For zoned block devices, write unlock the target zone of 796 * completed write requests. Do this while holding the zone lock 797 * spinlock so that the zone is never unlocked while deadline_fifo_request() 798 * or deadline_next_request() are executing. This function is called for 799 * all requests, whether or not these requests complete successfully. 800 * 801 * For a zoned block device, __dd_dispatch_request() may have stopped 802 * dispatching requests if all the queued requests are write requests directed 803 * at zones that are already locked due to on-going write requests. To ensure 804 * write request dispatch progress in this case, mark the queue as needing a 805 * restart to ensure that the queue is run again after completion of the 806 * request and zones being unlocked. 807 */ 808 static void dd_finish_request(struct request *rq) 809 { 810 struct request_queue *q = rq->q; 811 struct deadline_data *dd = q->elevator->elevator_data; 812 const u8 ioprio_class = dd_rq_ioclass(rq); 813 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 814 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 815 816 /* 817 * The block layer core may call dd_finish_request() without having 818 * called dd_insert_requests(). Skip requests that bypassed I/O 819 * scheduling. See also blk_mq_request_bypass_insert(). 820 */ 821 if (!rq->elv.priv[0]) 822 return; 823 824 atomic_inc(&per_prio->stats.completed); 825 826 if (blk_queue_is_zoned(q)) { 827 unsigned long flags; 828 829 spin_lock_irqsave(&dd->zone_lock, flags); 830 blk_req_zone_write_unlock(rq); 831 if (!list_empty(&per_prio->fifo_list[DD_WRITE])) 832 blk_mq_sched_mark_restart_hctx(rq->mq_hctx); 833 spin_unlock_irqrestore(&dd->zone_lock, flags); 834 } 835 } 836 837 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio) 838 { 839 return !list_empty_careful(&per_prio->dispatch) || 840 !list_empty_careful(&per_prio->fifo_list[DD_READ]) || 841 !list_empty_careful(&per_prio->fifo_list[DD_WRITE]); 842 } 843 844 static bool dd_has_work(struct blk_mq_hw_ctx *hctx) 845 { 846 struct deadline_data *dd = hctx->queue->elevator->elevator_data; 847 enum dd_prio prio; 848 849 for (prio = 0; prio <= DD_PRIO_MAX; prio++) 850 if (dd_has_work_for_prio(&dd->per_prio[prio])) 851 return true; 852 853 return false; 854 } 855 856 /* 857 * sysfs parts below 858 */ 859 #define SHOW_INT(__FUNC, __VAR) \ 860 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 861 { \ 862 struct deadline_data *dd = e->elevator_data; \ 863 \ 864 return sysfs_emit(page, "%d\n", __VAR); \ 865 } 866 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR)) 867 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]); 868 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]); 869 SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire); 870 SHOW_INT(deadline_writes_starved_show, dd->writes_starved); 871 SHOW_INT(deadline_front_merges_show, dd->front_merges); 872 SHOW_INT(deadline_async_depth_show, dd->async_depth); 873 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch); 874 #undef SHOW_INT 875 #undef SHOW_JIFFIES 876 877 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 878 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 879 { \ 880 struct deadline_data *dd = e->elevator_data; \ 881 int __data, __ret; \ 882 \ 883 __ret = kstrtoint(page, 0, &__data); \ 884 if (__ret < 0) \ 885 return __ret; \ 886 if (__data < (MIN)) \ 887 __data = (MIN); \ 888 else if (__data > (MAX)) \ 889 __data = (MAX); \ 890 *(__PTR) = __CONV(__data); \ 891 return count; \ 892 } 893 #define STORE_INT(__FUNC, __PTR, MIN, MAX) \ 894 STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, ) 895 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX) \ 896 STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies) 897 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX); 898 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX); 899 STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX); 900 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX); 901 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1); 902 STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX); 903 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX); 904 #undef STORE_FUNCTION 905 #undef STORE_INT 906 #undef STORE_JIFFIES 907 908 #define DD_ATTR(name) \ 909 __ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store) 910 911 static struct elv_fs_entry deadline_attrs[] = { 912 DD_ATTR(read_expire), 913 DD_ATTR(write_expire), 914 DD_ATTR(writes_starved), 915 DD_ATTR(front_merges), 916 DD_ATTR(async_depth), 917 DD_ATTR(fifo_batch), 918 DD_ATTR(prio_aging_expire), 919 __ATTR_NULL 920 }; 921 922 #ifdef CONFIG_BLK_DEBUG_FS 923 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name) \ 924 static void *deadline_##name##_fifo_start(struct seq_file *m, \ 925 loff_t *pos) \ 926 __acquires(&dd->lock) \ 927 { \ 928 struct request_queue *q = m->private; \ 929 struct deadline_data *dd = q->elevator->elevator_data; \ 930 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 931 \ 932 spin_lock(&dd->lock); \ 933 return seq_list_start(&per_prio->fifo_list[data_dir], *pos); \ 934 } \ 935 \ 936 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v, \ 937 loff_t *pos) \ 938 { \ 939 struct request_queue *q = m->private; \ 940 struct deadline_data *dd = q->elevator->elevator_data; \ 941 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 942 \ 943 return seq_list_next(v, &per_prio->fifo_list[data_dir], pos); \ 944 } \ 945 \ 946 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v) \ 947 __releases(&dd->lock) \ 948 { \ 949 struct request_queue *q = m->private; \ 950 struct deadline_data *dd = q->elevator->elevator_data; \ 951 \ 952 spin_unlock(&dd->lock); \ 953 } \ 954 \ 955 static const struct seq_operations deadline_##name##_fifo_seq_ops = { \ 956 .start = deadline_##name##_fifo_start, \ 957 .next = deadline_##name##_fifo_next, \ 958 .stop = deadline_##name##_fifo_stop, \ 959 .show = blk_mq_debugfs_rq_show, \ 960 }; \ 961 \ 962 static int deadline_##name##_next_rq_show(void *data, \ 963 struct seq_file *m) \ 964 { \ 965 struct request_queue *q = data; \ 966 struct deadline_data *dd = q->elevator->elevator_data; \ 967 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 968 struct request *rq = per_prio->next_rq[data_dir]; \ 969 \ 970 if (rq) \ 971 __blk_mq_debugfs_rq_show(m, rq); \ 972 return 0; \ 973 } 974 975 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0); 976 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0); 977 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1); 978 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1); 979 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2); 980 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2); 981 #undef DEADLINE_DEBUGFS_DDIR_ATTRS 982 983 static int deadline_batching_show(void *data, struct seq_file *m) 984 { 985 struct request_queue *q = data; 986 struct deadline_data *dd = q->elevator->elevator_data; 987 988 seq_printf(m, "%u\n", dd->batching); 989 return 0; 990 } 991 992 static int deadline_starved_show(void *data, struct seq_file *m) 993 { 994 struct request_queue *q = data; 995 struct deadline_data *dd = q->elevator->elevator_data; 996 997 seq_printf(m, "%u\n", dd->starved); 998 return 0; 999 } 1000 1001 static int dd_async_depth_show(void *data, struct seq_file *m) 1002 { 1003 struct request_queue *q = data; 1004 struct deadline_data *dd = q->elevator->elevator_data; 1005 1006 seq_printf(m, "%u\n", dd->async_depth); 1007 return 0; 1008 } 1009 1010 static int dd_queued_show(void *data, struct seq_file *m) 1011 { 1012 struct request_queue *q = data; 1013 struct deadline_data *dd = q->elevator->elevator_data; 1014 u32 rt, be, idle; 1015 1016 spin_lock(&dd->lock); 1017 rt = dd_queued(dd, DD_RT_PRIO); 1018 be = dd_queued(dd, DD_BE_PRIO); 1019 idle = dd_queued(dd, DD_IDLE_PRIO); 1020 spin_unlock(&dd->lock); 1021 1022 seq_printf(m, "%u %u %u\n", rt, be, idle); 1023 1024 return 0; 1025 } 1026 1027 /* Number of requests owned by the block driver for a given priority. */ 1028 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio) 1029 { 1030 const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats; 1031 1032 lockdep_assert_held(&dd->lock); 1033 1034 return stats->dispatched + stats->merged - 1035 atomic_read(&stats->completed); 1036 } 1037 1038 static int dd_owned_by_driver_show(void *data, struct seq_file *m) 1039 { 1040 struct request_queue *q = data; 1041 struct deadline_data *dd = q->elevator->elevator_data; 1042 u32 rt, be, idle; 1043 1044 spin_lock(&dd->lock); 1045 rt = dd_owned_by_driver(dd, DD_RT_PRIO); 1046 be = dd_owned_by_driver(dd, DD_BE_PRIO); 1047 idle = dd_owned_by_driver(dd, DD_IDLE_PRIO); 1048 spin_unlock(&dd->lock); 1049 1050 seq_printf(m, "%u %u %u\n", rt, be, idle); 1051 1052 return 0; 1053 } 1054 1055 #define DEADLINE_DISPATCH_ATTR(prio) \ 1056 static void *deadline_dispatch##prio##_start(struct seq_file *m, \ 1057 loff_t *pos) \ 1058 __acquires(&dd->lock) \ 1059 { \ 1060 struct request_queue *q = m->private; \ 1061 struct deadline_data *dd = q->elevator->elevator_data; \ 1062 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 1063 \ 1064 spin_lock(&dd->lock); \ 1065 return seq_list_start(&per_prio->dispatch, *pos); \ 1066 } \ 1067 \ 1068 static void *deadline_dispatch##prio##_next(struct seq_file *m, \ 1069 void *v, loff_t *pos) \ 1070 { \ 1071 struct request_queue *q = m->private; \ 1072 struct deadline_data *dd = q->elevator->elevator_data; \ 1073 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 1074 \ 1075 return seq_list_next(v, &per_prio->dispatch, pos); \ 1076 } \ 1077 \ 1078 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v) \ 1079 __releases(&dd->lock) \ 1080 { \ 1081 struct request_queue *q = m->private; \ 1082 struct deadline_data *dd = q->elevator->elevator_data; \ 1083 \ 1084 spin_unlock(&dd->lock); \ 1085 } \ 1086 \ 1087 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \ 1088 .start = deadline_dispatch##prio##_start, \ 1089 .next = deadline_dispatch##prio##_next, \ 1090 .stop = deadline_dispatch##prio##_stop, \ 1091 .show = blk_mq_debugfs_rq_show, \ 1092 } 1093 1094 DEADLINE_DISPATCH_ATTR(0); 1095 DEADLINE_DISPATCH_ATTR(1); 1096 DEADLINE_DISPATCH_ATTR(2); 1097 #undef DEADLINE_DISPATCH_ATTR 1098 1099 #define DEADLINE_QUEUE_DDIR_ATTRS(name) \ 1100 {#name "_fifo_list", 0400, \ 1101 .seq_ops = &deadline_##name##_fifo_seq_ops} 1102 #define DEADLINE_NEXT_RQ_ATTR(name) \ 1103 {#name "_next_rq", 0400, deadline_##name##_next_rq_show} 1104 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = { 1105 DEADLINE_QUEUE_DDIR_ATTRS(read0), 1106 DEADLINE_QUEUE_DDIR_ATTRS(write0), 1107 DEADLINE_QUEUE_DDIR_ATTRS(read1), 1108 DEADLINE_QUEUE_DDIR_ATTRS(write1), 1109 DEADLINE_QUEUE_DDIR_ATTRS(read2), 1110 DEADLINE_QUEUE_DDIR_ATTRS(write2), 1111 DEADLINE_NEXT_RQ_ATTR(read0), 1112 DEADLINE_NEXT_RQ_ATTR(write0), 1113 DEADLINE_NEXT_RQ_ATTR(read1), 1114 DEADLINE_NEXT_RQ_ATTR(write1), 1115 DEADLINE_NEXT_RQ_ATTR(read2), 1116 DEADLINE_NEXT_RQ_ATTR(write2), 1117 {"batching", 0400, deadline_batching_show}, 1118 {"starved", 0400, deadline_starved_show}, 1119 {"async_depth", 0400, dd_async_depth_show}, 1120 {"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops}, 1121 {"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops}, 1122 {"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops}, 1123 {"owned_by_driver", 0400, dd_owned_by_driver_show}, 1124 {"queued", 0400, dd_queued_show}, 1125 {}, 1126 }; 1127 #undef DEADLINE_QUEUE_DDIR_ATTRS 1128 #endif 1129 1130 static struct elevator_type mq_deadline = { 1131 .ops = { 1132 .depth_updated = dd_depth_updated, 1133 .limit_depth = dd_limit_depth, 1134 .insert_requests = dd_insert_requests, 1135 .dispatch_request = dd_dispatch_request, 1136 .prepare_request = dd_prepare_request, 1137 .finish_request = dd_finish_request, 1138 .next_request = elv_rb_latter_request, 1139 .former_request = elv_rb_former_request, 1140 .bio_merge = dd_bio_merge, 1141 .request_merge = dd_request_merge, 1142 .requests_merged = dd_merged_requests, 1143 .request_merged = dd_request_merged, 1144 .has_work = dd_has_work, 1145 .init_sched = dd_init_sched, 1146 .exit_sched = dd_exit_sched, 1147 .init_hctx = dd_init_hctx, 1148 }, 1149 1150 #ifdef CONFIG_BLK_DEBUG_FS 1151 .queue_debugfs_attrs = deadline_queue_debugfs_attrs, 1152 #endif 1153 .elevator_attrs = deadline_attrs, 1154 .elevator_name = "mq-deadline", 1155 .elevator_alias = "deadline", 1156 .elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE, 1157 .elevator_owner = THIS_MODULE, 1158 }; 1159 MODULE_ALIAS("mq-deadline-iosched"); 1160 1161 static int __init deadline_init(void) 1162 { 1163 return elv_register(&mq_deadline); 1164 } 1165 1166 static void __exit deadline_exit(void) 1167 { 1168 elv_unregister(&mq_deadline); 1169 } 1170 1171 module_init(deadline_init); 1172 module_exit(deadline_exit); 1173 1174 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche"); 1175 MODULE_LICENSE("GPL"); 1176 MODULE_DESCRIPTION("MQ deadline IO scheduler"); 1177