1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler, 4 * for the blk-mq scheduling framework 5 * 6 * Copyright (C) 2016 Jens Axboe <axboe@kernel.dk> 7 */ 8 #include <linux/kernel.h> 9 #include <linux/fs.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/bio.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/compiler.h> 17 #include <linux/rbtree.h> 18 #include <linux/sbitmap.h> 19 20 #include <trace/events/block.h> 21 22 #include "elevator.h" 23 #include "blk.h" 24 #include "blk-mq.h" 25 #include "blk-mq-debugfs.h" 26 #include "blk-mq-tag.h" 27 #include "blk-mq-sched.h" 28 29 /* 30 * See Documentation/block/deadline-iosched.rst 31 */ 32 static const int read_expire = HZ / 2; /* max time before a read is submitted. */ 33 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */ 34 /* 35 * Time after which to dispatch lower priority requests even if higher 36 * priority requests are pending. 37 */ 38 static const int prio_aging_expire = 10 * HZ; 39 static const int writes_starved = 2; /* max times reads can starve a write */ 40 static const int fifo_batch = 16; /* # of sequential requests treated as one 41 by the above parameters. For throughput. */ 42 43 enum dd_data_dir { 44 DD_READ = READ, 45 DD_WRITE = WRITE, 46 }; 47 48 enum { DD_DIR_COUNT = 2 }; 49 50 enum dd_prio { 51 DD_RT_PRIO = 0, 52 DD_BE_PRIO = 1, 53 DD_IDLE_PRIO = 2, 54 DD_PRIO_MAX = 2, 55 }; 56 57 enum { DD_PRIO_COUNT = 3 }; 58 59 /* 60 * I/O statistics per I/O priority. It is fine if these counters overflow. 61 * What matters is that these counters are at least as wide as 62 * log2(max_outstanding_requests). 63 */ 64 struct io_stats_per_prio { 65 uint32_t inserted; 66 uint32_t merged; 67 uint32_t dispatched; 68 atomic_t completed; 69 }; 70 71 /* 72 * Deadline scheduler data per I/O priority (enum dd_prio). Requests are 73 * present on both sort_list[] and fifo_list[]. 74 */ 75 struct dd_per_prio { 76 struct list_head dispatch; 77 struct rb_root sort_list[DD_DIR_COUNT]; 78 struct list_head fifo_list[DD_DIR_COUNT]; 79 /* Next request in FIFO order. Read, write or both are NULL. */ 80 struct request *next_rq[DD_DIR_COUNT]; 81 struct io_stats_per_prio stats; 82 }; 83 84 struct deadline_data { 85 /* 86 * run time data 87 */ 88 89 struct dd_per_prio per_prio[DD_PRIO_COUNT]; 90 91 /* Data direction of latest dispatched request. */ 92 enum dd_data_dir last_dir; 93 unsigned int batching; /* number of sequential requests made */ 94 unsigned int starved; /* times reads have starved writes */ 95 96 /* 97 * settings that change how the i/o scheduler behaves 98 */ 99 int fifo_expire[DD_DIR_COUNT]; 100 int fifo_batch; 101 int writes_starved; 102 int front_merges; 103 u32 async_depth; 104 int prio_aging_expire; 105 106 spinlock_t lock; 107 spinlock_t zone_lock; 108 }; 109 110 /* Maps an I/O priority class to a deadline scheduler priority. */ 111 static const enum dd_prio ioprio_class_to_prio[] = { 112 [IOPRIO_CLASS_NONE] = DD_BE_PRIO, 113 [IOPRIO_CLASS_RT] = DD_RT_PRIO, 114 [IOPRIO_CLASS_BE] = DD_BE_PRIO, 115 [IOPRIO_CLASS_IDLE] = DD_IDLE_PRIO, 116 }; 117 118 static inline struct rb_root * 119 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq) 120 { 121 return &per_prio->sort_list[rq_data_dir(rq)]; 122 } 123 124 /* 125 * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a 126 * request. 127 */ 128 static u8 dd_rq_ioclass(struct request *rq) 129 { 130 return IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); 131 } 132 133 /* 134 * get the request after `rq' in sector-sorted order 135 */ 136 static inline struct request * 137 deadline_latter_request(struct request *rq) 138 { 139 struct rb_node *node = rb_next(&rq->rb_node); 140 141 if (node) 142 return rb_entry_rq(node); 143 144 return NULL; 145 } 146 147 static void 148 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq) 149 { 150 struct rb_root *root = deadline_rb_root(per_prio, rq); 151 152 elv_rb_add(root, rq); 153 } 154 155 static inline void 156 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq) 157 { 158 const enum dd_data_dir data_dir = rq_data_dir(rq); 159 160 if (per_prio->next_rq[data_dir] == rq) 161 per_prio->next_rq[data_dir] = deadline_latter_request(rq); 162 163 elv_rb_del(deadline_rb_root(per_prio, rq), rq); 164 } 165 166 /* 167 * remove rq from rbtree and fifo. 168 */ 169 static void deadline_remove_request(struct request_queue *q, 170 struct dd_per_prio *per_prio, 171 struct request *rq) 172 { 173 list_del_init(&rq->queuelist); 174 175 /* 176 * We might not be on the rbtree, if we are doing an insert merge 177 */ 178 if (!RB_EMPTY_NODE(&rq->rb_node)) 179 deadline_del_rq_rb(per_prio, rq); 180 181 elv_rqhash_del(q, rq); 182 if (q->last_merge == rq) 183 q->last_merge = NULL; 184 } 185 186 static void dd_request_merged(struct request_queue *q, struct request *req, 187 enum elv_merge type) 188 { 189 struct deadline_data *dd = q->elevator->elevator_data; 190 const u8 ioprio_class = dd_rq_ioclass(req); 191 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 192 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 193 194 /* 195 * if the merge was a front merge, we need to reposition request 196 */ 197 if (type == ELEVATOR_FRONT_MERGE) { 198 elv_rb_del(deadline_rb_root(per_prio, req), req); 199 deadline_add_rq_rb(per_prio, req); 200 } 201 } 202 203 /* 204 * Callback function that is invoked after @next has been merged into @req. 205 */ 206 static void dd_merged_requests(struct request_queue *q, struct request *req, 207 struct request *next) 208 { 209 struct deadline_data *dd = q->elevator->elevator_data; 210 const u8 ioprio_class = dd_rq_ioclass(next); 211 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 212 213 lockdep_assert_held(&dd->lock); 214 215 dd->per_prio[prio].stats.merged++; 216 217 /* 218 * if next expires before rq, assign its expire time to rq 219 * and move into next position (next will be deleted) in fifo 220 */ 221 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) { 222 if (time_before((unsigned long)next->fifo_time, 223 (unsigned long)req->fifo_time)) { 224 list_move(&req->queuelist, &next->queuelist); 225 req->fifo_time = next->fifo_time; 226 } 227 } 228 229 /* 230 * kill knowledge of next, this one is a goner 231 */ 232 deadline_remove_request(q, &dd->per_prio[prio], next); 233 } 234 235 /* 236 * move an entry to dispatch queue 237 */ 238 static void 239 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio, 240 struct request *rq) 241 { 242 const enum dd_data_dir data_dir = rq_data_dir(rq); 243 244 per_prio->next_rq[data_dir] = deadline_latter_request(rq); 245 246 /* 247 * take it off the sort and fifo list 248 */ 249 deadline_remove_request(rq->q, per_prio, rq); 250 } 251 252 /* Number of requests queued for a given priority level. */ 253 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio) 254 { 255 const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats; 256 257 lockdep_assert_held(&dd->lock); 258 259 return stats->inserted - atomic_read(&stats->completed); 260 } 261 262 /* 263 * deadline_check_fifo returns 0 if there are no expired requests on the fifo, 264 * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir]) 265 */ 266 static inline int deadline_check_fifo(struct dd_per_prio *per_prio, 267 enum dd_data_dir data_dir) 268 { 269 struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next); 270 271 /* 272 * rq is expired! 273 */ 274 if (time_after_eq(jiffies, (unsigned long)rq->fifo_time)) 275 return 1; 276 277 return 0; 278 } 279 280 /* 281 * For the specified data direction, return the next request to 282 * dispatch using arrival ordered lists. 283 */ 284 static struct request * 285 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio, 286 enum dd_data_dir data_dir) 287 { 288 struct request *rq; 289 unsigned long flags; 290 291 if (list_empty(&per_prio->fifo_list[data_dir])) 292 return NULL; 293 294 rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next); 295 if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q)) 296 return rq; 297 298 /* 299 * Look for a write request that can be dispatched, that is one with 300 * an unlocked target zone. 301 */ 302 spin_lock_irqsave(&dd->zone_lock, flags); 303 list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) { 304 if (blk_req_can_dispatch_to_zone(rq)) 305 goto out; 306 } 307 rq = NULL; 308 out: 309 spin_unlock_irqrestore(&dd->zone_lock, flags); 310 311 return rq; 312 } 313 314 /* 315 * For the specified data direction, return the next request to 316 * dispatch using sector position sorted lists. 317 */ 318 static struct request * 319 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio, 320 enum dd_data_dir data_dir) 321 { 322 struct request *rq; 323 unsigned long flags; 324 325 rq = per_prio->next_rq[data_dir]; 326 if (!rq) 327 return NULL; 328 329 if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q)) 330 return rq; 331 332 /* 333 * Look for a write request that can be dispatched, that is one with 334 * an unlocked target zone. 335 */ 336 spin_lock_irqsave(&dd->zone_lock, flags); 337 while (rq) { 338 if (blk_req_can_dispatch_to_zone(rq)) 339 break; 340 rq = deadline_latter_request(rq); 341 } 342 spin_unlock_irqrestore(&dd->zone_lock, flags); 343 344 return rq; 345 } 346 347 /* 348 * Returns true if and only if @rq started after @latest_start where 349 * @latest_start is in jiffies. 350 */ 351 static bool started_after(struct deadline_data *dd, struct request *rq, 352 unsigned long latest_start) 353 { 354 unsigned long start_time = (unsigned long)rq->fifo_time; 355 356 start_time -= dd->fifo_expire[rq_data_dir(rq)]; 357 358 return time_after(start_time, latest_start); 359 } 360 361 /* 362 * deadline_dispatch_requests selects the best request according to 363 * read/write expire, fifo_batch, etc and with a start time <= @latest_start. 364 */ 365 static struct request *__dd_dispatch_request(struct deadline_data *dd, 366 struct dd_per_prio *per_prio, 367 unsigned long latest_start) 368 { 369 struct request *rq, *next_rq; 370 enum dd_data_dir data_dir; 371 enum dd_prio prio; 372 u8 ioprio_class; 373 374 lockdep_assert_held(&dd->lock); 375 376 if (!list_empty(&per_prio->dispatch)) { 377 rq = list_first_entry(&per_prio->dispatch, struct request, 378 queuelist); 379 if (started_after(dd, rq, latest_start)) 380 return NULL; 381 list_del_init(&rq->queuelist); 382 goto done; 383 } 384 385 /* 386 * batches are currently reads XOR writes 387 */ 388 rq = deadline_next_request(dd, per_prio, dd->last_dir); 389 if (rq && dd->batching < dd->fifo_batch) 390 /* we have a next request are still entitled to batch */ 391 goto dispatch_request; 392 393 /* 394 * at this point we are not running a batch. select the appropriate 395 * data direction (read / write) 396 */ 397 398 if (!list_empty(&per_prio->fifo_list[DD_READ])) { 399 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ])); 400 401 if (deadline_fifo_request(dd, per_prio, DD_WRITE) && 402 (dd->starved++ >= dd->writes_starved)) 403 goto dispatch_writes; 404 405 data_dir = DD_READ; 406 407 goto dispatch_find_request; 408 } 409 410 /* 411 * there are either no reads or writes have been starved 412 */ 413 414 if (!list_empty(&per_prio->fifo_list[DD_WRITE])) { 415 dispatch_writes: 416 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE])); 417 418 dd->starved = 0; 419 420 data_dir = DD_WRITE; 421 422 goto dispatch_find_request; 423 } 424 425 return NULL; 426 427 dispatch_find_request: 428 /* 429 * we are not running a batch, find best request for selected data_dir 430 */ 431 next_rq = deadline_next_request(dd, per_prio, data_dir); 432 if (deadline_check_fifo(per_prio, data_dir) || !next_rq) { 433 /* 434 * A deadline has expired, the last request was in the other 435 * direction, or we have run out of higher-sectored requests. 436 * Start again from the request with the earliest expiry time. 437 */ 438 rq = deadline_fifo_request(dd, per_prio, data_dir); 439 } else { 440 /* 441 * The last req was the same dir and we have a next request in 442 * sort order. No expired requests so continue on from here. 443 */ 444 rq = next_rq; 445 } 446 447 /* 448 * For a zoned block device, if we only have writes queued and none of 449 * them can be dispatched, rq will be NULL. 450 */ 451 if (!rq) 452 return NULL; 453 454 dd->last_dir = data_dir; 455 dd->batching = 0; 456 457 dispatch_request: 458 if (started_after(dd, rq, latest_start)) 459 return NULL; 460 461 /* 462 * rq is the selected appropriate request. 463 */ 464 dd->batching++; 465 deadline_move_request(dd, per_prio, rq); 466 done: 467 ioprio_class = dd_rq_ioclass(rq); 468 prio = ioprio_class_to_prio[ioprio_class]; 469 dd->per_prio[prio].stats.dispatched++; 470 /* 471 * If the request needs its target zone locked, do it. 472 */ 473 blk_req_zone_write_lock(rq); 474 rq->rq_flags |= RQF_STARTED; 475 return rq; 476 } 477 478 /* 479 * Check whether there are any requests with priority other than DD_RT_PRIO 480 * that were inserted more than prio_aging_expire jiffies ago. 481 */ 482 static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd, 483 unsigned long now) 484 { 485 struct request *rq; 486 enum dd_prio prio; 487 int prio_cnt; 488 489 lockdep_assert_held(&dd->lock); 490 491 prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) + 492 !!dd_queued(dd, DD_IDLE_PRIO); 493 if (prio_cnt < 2) 494 return NULL; 495 496 for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) { 497 rq = __dd_dispatch_request(dd, &dd->per_prio[prio], 498 now - dd->prio_aging_expire); 499 if (rq) 500 return rq; 501 } 502 503 return NULL; 504 } 505 506 /* 507 * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests(). 508 * 509 * One confusing aspect here is that we get called for a specific 510 * hardware queue, but we may return a request that is for a 511 * different hardware queue. This is because mq-deadline has shared 512 * state for all hardware queues, in terms of sorting, FIFOs, etc. 513 */ 514 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx) 515 { 516 struct deadline_data *dd = hctx->queue->elevator->elevator_data; 517 const unsigned long now = jiffies; 518 struct request *rq; 519 enum dd_prio prio; 520 521 spin_lock(&dd->lock); 522 rq = dd_dispatch_prio_aged_requests(dd, now); 523 if (rq) 524 goto unlock; 525 526 /* 527 * Next, dispatch requests in priority order. Ignore lower priority 528 * requests if any higher priority requests are pending. 529 */ 530 for (prio = 0; prio <= DD_PRIO_MAX; prio++) { 531 rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now); 532 if (rq || dd_queued(dd, prio)) 533 break; 534 } 535 536 unlock: 537 spin_unlock(&dd->lock); 538 539 return rq; 540 } 541 542 /* 543 * Called by __blk_mq_alloc_request(). The shallow_depth value set by this 544 * function is used by __blk_mq_get_tag(). 545 */ 546 static void dd_limit_depth(unsigned int op, struct blk_mq_alloc_data *data) 547 { 548 struct deadline_data *dd = data->q->elevator->elevator_data; 549 550 /* Do not throttle synchronous reads. */ 551 if (op_is_sync(op) && !op_is_write(op)) 552 return; 553 554 /* 555 * Throttle asynchronous requests and writes such that these requests 556 * do not block the allocation of synchronous requests. 557 */ 558 data->shallow_depth = dd->async_depth; 559 } 560 561 /* Called by blk_mq_update_nr_requests(). */ 562 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx) 563 { 564 struct request_queue *q = hctx->queue; 565 struct deadline_data *dd = q->elevator->elevator_data; 566 struct blk_mq_tags *tags = hctx->sched_tags; 567 568 dd->async_depth = max(1UL, 3 * q->nr_requests / 4); 569 570 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth); 571 } 572 573 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */ 574 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 575 { 576 dd_depth_updated(hctx); 577 return 0; 578 } 579 580 static void dd_exit_sched(struct elevator_queue *e) 581 { 582 struct deadline_data *dd = e->elevator_data; 583 enum dd_prio prio; 584 585 for (prio = 0; prio <= DD_PRIO_MAX; prio++) { 586 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 587 const struct io_stats_per_prio *stats = &per_prio->stats; 588 uint32_t queued; 589 590 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ])); 591 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE])); 592 593 spin_lock(&dd->lock); 594 queued = dd_queued(dd, prio); 595 spin_unlock(&dd->lock); 596 597 WARN_ONCE(queued != 0, 598 "statistics for priority %d: i %u m %u d %u c %u\n", 599 prio, stats->inserted, stats->merged, 600 stats->dispatched, atomic_read(&stats->completed)); 601 } 602 603 kfree(dd); 604 } 605 606 /* 607 * initialize elevator private data (deadline_data). 608 */ 609 static int dd_init_sched(struct request_queue *q, struct elevator_type *e) 610 { 611 struct deadline_data *dd; 612 struct elevator_queue *eq; 613 enum dd_prio prio; 614 int ret = -ENOMEM; 615 616 eq = elevator_alloc(q, e); 617 if (!eq) 618 return ret; 619 620 dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node); 621 if (!dd) 622 goto put_eq; 623 624 eq->elevator_data = dd; 625 626 for (prio = 0; prio <= DD_PRIO_MAX; prio++) { 627 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 628 629 INIT_LIST_HEAD(&per_prio->dispatch); 630 INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]); 631 INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]); 632 per_prio->sort_list[DD_READ] = RB_ROOT; 633 per_prio->sort_list[DD_WRITE] = RB_ROOT; 634 } 635 dd->fifo_expire[DD_READ] = read_expire; 636 dd->fifo_expire[DD_WRITE] = write_expire; 637 dd->writes_starved = writes_starved; 638 dd->front_merges = 1; 639 dd->last_dir = DD_WRITE; 640 dd->fifo_batch = fifo_batch; 641 dd->prio_aging_expire = prio_aging_expire; 642 spin_lock_init(&dd->lock); 643 spin_lock_init(&dd->zone_lock); 644 645 q->elevator = eq; 646 return 0; 647 648 put_eq: 649 kobject_put(&eq->kobj); 650 return ret; 651 } 652 653 /* 654 * Try to merge @bio into an existing request. If @bio has been merged into 655 * an existing request, store the pointer to that request into *@rq. 656 */ 657 static int dd_request_merge(struct request_queue *q, struct request **rq, 658 struct bio *bio) 659 { 660 struct deadline_data *dd = q->elevator->elevator_data; 661 const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio); 662 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 663 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 664 sector_t sector = bio_end_sector(bio); 665 struct request *__rq; 666 667 if (!dd->front_merges) 668 return ELEVATOR_NO_MERGE; 669 670 __rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector); 671 if (__rq) { 672 BUG_ON(sector != blk_rq_pos(__rq)); 673 674 if (elv_bio_merge_ok(__rq, bio)) { 675 *rq = __rq; 676 if (blk_discard_mergable(__rq)) 677 return ELEVATOR_DISCARD_MERGE; 678 return ELEVATOR_FRONT_MERGE; 679 } 680 } 681 682 return ELEVATOR_NO_MERGE; 683 } 684 685 /* 686 * Attempt to merge a bio into an existing request. This function is called 687 * before @bio is associated with a request. 688 */ 689 static bool dd_bio_merge(struct request_queue *q, struct bio *bio, 690 unsigned int nr_segs) 691 { 692 struct deadline_data *dd = q->elevator->elevator_data; 693 struct request *free = NULL; 694 bool ret; 695 696 spin_lock(&dd->lock); 697 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free); 698 spin_unlock(&dd->lock); 699 700 if (free) 701 blk_mq_free_request(free); 702 703 return ret; 704 } 705 706 /* 707 * add rq to rbtree and fifo 708 */ 709 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 710 bool at_head) 711 { 712 struct request_queue *q = hctx->queue; 713 struct deadline_data *dd = q->elevator->elevator_data; 714 const enum dd_data_dir data_dir = rq_data_dir(rq); 715 u16 ioprio = req_get_ioprio(rq); 716 u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio); 717 struct dd_per_prio *per_prio; 718 enum dd_prio prio; 719 LIST_HEAD(free); 720 721 lockdep_assert_held(&dd->lock); 722 723 /* 724 * This may be a requeue of a write request that has locked its 725 * target zone. If it is the case, this releases the zone lock. 726 */ 727 blk_req_zone_write_unlock(rq); 728 729 prio = ioprio_class_to_prio[ioprio_class]; 730 per_prio = &dd->per_prio[prio]; 731 if (!rq->elv.priv[0]) { 732 per_prio->stats.inserted++; 733 rq->elv.priv[0] = (void *)(uintptr_t)1; 734 } 735 736 if (blk_mq_sched_try_insert_merge(q, rq, &free)) { 737 blk_mq_free_requests(&free); 738 return; 739 } 740 741 trace_block_rq_insert(rq); 742 743 if (at_head) { 744 list_add(&rq->queuelist, &per_prio->dispatch); 745 } else { 746 deadline_add_rq_rb(per_prio, rq); 747 748 if (rq_mergeable(rq)) { 749 elv_rqhash_add(q, rq); 750 if (!q->last_merge) 751 q->last_merge = rq; 752 } 753 754 /* 755 * set expire time and add to fifo list 756 */ 757 rq->fifo_time = jiffies + dd->fifo_expire[data_dir]; 758 list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]); 759 } 760 } 761 762 /* 763 * Called from blk_mq_sched_insert_request() or blk_mq_sched_insert_requests(). 764 */ 765 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx, 766 struct list_head *list, bool at_head) 767 { 768 struct request_queue *q = hctx->queue; 769 struct deadline_data *dd = q->elevator->elevator_data; 770 771 spin_lock(&dd->lock); 772 while (!list_empty(list)) { 773 struct request *rq; 774 775 rq = list_first_entry(list, struct request, queuelist); 776 list_del_init(&rq->queuelist); 777 dd_insert_request(hctx, rq, at_head); 778 } 779 spin_unlock(&dd->lock); 780 } 781 782 /* Callback from inside blk_mq_rq_ctx_init(). */ 783 static void dd_prepare_request(struct request *rq) 784 { 785 rq->elv.priv[0] = NULL; 786 } 787 788 /* 789 * Callback from inside blk_mq_free_request(). 790 * 791 * For zoned block devices, write unlock the target zone of 792 * completed write requests. Do this while holding the zone lock 793 * spinlock so that the zone is never unlocked while deadline_fifo_request() 794 * or deadline_next_request() are executing. This function is called for 795 * all requests, whether or not these requests complete successfully. 796 * 797 * For a zoned block device, __dd_dispatch_request() may have stopped 798 * dispatching requests if all the queued requests are write requests directed 799 * at zones that are already locked due to on-going write requests. To ensure 800 * write request dispatch progress in this case, mark the queue as needing a 801 * restart to ensure that the queue is run again after completion of the 802 * request and zones being unlocked. 803 */ 804 static void dd_finish_request(struct request *rq) 805 { 806 struct request_queue *q = rq->q; 807 struct deadline_data *dd = q->elevator->elevator_data; 808 const u8 ioprio_class = dd_rq_ioclass(rq); 809 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; 810 struct dd_per_prio *per_prio = &dd->per_prio[prio]; 811 812 /* 813 * The block layer core may call dd_finish_request() without having 814 * called dd_insert_requests(). Skip requests that bypassed I/O 815 * scheduling. See also blk_mq_request_bypass_insert(). 816 */ 817 if (!rq->elv.priv[0]) 818 return; 819 820 atomic_inc(&per_prio->stats.completed); 821 822 if (blk_queue_is_zoned(q)) { 823 unsigned long flags; 824 825 spin_lock_irqsave(&dd->zone_lock, flags); 826 blk_req_zone_write_unlock(rq); 827 if (!list_empty(&per_prio->fifo_list[DD_WRITE])) 828 blk_mq_sched_mark_restart_hctx(rq->mq_hctx); 829 spin_unlock_irqrestore(&dd->zone_lock, flags); 830 } 831 } 832 833 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio) 834 { 835 return !list_empty_careful(&per_prio->dispatch) || 836 !list_empty_careful(&per_prio->fifo_list[DD_READ]) || 837 !list_empty_careful(&per_prio->fifo_list[DD_WRITE]); 838 } 839 840 static bool dd_has_work(struct blk_mq_hw_ctx *hctx) 841 { 842 struct deadline_data *dd = hctx->queue->elevator->elevator_data; 843 enum dd_prio prio; 844 845 for (prio = 0; prio <= DD_PRIO_MAX; prio++) 846 if (dd_has_work_for_prio(&dd->per_prio[prio])) 847 return true; 848 849 return false; 850 } 851 852 /* 853 * sysfs parts below 854 */ 855 #define SHOW_INT(__FUNC, __VAR) \ 856 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 857 { \ 858 struct deadline_data *dd = e->elevator_data; \ 859 \ 860 return sysfs_emit(page, "%d\n", __VAR); \ 861 } 862 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR)) 863 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]); 864 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]); 865 SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire); 866 SHOW_INT(deadline_writes_starved_show, dd->writes_starved); 867 SHOW_INT(deadline_front_merges_show, dd->front_merges); 868 SHOW_INT(deadline_async_depth_show, dd->front_merges); 869 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch); 870 #undef SHOW_INT 871 #undef SHOW_JIFFIES 872 873 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 874 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 875 { \ 876 struct deadline_data *dd = e->elevator_data; \ 877 int __data, __ret; \ 878 \ 879 __ret = kstrtoint(page, 0, &__data); \ 880 if (__ret < 0) \ 881 return __ret; \ 882 if (__data < (MIN)) \ 883 __data = (MIN); \ 884 else if (__data > (MAX)) \ 885 __data = (MAX); \ 886 *(__PTR) = __CONV(__data); \ 887 return count; \ 888 } 889 #define STORE_INT(__FUNC, __PTR, MIN, MAX) \ 890 STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, ) 891 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX) \ 892 STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies) 893 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX); 894 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX); 895 STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX); 896 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX); 897 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1); 898 STORE_INT(deadline_async_depth_store, &dd->front_merges, 1, INT_MAX); 899 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX); 900 #undef STORE_FUNCTION 901 #undef STORE_INT 902 #undef STORE_JIFFIES 903 904 #define DD_ATTR(name) \ 905 __ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store) 906 907 static struct elv_fs_entry deadline_attrs[] = { 908 DD_ATTR(read_expire), 909 DD_ATTR(write_expire), 910 DD_ATTR(writes_starved), 911 DD_ATTR(front_merges), 912 DD_ATTR(async_depth), 913 DD_ATTR(fifo_batch), 914 DD_ATTR(prio_aging_expire), 915 __ATTR_NULL 916 }; 917 918 #ifdef CONFIG_BLK_DEBUG_FS 919 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name) \ 920 static void *deadline_##name##_fifo_start(struct seq_file *m, \ 921 loff_t *pos) \ 922 __acquires(&dd->lock) \ 923 { \ 924 struct request_queue *q = m->private; \ 925 struct deadline_data *dd = q->elevator->elevator_data; \ 926 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 927 \ 928 spin_lock(&dd->lock); \ 929 return seq_list_start(&per_prio->fifo_list[data_dir], *pos); \ 930 } \ 931 \ 932 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v, \ 933 loff_t *pos) \ 934 { \ 935 struct request_queue *q = m->private; \ 936 struct deadline_data *dd = q->elevator->elevator_data; \ 937 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 938 \ 939 return seq_list_next(v, &per_prio->fifo_list[data_dir], pos); \ 940 } \ 941 \ 942 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v) \ 943 __releases(&dd->lock) \ 944 { \ 945 struct request_queue *q = m->private; \ 946 struct deadline_data *dd = q->elevator->elevator_data; \ 947 \ 948 spin_unlock(&dd->lock); \ 949 } \ 950 \ 951 static const struct seq_operations deadline_##name##_fifo_seq_ops = { \ 952 .start = deadline_##name##_fifo_start, \ 953 .next = deadline_##name##_fifo_next, \ 954 .stop = deadline_##name##_fifo_stop, \ 955 .show = blk_mq_debugfs_rq_show, \ 956 }; \ 957 \ 958 static int deadline_##name##_next_rq_show(void *data, \ 959 struct seq_file *m) \ 960 { \ 961 struct request_queue *q = data; \ 962 struct deadline_data *dd = q->elevator->elevator_data; \ 963 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 964 struct request *rq = per_prio->next_rq[data_dir]; \ 965 \ 966 if (rq) \ 967 __blk_mq_debugfs_rq_show(m, rq); \ 968 return 0; \ 969 } 970 971 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0); 972 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0); 973 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1); 974 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1); 975 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2); 976 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2); 977 #undef DEADLINE_DEBUGFS_DDIR_ATTRS 978 979 static int deadline_batching_show(void *data, struct seq_file *m) 980 { 981 struct request_queue *q = data; 982 struct deadline_data *dd = q->elevator->elevator_data; 983 984 seq_printf(m, "%u\n", dd->batching); 985 return 0; 986 } 987 988 static int deadline_starved_show(void *data, struct seq_file *m) 989 { 990 struct request_queue *q = data; 991 struct deadline_data *dd = q->elevator->elevator_data; 992 993 seq_printf(m, "%u\n", dd->starved); 994 return 0; 995 } 996 997 static int dd_async_depth_show(void *data, struct seq_file *m) 998 { 999 struct request_queue *q = data; 1000 struct deadline_data *dd = q->elevator->elevator_data; 1001 1002 seq_printf(m, "%u\n", dd->async_depth); 1003 return 0; 1004 } 1005 1006 static int dd_queued_show(void *data, struct seq_file *m) 1007 { 1008 struct request_queue *q = data; 1009 struct deadline_data *dd = q->elevator->elevator_data; 1010 u32 rt, be, idle; 1011 1012 spin_lock(&dd->lock); 1013 rt = dd_queued(dd, DD_RT_PRIO); 1014 be = dd_queued(dd, DD_BE_PRIO); 1015 idle = dd_queued(dd, DD_IDLE_PRIO); 1016 spin_unlock(&dd->lock); 1017 1018 seq_printf(m, "%u %u %u\n", rt, be, idle); 1019 1020 return 0; 1021 } 1022 1023 /* Number of requests owned by the block driver for a given priority. */ 1024 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio) 1025 { 1026 const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats; 1027 1028 lockdep_assert_held(&dd->lock); 1029 1030 return stats->dispatched + stats->merged - 1031 atomic_read(&stats->completed); 1032 } 1033 1034 static int dd_owned_by_driver_show(void *data, struct seq_file *m) 1035 { 1036 struct request_queue *q = data; 1037 struct deadline_data *dd = q->elevator->elevator_data; 1038 u32 rt, be, idle; 1039 1040 spin_lock(&dd->lock); 1041 rt = dd_owned_by_driver(dd, DD_RT_PRIO); 1042 be = dd_owned_by_driver(dd, DD_BE_PRIO); 1043 idle = dd_owned_by_driver(dd, DD_IDLE_PRIO); 1044 spin_unlock(&dd->lock); 1045 1046 seq_printf(m, "%u %u %u\n", rt, be, idle); 1047 1048 return 0; 1049 } 1050 1051 #define DEADLINE_DISPATCH_ATTR(prio) \ 1052 static void *deadline_dispatch##prio##_start(struct seq_file *m, \ 1053 loff_t *pos) \ 1054 __acquires(&dd->lock) \ 1055 { \ 1056 struct request_queue *q = m->private; \ 1057 struct deadline_data *dd = q->elevator->elevator_data; \ 1058 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 1059 \ 1060 spin_lock(&dd->lock); \ 1061 return seq_list_start(&per_prio->dispatch, *pos); \ 1062 } \ 1063 \ 1064 static void *deadline_dispatch##prio##_next(struct seq_file *m, \ 1065 void *v, loff_t *pos) \ 1066 { \ 1067 struct request_queue *q = m->private; \ 1068 struct deadline_data *dd = q->elevator->elevator_data; \ 1069 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ 1070 \ 1071 return seq_list_next(v, &per_prio->dispatch, pos); \ 1072 } \ 1073 \ 1074 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v) \ 1075 __releases(&dd->lock) \ 1076 { \ 1077 struct request_queue *q = m->private; \ 1078 struct deadline_data *dd = q->elevator->elevator_data; \ 1079 \ 1080 spin_unlock(&dd->lock); \ 1081 } \ 1082 \ 1083 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \ 1084 .start = deadline_dispatch##prio##_start, \ 1085 .next = deadline_dispatch##prio##_next, \ 1086 .stop = deadline_dispatch##prio##_stop, \ 1087 .show = blk_mq_debugfs_rq_show, \ 1088 } 1089 1090 DEADLINE_DISPATCH_ATTR(0); 1091 DEADLINE_DISPATCH_ATTR(1); 1092 DEADLINE_DISPATCH_ATTR(2); 1093 #undef DEADLINE_DISPATCH_ATTR 1094 1095 #define DEADLINE_QUEUE_DDIR_ATTRS(name) \ 1096 {#name "_fifo_list", 0400, \ 1097 .seq_ops = &deadline_##name##_fifo_seq_ops} 1098 #define DEADLINE_NEXT_RQ_ATTR(name) \ 1099 {#name "_next_rq", 0400, deadline_##name##_next_rq_show} 1100 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = { 1101 DEADLINE_QUEUE_DDIR_ATTRS(read0), 1102 DEADLINE_QUEUE_DDIR_ATTRS(write0), 1103 DEADLINE_QUEUE_DDIR_ATTRS(read1), 1104 DEADLINE_QUEUE_DDIR_ATTRS(write1), 1105 DEADLINE_QUEUE_DDIR_ATTRS(read2), 1106 DEADLINE_QUEUE_DDIR_ATTRS(write2), 1107 DEADLINE_NEXT_RQ_ATTR(read0), 1108 DEADLINE_NEXT_RQ_ATTR(write0), 1109 DEADLINE_NEXT_RQ_ATTR(read1), 1110 DEADLINE_NEXT_RQ_ATTR(write1), 1111 DEADLINE_NEXT_RQ_ATTR(read2), 1112 DEADLINE_NEXT_RQ_ATTR(write2), 1113 {"batching", 0400, deadline_batching_show}, 1114 {"starved", 0400, deadline_starved_show}, 1115 {"async_depth", 0400, dd_async_depth_show}, 1116 {"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops}, 1117 {"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops}, 1118 {"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops}, 1119 {"owned_by_driver", 0400, dd_owned_by_driver_show}, 1120 {"queued", 0400, dd_queued_show}, 1121 {}, 1122 }; 1123 #undef DEADLINE_QUEUE_DDIR_ATTRS 1124 #endif 1125 1126 static struct elevator_type mq_deadline = { 1127 .ops = { 1128 .depth_updated = dd_depth_updated, 1129 .limit_depth = dd_limit_depth, 1130 .insert_requests = dd_insert_requests, 1131 .dispatch_request = dd_dispatch_request, 1132 .prepare_request = dd_prepare_request, 1133 .finish_request = dd_finish_request, 1134 .next_request = elv_rb_latter_request, 1135 .former_request = elv_rb_former_request, 1136 .bio_merge = dd_bio_merge, 1137 .request_merge = dd_request_merge, 1138 .requests_merged = dd_merged_requests, 1139 .request_merged = dd_request_merged, 1140 .has_work = dd_has_work, 1141 .init_sched = dd_init_sched, 1142 .exit_sched = dd_exit_sched, 1143 .init_hctx = dd_init_hctx, 1144 }, 1145 1146 #ifdef CONFIG_BLK_DEBUG_FS 1147 .queue_debugfs_attrs = deadline_queue_debugfs_attrs, 1148 #endif 1149 .elevator_attrs = deadline_attrs, 1150 .elevator_name = "mq-deadline", 1151 .elevator_alias = "deadline", 1152 .elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE, 1153 .elevator_owner = THIS_MODULE, 1154 }; 1155 MODULE_ALIAS("mq-deadline-iosched"); 1156 1157 static int __init deadline_init(void) 1158 { 1159 return elv_register(&mq_deadline); 1160 } 1161 1162 static void __exit deadline_exit(void) 1163 { 1164 elv_unregister(&mq_deadline); 1165 } 1166 1167 module_init(deadline_init); 1168 module_exit(deadline_exit); 1169 1170 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche"); 1171 MODULE_LICENSE("GPL"); 1172 MODULE_DESCRIPTION("MQ deadline IO scheduler"); 1173