xref: /openbmc/linux/block/kyber-iosched.c (revision e0f6d1a5)
1 /*
2  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3  * scalable techniques.
4  *
5  * Copyright (C) 2017 Facebook
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public
9  * License v2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
26 
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32 #include "blk-stat.h"
33 
34 /* Scheduling domains. */
35 enum {
36 	KYBER_READ,
37 	KYBER_SYNC_WRITE,
38 	KYBER_OTHER, /* Async writes, discard, etc. */
39 	KYBER_NUM_DOMAINS,
40 };
41 
42 enum {
43 	KYBER_MIN_DEPTH = 256,
44 
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Initial device-wide depths for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate
57  * the device with only a fraction of the maximum possible queue depth.
58  * So, we cap these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_SYNC_WRITE] = 128,
63 	[KYBER_OTHER] = 64,
64 };
65 
66 /*
67  * Scheduling domain batch sizes. We favor reads.
68  */
69 static const unsigned int kyber_batch_size[] = {
70 	[KYBER_READ] = 16,
71 	[KYBER_SYNC_WRITE] = 8,
72 	[KYBER_OTHER] = 8,
73 };
74 
75 struct kyber_queue_data {
76 	struct request_queue *q;
77 
78 	struct blk_stat_callback *cb;
79 
80 	/*
81 	 * The device is divided into multiple scheduling domains based on the
82 	 * request type. Each domain has a fixed number of in-flight requests of
83 	 * that type device-wide, limited by these tokens.
84 	 */
85 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
86 
87 	/*
88 	 * Async request percentage, converted to per-word depth for
89 	 * sbitmap_get_shallow().
90 	 */
91 	unsigned int async_depth;
92 
93 	/* Target latencies in nanoseconds. */
94 	u64 read_lat_nsec, write_lat_nsec;
95 };
96 
97 struct kyber_hctx_data {
98 	spinlock_t lock;
99 	struct list_head rqs[KYBER_NUM_DOMAINS];
100 	unsigned int cur_domain;
101 	unsigned int batching;
102 	wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
103 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
104 	atomic_t wait_index[KYBER_NUM_DOMAINS];
105 };
106 
107 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
108 			     void *key);
109 
110 static int rq_sched_domain(const struct request *rq)
111 {
112 	unsigned int op = rq->cmd_flags;
113 
114 	if ((op & REQ_OP_MASK) == REQ_OP_READ)
115 		return KYBER_READ;
116 	else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
117 		return KYBER_SYNC_WRITE;
118 	else
119 		return KYBER_OTHER;
120 }
121 
122 enum {
123 	NONE = 0,
124 	GOOD = 1,
125 	GREAT = 2,
126 	BAD = -1,
127 	AWFUL = -2,
128 };
129 
130 #define IS_GOOD(status) ((status) > 0)
131 #define IS_BAD(status) ((status) < 0)
132 
133 static int kyber_lat_status(struct blk_stat_callback *cb,
134 			    unsigned int sched_domain, u64 target)
135 {
136 	u64 latency;
137 
138 	if (!cb->stat[sched_domain].nr_samples)
139 		return NONE;
140 
141 	latency = cb->stat[sched_domain].mean;
142 	if (latency >= 2 * target)
143 		return AWFUL;
144 	else if (latency > target)
145 		return BAD;
146 	else if (latency <= target / 2)
147 		return GREAT;
148 	else /* (latency <= target) */
149 		return GOOD;
150 }
151 
152 /*
153  * Adjust the read or synchronous write depth given the status of reads and
154  * writes. The goal is that the latencies of the two domains are fair (i.e., if
155  * one is good, then the other is good).
156  */
157 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
158 				  unsigned int sched_domain, int this_status,
159 				  int other_status)
160 {
161 	unsigned int orig_depth, depth;
162 
163 	/*
164 	 * If this domain had no samples, or reads and writes are both good or
165 	 * both bad, don't adjust the depth.
166 	 */
167 	if (this_status == NONE ||
168 	    (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
169 	    (IS_BAD(this_status) && IS_BAD(other_status)))
170 		return;
171 
172 	orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
173 
174 	if (other_status == NONE) {
175 		depth++;
176 	} else {
177 		switch (this_status) {
178 		case GOOD:
179 			if (other_status == AWFUL)
180 				depth -= max(depth / 4, 1U);
181 			else
182 				depth -= max(depth / 8, 1U);
183 			break;
184 		case GREAT:
185 			if (other_status == AWFUL)
186 				depth /= 2;
187 			else
188 				depth -= max(depth / 4, 1U);
189 			break;
190 		case BAD:
191 			depth++;
192 			break;
193 		case AWFUL:
194 			if (other_status == GREAT)
195 				depth += 2;
196 			else
197 				depth++;
198 			break;
199 		}
200 	}
201 
202 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
203 	if (depth != orig_depth)
204 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
205 }
206 
207 /*
208  * Adjust the depth of other requests given the status of reads and synchronous
209  * writes. As long as either domain is doing fine, we don't throttle, but if
210  * both domains are doing badly, we throttle heavily.
211  */
212 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
213 				     int read_status, int write_status,
214 				     bool have_samples)
215 {
216 	unsigned int orig_depth, depth;
217 	int status;
218 
219 	orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
220 
221 	if (read_status == NONE && write_status == NONE) {
222 		depth += 2;
223 	} else if (have_samples) {
224 		if (read_status == NONE)
225 			status = write_status;
226 		else if (write_status == NONE)
227 			status = read_status;
228 		else
229 			status = max(read_status, write_status);
230 		switch (status) {
231 		case GREAT:
232 			depth += 2;
233 			break;
234 		case GOOD:
235 			depth++;
236 			break;
237 		case BAD:
238 			depth -= max(depth / 4, 1U);
239 			break;
240 		case AWFUL:
241 			depth /= 2;
242 			break;
243 		}
244 	}
245 
246 	depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
247 	if (depth != orig_depth)
248 		sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
249 }
250 
251 /*
252  * Apply heuristics for limiting queue depths based on gathered latency
253  * statistics.
254  */
255 static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
256 {
257 	struct kyber_queue_data *kqd = cb->data;
258 	int read_status, write_status;
259 
260 	read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
261 	write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
262 
263 	kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
264 	kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
265 	kyber_adjust_other_depth(kqd, read_status, write_status,
266 				 cb->stat[KYBER_OTHER].nr_samples != 0);
267 
268 	/*
269 	 * Continue monitoring latencies if we aren't hitting the targets or
270 	 * we're still throttling other requests.
271 	 */
272 	if (!blk_stat_is_active(kqd->cb) &&
273 	    ((IS_BAD(read_status) || IS_BAD(write_status) ||
274 	      kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
275 		blk_stat_activate_msecs(kqd->cb, 100);
276 }
277 
278 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
279 {
280 	/*
281 	 * All of the hardware queues have the same depth, so we can just grab
282 	 * the shift of the first one.
283 	 */
284 	return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
285 }
286 
287 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
288 {
289 	struct kyber_queue_data *kqd;
290 	unsigned int max_tokens;
291 	unsigned int shift;
292 	int ret = -ENOMEM;
293 	int i;
294 
295 	kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
296 	if (!kqd)
297 		goto err;
298 	kqd->q = q;
299 
300 	kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
301 					  KYBER_NUM_DOMAINS, kqd);
302 	if (!kqd->cb)
303 		goto err_kqd;
304 
305 	/*
306 	 * The maximum number of tokens for any scheduling domain is at least
307 	 * the queue depth of a single hardware queue. If the hardware doesn't
308 	 * have many tags, still provide a reasonable number.
309 	 */
310 	max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
311 			   KYBER_MIN_DEPTH);
312 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
313 		WARN_ON(!kyber_depth[i]);
314 		WARN_ON(!kyber_batch_size[i]);
315 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
316 					      max_tokens, -1, false, GFP_KERNEL,
317 					      q->node);
318 		if (ret) {
319 			while (--i >= 0)
320 				sbitmap_queue_free(&kqd->domain_tokens[i]);
321 			goto err_cb;
322 		}
323 		sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
324 	}
325 
326 	shift = kyber_sched_tags_shift(kqd);
327 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
328 
329 	kqd->read_lat_nsec = 2000000ULL;
330 	kqd->write_lat_nsec = 10000000ULL;
331 
332 	return kqd;
333 
334 err_cb:
335 	blk_stat_free_callback(kqd->cb);
336 err_kqd:
337 	kfree(kqd);
338 err:
339 	return ERR_PTR(ret);
340 }
341 
342 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
343 {
344 	struct kyber_queue_data *kqd;
345 	struct elevator_queue *eq;
346 
347 	eq = elevator_alloc(q, e);
348 	if (!eq)
349 		return -ENOMEM;
350 
351 	kqd = kyber_queue_data_alloc(q);
352 	if (IS_ERR(kqd)) {
353 		kobject_put(&eq->kobj);
354 		return PTR_ERR(kqd);
355 	}
356 
357 	eq->elevator_data = kqd;
358 	q->elevator = eq;
359 
360 	blk_stat_add_callback(q, kqd->cb);
361 
362 	return 0;
363 }
364 
365 static void kyber_exit_sched(struct elevator_queue *e)
366 {
367 	struct kyber_queue_data *kqd = e->elevator_data;
368 	struct request_queue *q = kqd->q;
369 	int i;
370 
371 	blk_stat_remove_callback(q, kqd->cb);
372 
373 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
374 		sbitmap_queue_free(&kqd->domain_tokens[i]);
375 	blk_stat_free_callback(kqd->cb);
376 	kfree(kqd);
377 }
378 
379 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380 {
381 	struct kyber_hctx_data *khd;
382 	int i;
383 
384 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
385 	if (!khd)
386 		return -ENOMEM;
387 
388 	spin_lock_init(&khd->lock);
389 
390 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
391 		INIT_LIST_HEAD(&khd->rqs[i]);
392 		init_waitqueue_func_entry(&khd->domain_wait[i],
393 					  kyber_domain_wake);
394 		khd->domain_wait[i].private = hctx;
395 		INIT_LIST_HEAD(&khd->domain_wait[i].entry);
396 		atomic_set(&khd->wait_index[i], 0);
397 	}
398 
399 	khd->cur_domain = 0;
400 	khd->batching = 0;
401 
402 	hctx->sched_data = khd;
403 
404 	return 0;
405 }
406 
407 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
408 {
409 	kfree(hctx->sched_data);
410 }
411 
412 static int rq_get_domain_token(struct request *rq)
413 {
414 	return (long)rq->elv.priv[0];
415 }
416 
417 static void rq_set_domain_token(struct request *rq, int token)
418 {
419 	rq->elv.priv[0] = (void *)(long)token;
420 }
421 
422 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
423 				  struct request *rq)
424 {
425 	unsigned int sched_domain;
426 	int nr;
427 
428 	nr = rq_get_domain_token(rq);
429 	if (nr != -1) {
430 		sched_domain = rq_sched_domain(rq);
431 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
432 				    rq->mq_ctx->cpu);
433 	}
434 }
435 
436 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
437 {
438 	/*
439 	 * We use the scheduler tags as per-hardware queue queueing tokens.
440 	 * Async requests can be limited at this stage.
441 	 */
442 	if (!op_is_sync(op)) {
443 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
444 
445 		data->shallow_depth = kqd->async_depth;
446 	}
447 }
448 
449 static void kyber_prepare_request(struct request *rq, struct bio *bio)
450 {
451 	rq_set_domain_token(rq, -1);
452 }
453 
454 static void kyber_finish_request(struct request *rq)
455 {
456 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
457 
458 	rq_clear_domain_token(kqd, rq);
459 }
460 
461 static void kyber_completed_request(struct request *rq)
462 {
463 	struct request_queue *q = rq->q;
464 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
465 	unsigned int sched_domain;
466 	u64 now, latency, target;
467 
468 	/*
469 	 * Check if this request met our latency goal. If not, quickly gather
470 	 * some statistics and start throttling.
471 	 */
472 	sched_domain = rq_sched_domain(rq);
473 	switch (sched_domain) {
474 	case KYBER_READ:
475 		target = kqd->read_lat_nsec;
476 		break;
477 	case KYBER_SYNC_WRITE:
478 		target = kqd->write_lat_nsec;
479 		break;
480 	default:
481 		return;
482 	}
483 
484 	/* If we are already monitoring latencies, don't check again. */
485 	if (blk_stat_is_active(kqd->cb))
486 		return;
487 
488 	now = __blk_stat_time(ktime_to_ns(ktime_get()));
489 	if (now < blk_stat_time(&rq->issue_stat))
490 		return;
491 
492 	latency = now - blk_stat_time(&rq->issue_stat);
493 
494 	if (latency > target)
495 		blk_stat_activate_msecs(kqd->cb, 10);
496 }
497 
498 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
499 				  struct blk_mq_hw_ctx *hctx)
500 {
501 	LIST_HEAD(rq_list);
502 	struct request *rq, *next;
503 
504 	blk_mq_flush_busy_ctxs(hctx, &rq_list);
505 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
506 		unsigned int sched_domain;
507 
508 		sched_domain = rq_sched_domain(rq);
509 		list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
510 	}
511 }
512 
513 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
514 			     void *key)
515 {
516 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
517 
518 	list_del_init(&wait->entry);
519 	blk_mq_run_hw_queue(hctx, true);
520 	return 1;
521 }
522 
523 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
524 				  struct kyber_hctx_data *khd,
525 				  struct blk_mq_hw_ctx *hctx)
526 {
527 	unsigned int sched_domain = khd->cur_domain;
528 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
529 	wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
530 	struct sbq_wait_state *ws;
531 	int nr;
532 
533 	nr = __sbitmap_queue_get(domain_tokens);
534 
535 	/*
536 	 * If we failed to get a domain token, make sure the hardware queue is
537 	 * run when one becomes available. Note that this is serialized on
538 	 * khd->lock, but we still need to be careful about the waker.
539 	 */
540 	if (nr < 0 && list_empty_careful(&wait->entry)) {
541 		ws = sbq_wait_ptr(domain_tokens,
542 				  &khd->wait_index[sched_domain]);
543 		khd->domain_ws[sched_domain] = ws;
544 		add_wait_queue(&ws->wait, wait);
545 
546 		/*
547 		 * Try again in case a token was freed before we got on the wait
548 		 * queue.
549 		 */
550 		nr = __sbitmap_queue_get(domain_tokens);
551 	}
552 
553 	/*
554 	 * If we got a token while we were on the wait queue, remove ourselves
555 	 * from the wait queue to ensure that all wake ups make forward
556 	 * progress. It's possible that the waker already deleted the entry
557 	 * between the !list_empty_careful() check and us grabbing the lock, but
558 	 * list_del_init() is okay with that.
559 	 */
560 	if (nr >= 0 && !list_empty_careful(&wait->entry)) {
561 		ws = khd->domain_ws[sched_domain];
562 		spin_lock_irq(&ws->wait.lock);
563 		list_del_init(&wait->entry);
564 		spin_unlock_irq(&ws->wait.lock);
565 	}
566 
567 	return nr;
568 }
569 
570 static struct request *
571 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
572 			  struct kyber_hctx_data *khd,
573 			  struct blk_mq_hw_ctx *hctx,
574 			  bool *flushed)
575 {
576 	struct list_head *rqs;
577 	struct request *rq;
578 	int nr;
579 
580 	rqs = &khd->rqs[khd->cur_domain];
581 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
582 
583 	/*
584 	 * If there wasn't already a pending request and we haven't flushed the
585 	 * software queues yet, flush the software queues and check again.
586 	 */
587 	if (!rq && !*flushed) {
588 		kyber_flush_busy_ctxs(khd, hctx);
589 		*flushed = true;
590 		rq = list_first_entry_or_null(rqs, struct request, queuelist);
591 	}
592 
593 	if (rq) {
594 		nr = kyber_get_domain_token(kqd, khd, hctx);
595 		if (nr >= 0) {
596 			khd->batching++;
597 			rq_set_domain_token(rq, nr);
598 			list_del_init(&rq->queuelist);
599 			return rq;
600 		}
601 	}
602 
603 	/* There were either no pending requests or no tokens. */
604 	return NULL;
605 }
606 
607 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
608 {
609 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
610 	struct kyber_hctx_data *khd = hctx->sched_data;
611 	bool flushed = false;
612 	struct request *rq;
613 	int i;
614 
615 	spin_lock(&khd->lock);
616 
617 	/*
618 	 * First, if we are still entitled to batch, try to dispatch a request
619 	 * from the batch.
620 	 */
621 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
622 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
623 		if (rq)
624 			goto out;
625 	}
626 
627 	/*
628 	 * Either,
629 	 * 1. We were no longer entitled to a batch.
630 	 * 2. The domain we were batching didn't have any requests.
631 	 * 3. The domain we were batching was out of tokens.
632 	 *
633 	 * Start another batch. Note that this wraps back around to the original
634 	 * domain if no other domains have requests or tokens.
635 	 */
636 	khd->batching = 0;
637 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
638 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
639 			khd->cur_domain = 0;
640 		else
641 			khd->cur_domain++;
642 
643 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
644 		if (rq)
645 			goto out;
646 	}
647 
648 	rq = NULL;
649 out:
650 	spin_unlock(&khd->lock);
651 	return rq;
652 }
653 
654 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
655 {
656 	struct kyber_hctx_data *khd = hctx->sched_data;
657 	int i;
658 
659 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
660 		if (!list_empty_careful(&khd->rqs[i]))
661 			return true;
662 	}
663 	return sbitmap_any_bit_set(&hctx->ctx_map);
664 }
665 
666 #define KYBER_LAT_SHOW_STORE(op)					\
667 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,		\
668 				     char *page)			\
669 {									\
670 	struct kyber_queue_data *kqd = e->elevator_data;		\
671 									\
672 	return sprintf(page, "%llu\n", kqd->op##_lat_nsec);		\
673 }									\
674 									\
675 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,		\
676 				      const char *page, size_t count)	\
677 {									\
678 	struct kyber_queue_data *kqd = e->elevator_data;		\
679 	unsigned long long nsec;					\
680 	int ret;							\
681 									\
682 	ret = kstrtoull(page, 10, &nsec);				\
683 	if (ret)							\
684 		return ret;						\
685 									\
686 	kqd->op##_lat_nsec = nsec;					\
687 									\
688 	return count;							\
689 }
690 KYBER_LAT_SHOW_STORE(read);
691 KYBER_LAT_SHOW_STORE(write);
692 #undef KYBER_LAT_SHOW_STORE
693 
694 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
695 static struct elv_fs_entry kyber_sched_attrs[] = {
696 	KYBER_LAT_ATTR(read),
697 	KYBER_LAT_ATTR(write),
698 	__ATTR_NULL
699 };
700 #undef KYBER_LAT_ATTR
701 
702 #ifdef CONFIG_BLK_DEBUG_FS
703 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
704 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
705 {									\
706 	struct request_queue *q = data;					\
707 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
708 									\
709 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
710 	return 0;							\
711 }									\
712 									\
713 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
714 	__acquires(&khd->lock)						\
715 {									\
716 	struct blk_mq_hw_ctx *hctx = m->private;			\
717 	struct kyber_hctx_data *khd = hctx->sched_data;			\
718 									\
719 	spin_lock(&khd->lock);						\
720 	return seq_list_start(&khd->rqs[domain], *pos);			\
721 }									\
722 									\
723 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
724 				     loff_t *pos)			\
725 {									\
726 	struct blk_mq_hw_ctx *hctx = m->private;			\
727 	struct kyber_hctx_data *khd = hctx->sched_data;			\
728 									\
729 	return seq_list_next(v, &khd->rqs[domain], pos);		\
730 }									\
731 									\
732 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
733 	__releases(&khd->lock)						\
734 {									\
735 	struct blk_mq_hw_ctx *hctx = m->private;			\
736 	struct kyber_hctx_data *khd = hctx->sched_data;			\
737 									\
738 	spin_unlock(&khd->lock);					\
739 }									\
740 									\
741 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
742 	.start	= kyber_##name##_rqs_start,				\
743 	.next	= kyber_##name##_rqs_next,				\
744 	.stop	= kyber_##name##_rqs_stop,				\
745 	.show	= blk_mq_debugfs_rq_show,				\
746 };									\
747 									\
748 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
749 {									\
750 	struct blk_mq_hw_ctx *hctx = data;				\
751 	struct kyber_hctx_data *khd = hctx->sched_data;			\
752 	wait_queue_entry_t *wait = &khd->domain_wait[domain];		\
753 									\
754 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
755 	return 0;							\
756 }
757 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
758 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
759 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
760 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
761 
762 static int kyber_async_depth_show(void *data, struct seq_file *m)
763 {
764 	struct request_queue *q = data;
765 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
766 
767 	seq_printf(m, "%u\n", kqd->async_depth);
768 	return 0;
769 }
770 
771 static int kyber_cur_domain_show(void *data, struct seq_file *m)
772 {
773 	struct blk_mq_hw_ctx *hctx = data;
774 	struct kyber_hctx_data *khd = hctx->sched_data;
775 
776 	switch (khd->cur_domain) {
777 	case KYBER_READ:
778 		seq_puts(m, "READ\n");
779 		break;
780 	case KYBER_SYNC_WRITE:
781 		seq_puts(m, "SYNC_WRITE\n");
782 		break;
783 	case KYBER_OTHER:
784 		seq_puts(m, "OTHER\n");
785 		break;
786 	default:
787 		seq_printf(m, "%u\n", khd->cur_domain);
788 		break;
789 	}
790 	return 0;
791 }
792 
793 static int kyber_batching_show(void *data, struct seq_file *m)
794 {
795 	struct blk_mq_hw_ctx *hctx = data;
796 	struct kyber_hctx_data *khd = hctx->sched_data;
797 
798 	seq_printf(m, "%u\n", khd->batching);
799 	return 0;
800 }
801 
802 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
803 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
804 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
805 	KYBER_QUEUE_DOMAIN_ATTRS(read),
806 	KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
807 	KYBER_QUEUE_DOMAIN_ATTRS(other),
808 	{"async_depth", 0400, kyber_async_depth_show},
809 	{},
810 };
811 #undef KYBER_QUEUE_DOMAIN_ATTRS
812 
813 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
814 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
815 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
816 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
817 	KYBER_HCTX_DOMAIN_ATTRS(read),
818 	KYBER_HCTX_DOMAIN_ATTRS(sync_write),
819 	KYBER_HCTX_DOMAIN_ATTRS(other),
820 	{"cur_domain", 0400, kyber_cur_domain_show},
821 	{"batching", 0400, kyber_batching_show},
822 	{},
823 };
824 #undef KYBER_HCTX_DOMAIN_ATTRS
825 #endif
826 
827 static struct elevator_type kyber_sched = {
828 	.ops.mq = {
829 		.init_sched = kyber_init_sched,
830 		.exit_sched = kyber_exit_sched,
831 		.init_hctx = kyber_init_hctx,
832 		.exit_hctx = kyber_exit_hctx,
833 		.limit_depth = kyber_limit_depth,
834 		.prepare_request = kyber_prepare_request,
835 		.finish_request = kyber_finish_request,
836 		.requeue_request = kyber_finish_request,
837 		.completed_request = kyber_completed_request,
838 		.dispatch_request = kyber_dispatch_request,
839 		.has_work = kyber_has_work,
840 	},
841 	.uses_mq = true,
842 #ifdef CONFIG_BLK_DEBUG_FS
843 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
844 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
845 #endif
846 	.elevator_attrs = kyber_sched_attrs,
847 	.elevator_name = "kyber",
848 	.elevator_owner = THIS_MODULE,
849 };
850 
851 static int __init kyber_init(void)
852 {
853 	return elv_register(&kyber_sched);
854 }
855 
856 static void __exit kyber_exit(void)
857 {
858 	elv_unregister(&kyber_sched);
859 }
860 
861 module_init(kyber_init);
862 module_exit(kyber_exit);
863 
864 MODULE_AUTHOR("Omar Sandoval");
865 MODULE_LICENSE("GPL");
866 MODULE_DESCRIPTION("Kyber I/O scheduler");
867