xref: /openbmc/linux/block/kyber-iosched.c (revision c8dbaa22)
1 /*
2  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3  * scalable techniques.
4  *
5  * Copyright (C) 2017 Facebook
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public
9  * License v2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
26 
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32 #include "blk-stat.h"
33 
34 /* Scheduling domains. */
35 enum {
36 	KYBER_READ,
37 	KYBER_SYNC_WRITE,
38 	KYBER_OTHER, /* Async writes, discard, etc. */
39 	KYBER_NUM_DOMAINS,
40 };
41 
42 enum {
43 	KYBER_MIN_DEPTH = 256,
44 
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Initial device-wide depths for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate
57  * the device with only a fraction of the maximum possible queue depth.
58  * So, we cap these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_SYNC_WRITE] = 128,
63 	[KYBER_OTHER] = 64,
64 };
65 
66 /*
67  * Scheduling domain batch sizes. We favor reads.
68  */
69 static const unsigned int kyber_batch_size[] = {
70 	[KYBER_READ] = 16,
71 	[KYBER_SYNC_WRITE] = 8,
72 	[KYBER_OTHER] = 8,
73 };
74 
75 struct kyber_queue_data {
76 	struct request_queue *q;
77 
78 	struct blk_stat_callback *cb;
79 
80 	/*
81 	 * The device is divided into multiple scheduling domains based on the
82 	 * request type. Each domain has a fixed number of in-flight requests of
83 	 * that type device-wide, limited by these tokens.
84 	 */
85 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
86 
87 	/*
88 	 * Async request percentage, converted to per-word depth for
89 	 * sbitmap_get_shallow().
90 	 */
91 	unsigned int async_depth;
92 
93 	/* Target latencies in nanoseconds. */
94 	u64 read_lat_nsec, write_lat_nsec;
95 };
96 
97 struct kyber_hctx_data {
98 	spinlock_t lock;
99 	struct list_head rqs[KYBER_NUM_DOMAINS];
100 	unsigned int cur_domain;
101 	unsigned int batching;
102 	wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
103 	atomic_t wait_index[KYBER_NUM_DOMAINS];
104 };
105 
106 static int rq_sched_domain(const struct request *rq)
107 {
108 	unsigned int op = rq->cmd_flags;
109 
110 	if ((op & REQ_OP_MASK) == REQ_OP_READ)
111 		return KYBER_READ;
112 	else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
113 		return KYBER_SYNC_WRITE;
114 	else
115 		return KYBER_OTHER;
116 }
117 
118 enum {
119 	NONE = 0,
120 	GOOD = 1,
121 	GREAT = 2,
122 	BAD = -1,
123 	AWFUL = -2,
124 };
125 
126 #define IS_GOOD(status) ((status) > 0)
127 #define IS_BAD(status) ((status) < 0)
128 
129 static int kyber_lat_status(struct blk_stat_callback *cb,
130 			    unsigned int sched_domain, u64 target)
131 {
132 	u64 latency;
133 
134 	if (!cb->stat[sched_domain].nr_samples)
135 		return NONE;
136 
137 	latency = cb->stat[sched_domain].mean;
138 	if (latency >= 2 * target)
139 		return AWFUL;
140 	else if (latency > target)
141 		return BAD;
142 	else if (latency <= target / 2)
143 		return GREAT;
144 	else /* (latency <= target) */
145 		return GOOD;
146 }
147 
148 /*
149  * Adjust the read or synchronous write depth given the status of reads and
150  * writes. The goal is that the latencies of the two domains are fair (i.e., if
151  * one is good, then the other is good).
152  */
153 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
154 				  unsigned int sched_domain, int this_status,
155 				  int other_status)
156 {
157 	unsigned int orig_depth, depth;
158 
159 	/*
160 	 * If this domain had no samples, or reads and writes are both good or
161 	 * both bad, don't adjust the depth.
162 	 */
163 	if (this_status == NONE ||
164 	    (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
165 	    (IS_BAD(this_status) && IS_BAD(other_status)))
166 		return;
167 
168 	orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
169 
170 	if (other_status == NONE) {
171 		depth++;
172 	} else {
173 		switch (this_status) {
174 		case GOOD:
175 			if (other_status == AWFUL)
176 				depth -= max(depth / 4, 1U);
177 			else
178 				depth -= max(depth / 8, 1U);
179 			break;
180 		case GREAT:
181 			if (other_status == AWFUL)
182 				depth /= 2;
183 			else
184 				depth -= max(depth / 4, 1U);
185 			break;
186 		case BAD:
187 			depth++;
188 			break;
189 		case AWFUL:
190 			if (other_status == GREAT)
191 				depth += 2;
192 			else
193 				depth++;
194 			break;
195 		}
196 	}
197 
198 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
199 	if (depth != orig_depth)
200 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
201 }
202 
203 /*
204  * Adjust the depth of other requests given the status of reads and synchronous
205  * writes. As long as either domain is doing fine, we don't throttle, but if
206  * both domains are doing badly, we throttle heavily.
207  */
208 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
209 				     int read_status, int write_status,
210 				     bool have_samples)
211 {
212 	unsigned int orig_depth, depth;
213 	int status;
214 
215 	orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
216 
217 	if (read_status == NONE && write_status == NONE) {
218 		depth += 2;
219 	} else if (have_samples) {
220 		if (read_status == NONE)
221 			status = write_status;
222 		else if (write_status == NONE)
223 			status = read_status;
224 		else
225 			status = max(read_status, write_status);
226 		switch (status) {
227 		case GREAT:
228 			depth += 2;
229 			break;
230 		case GOOD:
231 			depth++;
232 			break;
233 		case BAD:
234 			depth -= max(depth / 4, 1U);
235 			break;
236 		case AWFUL:
237 			depth /= 2;
238 			break;
239 		}
240 	}
241 
242 	depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
243 	if (depth != orig_depth)
244 		sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
245 }
246 
247 /*
248  * Apply heuristics for limiting queue depths based on gathered latency
249  * statistics.
250  */
251 static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
252 {
253 	struct kyber_queue_data *kqd = cb->data;
254 	int read_status, write_status;
255 
256 	read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
257 	write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
258 
259 	kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
260 	kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
261 	kyber_adjust_other_depth(kqd, read_status, write_status,
262 				 cb->stat[KYBER_OTHER].nr_samples != 0);
263 
264 	/*
265 	 * Continue monitoring latencies if we aren't hitting the targets or
266 	 * we're still throttling other requests.
267 	 */
268 	if (!blk_stat_is_active(kqd->cb) &&
269 	    ((IS_BAD(read_status) || IS_BAD(write_status) ||
270 	      kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
271 		blk_stat_activate_msecs(kqd->cb, 100);
272 }
273 
274 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
275 {
276 	/*
277 	 * All of the hardware queues have the same depth, so we can just grab
278 	 * the shift of the first one.
279 	 */
280 	return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
281 }
282 
283 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
284 {
285 	struct kyber_queue_data *kqd;
286 	unsigned int max_tokens;
287 	unsigned int shift;
288 	int ret = -ENOMEM;
289 	int i;
290 
291 	kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
292 	if (!kqd)
293 		goto err;
294 	kqd->q = q;
295 
296 	kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
297 					  KYBER_NUM_DOMAINS, kqd);
298 	if (!kqd->cb)
299 		goto err_kqd;
300 
301 	/*
302 	 * The maximum number of tokens for any scheduling domain is at least
303 	 * the queue depth of a single hardware queue. If the hardware doesn't
304 	 * have many tags, still provide a reasonable number.
305 	 */
306 	max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
307 			   KYBER_MIN_DEPTH);
308 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
309 		WARN_ON(!kyber_depth[i]);
310 		WARN_ON(!kyber_batch_size[i]);
311 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
312 					      max_tokens, -1, false, GFP_KERNEL,
313 					      q->node);
314 		if (ret) {
315 			while (--i >= 0)
316 				sbitmap_queue_free(&kqd->domain_tokens[i]);
317 			goto err_cb;
318 		}
319 		sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
320 	}
321 
322 	shift = kyber_sched_tags_shift(kqd);
323 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
324 
325 	kqd->read_lat_nsec = 2000000ULL;
326 	kqd->write_lat_nsec = 10000000ULL;
327 
328 	return kqd;
329 
330 err_cb:
331 	blk_stat_free_callback(kqd->cb);
332 err_kqd:
333 	kfree(kqd);
334 err:
335 	return ERR_PTR(ret);
336 }
337 
338 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
339 {
340 	struct kyber_queue_data *kqd;
341 	struct elevator_queue *eq;
342 
343 	eq = elevator_alloc(q, e);
344 	if (!eq)
345 		return -ENOMEM;
346 
347 	kqd = kyber_queue_data_alloc(q);
348 	if (IS_ERR(kqd)) {
349 		kobject_put(&eq->kobj);
350 		return PTR_ERR(kqd);
351 	}
352 
353 	eq->elevator_data = kqd;
354 	q->elevator = eq;
355 
356 	blk_stat_add_callback(q, kqd->cb);
357 
358 	return 0;
359 }
360 
361 static void kyber_exit_sched(struct elevator_queue *e)
362 {
363 	struct kyber_queue_data *kqd = e->elevator_data;
364 	struct request_queue *q = kqd->q;
365 	int i;
366 
367 	blk_stat_remove_callback(q, kqd->cb);
368 
369 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
370 		sbitmap_queue_free(&kqd->domain_tokens[i]);
371 	blk_stat_free_callback(kqd->cb);
372 	kfree(kqd);
373 }
374 
375 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
376 {
377 	struct kyber_hctx_data *khd;
378 	int i;
379 
380 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
381 	if (!khd)
382 		return -ENOMEM;
383 
384 	spin_lock_init(&khd->lock);
385 
386 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
387 		INIT_LIST_HEAD(&khd->rqs[i]);
388 		INIT_LIST_HEAD(&khd->domain_wait[i].entry);
389 		atomic_set(&khd->wait_index[i], 0);
390 	}
391 
392 	khd->cur_domain = 0;
393 	khd->batching = 0;
394 
395 	hctx->sched_data = khd;
396 
397 	return 0;
398 }
399 
400 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
401 {
402 	kfree(hctx->sched_data);
403 }
404 
405 static int rq_get_domain_token(struct request *rq)
406 {
407 	return (long)rq->elv.priv[0];
408 }
409 
410 static void rq_set_domain_token(struct request *rq, int token)
411 {
412 	rq->elv.priv[0] = (void *)(long)token;
413 }
414 
415 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
416 				  struct request *rq)
417 {
418 	unsigned int sched_domain;
419 	int nr;
420 
421 	nr = rq_get_domain_token(rq);
422 	if (nr != -1) {
423 		sched_domain = rq_sched_domain(rq);
424 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
425 				    rq->mq_ctx->cpu);
426 	}
427 }
428 
429 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
430 {
431 	/*
432 	 * We use the scheduler tags as per-hardware queue queueing tokens.
433 	 * Async requests can be limited at this stage.
434 	 */
435 	if (!op_is_sync(op)) {
436 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
437 
438 		data->shallow_depth = kqd->async_depth;
439 	}
440 }
441 
442 static void kyber_prepare_request(struct request *rq, struct bio *bio)
443 {
444 	rq_set_domain_token(rq, -1);
445 }
446 
447 static void kyber_finish_request(struct request *rq)
448 {
449 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
450 
451 	rq_clear_domain_token(kqd, rq);
452 }
453 
454 static void kyber_completed_request(struct request *rq)
455 {
456 	struct request_queue *q = rq->q;
457 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
458 	unsigned int sched_domain;
459 	u64 now, latency, target;
460 
461 	/*
462 	 * Check if this request met our latency goal. If not, quickly gather
463 	 * some statistics and start throttling.
464 	 */
465 	sched_domain = rq_sched_domain(rq);
466 	switch (sched_domain) {
467 	case KYBER_READ:
468 		target = kqd->read_lat_nsec;
469 		break;
470 	case KYBER_SYNC_WRITE:
471 		target = kqd->write_lat_nsec;
472 		break;
473 	default:
474 		return;
475 	}
476 
477 	/* If we are already monitoring latencies, don't check again. */
478 	if (blk_stat_is_active(kqd->cb))
479 		return;
480 
481 	now = __blk_stat_time(ktime_to_ns(ktime_get()));
482 	if (now < blk_stat_time(&rq->issue_stat))
483 		return;
484 
485 	latency = now - blk_stat_time(&rq->issue_stat);
486 
487 	if (latency > target)
488 		blk_stat_activate_msecs(kqd->cb, 10);
489 }
490 
491 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
492 				  struct blk_mq_hw_ctx *hctx)
493 {
494 	LIST_HEAD(rq_list);
495 	struct request *rq, *next;
496 
497 	blk_mq_flush_busy_ctxs(hctx, &rq_list);
498 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
499 		unsigned int sched_domain;
500 
501 		sched_domain = rq_sched_domain(rq);
502 		list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
503 	}
504 }
505 
506 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
507 			     void *key)
508 {
509 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
510 
511 	list_del_init(&wait->entry);
512 	blk_mq_run_hw_queue(hctx, true);
513 	return 1;
514 }
515 
516 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
517 				  struct kyber_hctx_data *khd,
518 				  struct blk_mq_hw_ctx *hctx)
519 {
520 	unsigned int sched_domain = khd->cur_domain;
521 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
522 	wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
523 	struct sbq_wait_state *ws;
524 	int nr;
525 
526 	nr = __sbitmap_queue_get(domain_tokens);
527 	if (nr >= 0)
528 		return nr;
529 
530 	/*
531 	 * If we failed to get a domain token, make sure the hardware queue is
532 	 * run when one becomes available. Note that this is serialized on
533 	 * khd->lock, but we still need to be careful about the waker.
534 	 */
535 	if (list_empty_careful(&wait->entry)) {
536 		init_waitqueue_func_entry(wait, kyber_domain_wake);
537 		wait->private = hctx;
538 		ws = sbq_wait_ptr(domain_tokens,
539 				  &khd->wait_index[sched_domain]);
540 		add_wait_queue(&ws->wait, wait);
541 
542 		/*
543 		 * Try again in case a token was freed before we got on the wait
544 		 * queue.
545 		 */
546 		nr = __sbitmap_queue_get(domain_tokens);
547 	}
548 	return nr;
549 }
550 
551 static struct request *
552 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
553 			  struct kyber_hctx_data *khd,
554 			  struct blk_mq_hw_ctx *hctx,
555 			  bool *flushed)
556 {
557 	struct list_head *rqs;
558 	struct request *rq;
559 	int nr;
560 
561 	rqs = &khd->rqs[khd->cur_domain];
562 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
563 
564 	/*
565 	 * If there wasn't already a pending request and we haven't flushed the
566 	 * software queues yet, flush the software queues and check again.
567 	 */
568 	if (!rq && !*flushed) {
569 		kyber_flush_busy_ctxs(khd, hctx);
570 		*flushed = true;
571 		rq = list_first_entry_or_null(rqs, struct request, queuelist);
572 	}
573 
574 	if (rq) {
575 		nr = kyber_get_domain_token(kqd, khd, hctx);
576 		if (nr >= 0) {
577 			khd->batching++;
578 			rq_set_domain_token(rq, nr);
579 			list_del_init(&rq->queuelist);
580 			return rq;
581 		}
582 	}
583 
584 	/* There were either no pending requests or no tokens. */
585 	return NULL;
586 }
587 
588 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
589 {
590 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
591 	struct kyber_hctx_data *khd = hctx->sched_data;
592 	bool flushed = false;
593 	struct request *rq;
594 	int i;
595 
596 	spin_lock(&khd->lock);
597 
598 	/*
599 	 * First, if we are still entitled to batch, try to dispatch a request
600 	 * from the batch.
601 	 */
602 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
603 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
604 		if (rq)
605 			goto out;
606 	}
607 
608 	/*
609 	 * Either,
610 	 * 1. We were no longer entitled to a batch.
611 	 * 2. The domain we were batching didn't have any requests.
612 	 * 3. The domain we were batching was out of tokens.
613 	 *
614 	 * Start another batch. Note that this wraps back around to the original
615 	 * domain if no other domains have requests or tokens.
616 	 */
617 	khd->batching = 0;
618 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
619 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
620 			khd->cur_domain = 0;
621 		else
622 			khd->cur_domain++;
623 
624 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
625 		if (rq)
626 			goto out;
627 	}
628 
629 	rq = NULL;
630 out:
631 	spin_unlock(&khd->lock);
632 	return rq;
633 }
634 
635 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
636 {
637 	struct kyber_hctx_data *khd = hctx->sched_data;
638 	int i;
639 
640 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
641 		if (!list_empty_careful(&khd->rqs[i]))
642 			return true;
643 	}
644 	return false;
645 }
646 
647 #define KYBER_LAT_SHOW_STORE(op)					\
648 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,		\
649 				     char *page)			\
650 {									\
651 	struct kyber_queue_data *kqd = e->elevator_data;		\
652 									\
653 	return sprintf(page, "%llu\n", kqd->op##_lat_nsec);		\
654 }									\
655 									\
656 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,		\
657 				      const char *page, size_t count)	\
658 {									\
659 	struct kyber_queue_data *kqd = e->elevator_data;		\
660 	unsigned long long nsec;					\
661 	int ret;							\
662 									\
663 	ret = kstrtoull(page, 10, &nsec);				\
664 	if (ret)							\
665 		return ret;						\
666 									\
667 	kqd->op##_lat_nsec = nsec;					\
668 									\
669 	return count;							\
670 }
671 KYBER_LAT_SHOW_STORE(read);
672 KYBER_LAT_SHOW_STORE(write);
673 #undef KYBER_LAT_SHOW_STORE
674 
675 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
676 static struct elv_fs_entry kyber_sched_attrs[] = {
677 	KYBER_LAT_ATTR(read),
678 	KYBER_LAT_ATTR(write),
679 	__ATTR_NULL
680 };
681 #undef KYBER_LAT_ATTR
682 
683 #ifdef CONFIG_BLK_DEBUG_FS
684 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
685 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
686 {									\
687 	struct request_queue *q = data;					\
688 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
689 									\
690 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
691 	return 0;							\
692 }									\
693 									\
694 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
695 	__acquires(&khd->lock)						\
696 {									\
697 	struct blk_mq_hw_ctx *hctx = m->private;			\
698 	struct kyber_hctx_data *khd = hctx->sched_data;			\
699 									\
700 	spin_lock(&khd->lock);						\
701 	return seq_list_start(&khd->rqs[domain], *pos);			\
702 }									\
703 									\
704 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
705 				     loff_t *pos)			\
706 {									\
707 	struct blk_mq_hw_ctx *hctx = m->private;			\
708 	struct kyber_hctx_data *khd = hctx->sched_data;			\
709 									\
710 	return seq_list_next(v, &khd->rqs[domain], pos);		\
711 }									\
712 									\
713 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
714 	__releases(&khd->lock)						\
715 {									\
716 	struct blk_mq_hw_ctx *hctx = m->private;			\
717 	struct kyber_hctx_data *khd = hctx->sched_data;			\
718 									\
719 	spin_unlock(&khd->lock);					\
720 }									\
721 									\
722 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
723 	.start	= kyber_##name##_rqs_start,				\
724 	.next	= kyber_##name##_rqs_next,				\
725 	.stop	= kyber_##name##_rqs_stop,				\
726 	.show	= blk_mq_debugfs_rq_show,				\
727 };									\
728 									\
729 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
730 {									\
731 	struct blk_mq_hw_ctx *hctx = data;				\
732 	struct kyber_hctx_data *khd = hctx->sched_data;			\
733 	wait_queue_entry_t *wait = &khd->domain_wait[domain];		\
734 									\
735 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
736 	return 0;							\
737 }
738 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
739 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
740 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
741 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
742 
743 static int kyber_async_depth_show(void *data, struct seq_file *m)
744 {
745 	struct request_queue *q = data;
746 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
747 
748 	seq_printf(m, "%u\n", kqd->async_depth);
749 	return 0;
750 }
751 
752 static int kyber_cur_domain_show(void *data, struct seq_file *m)
753 {
754 	struct blk_mq_hw_ctx *hctx = data;
755 	struct kyber_hctx_data *khd = hctx->sched_data;
756 
757 	switch (khd->cur_domain) {
758 	case KYBER_READ:
759 		seq_puts(m, "READ\n");
760 		break;
761 	case KYBER_SYNC_WRITE:
762 		seq_puts(m, "SYNC_WRITE\n");
763 		break;
764 	case KYBER_OTHER:
765 		seq_puts(m, "OTHER\n");
766 		break;
767 	default:
768 		seq_printf(m, "%u\n", khd->cur_domain);
769 		break;
770 	}
771 	return 0;
772 }
773 
774 static int kyber_batching_show(void *data, struct seq_file *m)
775 {
776 	struct blk_mq_hw_ctx *hctx = data;
777 	struct kyber_hctx_data *khd = hctx->sched_data;
778 
779 	seq_printf(m, "%u\n", khd->batching);
780 	return 0;
781 }
782 
783 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
784 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
785 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
786 	KYBER_QUEUE_DOMAIN_ATTRS(read),
787 	KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
788 	KYBER_QUEUE_DOMAIN_ATTRS(other),
789 	{"async_depth", 0400, kyber_async_depth_show},
790 	{},
791 };
792 #undef KYBER_QUEUE_DOMAIN_ATTRS
793 
794 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
795 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
796 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
797 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
798 	KYBER_HCTX_DOMAIN_ATTRS(read),
799 	KYBER_HCTX_DOMAIN_ATTRS(sync_write),
800 	KYBER_HCTX_DOMAIN_ATTRS(other),
801 	{"cur_domain", 0400, kyber_cur_domain_show},
802 	{"batching", 0400, kyber_batching_show},
803 	{},
804 };
805 #undef KYBER_HCTX_DOMAIN_ATTRS
806 #endif
807 
808 static struct elevator_type kyber_sched = {
809 	.ops.mq = {
810 		.init_sched = kyber_init_sched,
811 		.exit_sched = kyber_exit_sched,
812 		.init_hctx = kyber_init_hctx,
813 		.exit_hctx = kyber_exit_hctx,
814 		.limit_depth = kyber_limit_depth,
815 		.prepare_request = kyber_prepare_request,
816 		.finish_request = kyber_finish_request,
817 		.completed_request = kyber_completed_request,
818 		.dispatch_request = kyber_dispatch_request,
819 		.has_work = kyber_has_work,
820 	},
821 	.uses_mq = true,
822 #ifdef CONFIG_BLK_DEBUG_FS
823 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
824 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
825 #endif
826 	.elevator_attrs = kyber_sched_attrs,
827 	.elevator_name = "kyber",
828 	.elevator_owner = THIS_MODULE,
829 };
830 
831 static int __init kyber_init(void)
832 {
833 	return elv_register(&kyber_sched);
834 }
835 
836 static void __exit kyber_exit(void)
837 {
838 	elv_unregister(&kyber_sched);
839 }
840 
841 module_init(kyber_init);
842 module_exit(kyber_exit);
843 
844 MODULE_AUTHOR("Omar Sandoval");
845 MODULE_LICENSE("GPL");
846 MODULE_DESCRIPTION("Kyber I/O scheduler");
847