xref: /openbmc/linux/block/kyber-iosched.c (revision b8b350af)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15 
16 #include <trace/events/block.h>
17 
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-debugfs.h"
21 #include "blk-mq-sched.h"
22 #include "blk-mq-tag.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kyber.h>
26 
27 /*
28  * Scheduling domains: the device is divided into multiple domains based on the
29  * request type.
30  */
31 enum {
32 	KYBER_READ,
33 	KYBER_WRITE,
34 	KYBER_DISCARD,
35 	KYBER_OTHER,
36 	KYBER_NUM_DOMAINS,
37 };
38 
39 static const char *kyber_domain_names[] = {
40 	[KYBER_READ] = "READ",
41 	[KYBER_WRITE] = "WRITE",
42 	[KYBER_DISCARD] = "DISCARD",
43 	[KYBER_OTHER] = "OTHER",
44 };
45 
46 enum {
47 	/*
48 	 * In order to prevent starvation of synchronous requests by a flood of
49 	 * asynchronous requests, we reserve 25% of requests for synchronous
50 	 * operations.
51 	 */
52 	KYBER_ASYNC_PERCENT = 75,
53 };
54 
55 /*
56  * Maximum device-wide depth for each scheduling domain.
57  *
58  * Even for fast devices with lots of tags like NVMe, you can saturate the
59  * device with only a fraction of the maximum possible queue depth. So, we cap
60  * these to a reasonable value.
61  */
62 static const unsigned int kyber_depth[] = {
63 	[KYBER_READ] = 256,
64 	[KYBER_WRITE] = 128,
65 	[KYBER_DISCARD] = 64,
66 	[KYBER_OTHER] = 16,
67 };
68 
69 /*
70  * Default latency targets for each scheduling domain.
71  */
72 static const u64 kyber_latency_targets[] = {
73 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
76 };
77 
78 /*
79  * Batch size (number of requests we'll dispatch in a row) for each scheduling
80  * domain.
81  */
82 static const unsigned int kyber_batch_size[] = {
83 	[KYBER_READ] = 16,
84 	[KYBER_WRITE] = 8,
85 	[KYBER_DISCARD] = 1,
86 	[KYBER_OTHER] = 1,
87 };
88 
89 /*
90  * Requests latencies are recorded in a histogram with buckets defined relative
91  * to the target latency:
92  *
93  * <= 1/4 * target latency
94  * <= 1/2 * target latency
95  * <= 3/4 * target latency
96  * <= target latency
97  * <= 1 1/4 * target latency
98  * <= 1 1/2 * target latency
99  * <= 1 3/4 * target latency
100  * > 1 3/4 * target latency
101  */
102 enum {
103 	/*
104 	 * The width of the latency histogram buckets is
105 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106 	 */
107 	KYBER_LATENCY_SHIFT = 2,
108 	/*
109 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 	 * thus, "good".
111 	 */
112 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115 };
116 
117 /*
118  * We measure both the total latency and the I/O latency (i.e., latency after
119  * submitting to the device).
120  */
121 enum {
122 	KYBER_TOTAL_LATENCY,
123 	KYBER_IO_LATENCY,
124 };
125 
126 static const char *kyber_latency_type_names[] = {
127 	[KYBER_TOTAL_LATENCY] = "total",
128 	[KYBER_IO_LATENCY] = "I/O",
129 };
130 
131 /*
132  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133  * domain except for KYBER_OTHER.
134  */
135 struct kyber_cpu_latency {
136 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
137 };
138 
139 /*
140  * There is a same mapping between ctx & hctx and kcq & khd,
141  * we use request->mq_ctx->index_hw to index the kcq in khd.
142  */
143 struct kyber_ctx_queue {
144 	/*
145 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146 	 * Also protect the rqs on rq_list when merge.
147 	 */
148 	spinlock_t lock;
149 	struct list_head rq_list[KYBER_NUM_DOMAINS];
150 } ____cacheline_aligned_in_smp;
151 
152 struct kyber_queue_data {
153 	struct request_queue *q;
154 
155 	/*
156 	 * Each scheduling domain has a limited number of in-flight requests
157 	 * device-wide, limited by these tokens.
158 	 */
159 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
160 
161 	/*
162 	 * Async request percentage, converted to per-word depth for
163 	 * sbitmap_get_shallow().
164 	 */
165 	unsigned int async_depth;
166 
167 	struct kyber_cpu_latency __percpu *cpu_latency;
168 
169 	/* Timer for stats aggregation and adjusting domain tokens. */
170 	struct timer_list timer;
171 
172 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
173 
174 	unsigned long latency_timeout[KYBER_OTHER];
175 
176 	int domain_p99[KYBER_OTHER];
177 
178 	/* Target latencies in nanoseconds. */
179 	u64 latency_targets[KYBER_OTHER];
180 };
181 
182 struct kyber_hctx_data {
183 	spinlock_t lock;
184 	struct list_head rqs[KYBER_NUM_DOMAINS];
185 	unsigned int cur_domain;
186 	unsigned int batching;
187 	struct kyber_ctx_queue *kcqs;
188 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
189 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
190 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
191 	atomic_t wait_index[KYBER_NUM_DOMAINS];
192 };
193 
194 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
195 			     void *key);
196 
197 static unsigned int kyber_sched_domain(unsigned int op)
198 {
199 	switch (op & REQ_OP_MASK) {
200 	case REQ_OP_READ:
201 		return KYBER_READ;
202 	case REQ_OP_WRITE:
203 		return KYBER_WRITE;
204 	case REQ_OP_DISCARD:
205 		return KYBER_DISCARD;
206 	default:
207 		return KYBER_OTHER;
208 	}
209 }
210 
211 static void flush_latency_buckets(struct kyber_queue_data *kqd,
212 				  struct kyber_cpu_latency *cpu_latency,
213 				  unsigned int sched_domain, unsigned int type)
214 {
215 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
216 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
217 	unsigned int bucket;
218 
219 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
220 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
221 }
222 
223 /*
224  * Calculate the histogram bucket with the given percentile rank, or -1 if there
225  * aren't enough samples yet.
226  */
227 static int calculate_percentile(struct kyber_queue_data *kqd,
228 				unsigned int sched_domain, unsigned int type,
229 				unsigned int percentile)
230 {
231 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
232 	unsigned int bucket, samples = 0, percentile_samples;
233 
234 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
235 		samples += buckets[bucket];
236 
237 	if (!samples)
238 		return -1;
239 
240 	/*
241 	 * We do the calculation once we have 500 samples or one second passes
242 	 * since the first sample was recorded, whichever comes first.
243 	 */
244 	if (!kqd->latency_timeout[sched_domain])
245 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
246 	if (samples < 500 &&
247 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
248 		return -1;
249 	}
250 	kqd->latency_timeout[sched_domain] = 0;
251 
252 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
253 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
254 		if (buckets[bucket] >= percentile_samples)
255 			break;
256 		percentile_samples -= buckets[bucket];
257 	}
258 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
259 
260 	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
261 			    kyber_latency_type_names[type], percentile,
262 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
263 
264 	return bucket;
265 }
266 
267 static void kyber_resize_domain(struct kyber_queue_data *kqd,
268 				unsigned int sched_domain, unsigned int depth)
269 {
270 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
271 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
272 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
273 		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
274 				   depth);
275 	}
276 }
277 
278 static void kyber_timer_fn(struct timer_list *t)
279 {
280 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
281 	unsigned int sched_domain;
282 	int cpu;
283 	bool bad = false;
284 
285 	/* Sum all of the per-cpu latency histograms. */
286 	for_each_online_cpu(cpu) {
287 		struct kyber_cpu_latency *cpu_latency;
288 
289 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
290 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
291 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 					      KYBER_TOTAL_LATENCY);
293 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
294 					      KYBER_IO_LATENCY);
295 		}
296 	}
297 
298 	/*
299 	 * Check if any domains have a high I/O latency, which might indicate
300 	 * congestion in the device. Note that we use the p90; we don't want to
301 	 * be too sensitive to outliers here.
302 	 */
303 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
304 		int p90;
305 
306 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
307 					   90);
308 		if (p90 >= KYBER_GOOD_BUCKETS)
309 			bad = true;
310 	}
311 
312 	/*
313 	 * Adjust the scheduling domain depths. If we determined that there was
314 	 * congestion, we throttle all domains with good latencies. Either way,
315 	 * we ease up on throttling domains with bad latencies.
316 	 */
317 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
318 		unsigned int orig_depth, depth;
319 		int p99;
320 
321 		p99 = calculate_percentile(kqd, sched_domain,
322 					   KYBER_TOTAL_LATENCY, 99);
323 		/*
324 		 * This is kind of subtle: different domains will not
325 		 * necessarily have enough samples to calculate the latency
326 		 * percentiles during the same window, so we have to remember
327 		 * the p99 for the next time we observe congestion; once we do,
328 		 * we don't want to throttle again until we get more data, so we
329 		 * reset it to -1.
330 		 */
331 		if (bad) {
332 			if (p99 < 0)
333 				p99 = kqd->domain_p99[sched_domain];
334 			kqd->domain_p99[sched_domain] = -1;
335 		} else if (p99 >= 0) {
336 			kqd->domain_p99[sched_domain] = p99;
337 		}
338 		if (p99 < 0)
339 			continue;
340 
341 		/*
342 		 * If this domain has bad latency, throttle less. Otherwise,
343 		 * throttle more iff we determined that there is congestion.
344 		 *
345 		 * The new depth is scaled linearly with the p99 latency vs the
346 		 * latency target. E.g., if the p99 is 3/4 of the target, then
347 		 * we throttle down to 3/4 of the current depth, and if the p99
348 		 * is 2x the target, then we double the depth.
349 		 */
350 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
351 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
352 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
353 			kyber_resize_domain(kqd, sched_domain, depth);
354 		}
355 	}
356 }
357 
358 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
359 {
360 	struct kyber_queue_data *kqd;
361 	int ret = -ENOMEM;
362 	int i;
363 
364 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
365 	if (!kqd)
366 		goto err;
367 
368 	kqd->q = q;
369 
370 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
371 					    GFP_KERNEL | __GFP_ZERO);
372 	if (!kqd->cpu_latency)
373 		goto err_kqd;
374 
375 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
376 
377 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
378 		WARN_ON(!kyber_depth[i]);
379 		WARN_ON(!kyber_batch_size[i]);
380 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
381 					      kyber_depth[i], -1, false,
382 					      GFP_KERNEL, q->node);
383 		if (ret) {
384 			while (--i >= 0)
385 				sbitmap_queue_free(&kqd->domain_tokens[i]);
386 			goto err_buckets;
387 		}
388 	}
389 
390 	for (i = 0; i < KYBER_OTHER; i++) {
391 		kqd->domain_p99[i] = -1;
392 		kqd->latency_targets[i] = kyber_latency_targets[i];
393 	}
394 
395 	return kqd;
396 
397 err_buckets:
398 	free_percpu(kqd->cpu_latency);
399 err_kqd:
400 	kfree(kqd);
401 err:
402 	return ERR_PTR(ret);
403 }
404 
405 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
406 {
407 	struct kyber_queue_data *kqd;
408 	struct elevator_queue *eq;
409 
410 	eq = elevator_alloc(q, e);
411 	if (!eq)
412 		return -ENOMEM;
413 
414 	kqd = kyber_queue_data_alloc(q);
415 	if (IS_ERR(kqd)) {
416 		kobject_put(&eq->kobj);
417 		return PTR_ERR(kqd);
418 	}
419 
420 	blk_stat_enable_accounting(q);
421 
422 	eq->elevator_data = kqd;
423 	q->elevator = eq;
424 
425 	return 0;
426 }
427 
428 static void kyber_exit_sched(struct elevator_queue *e)
429 {
430 	struct kyber_queue_data *kqd = e->elevator_data;
431 	int i;
432 
433 	del_timer_sync(&kqd->timer);
434 
435 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
436 		sbitmap_queue_free(&kqd->domain_tokens[i]);
437 	free_percpu(kqd->cpu_latency);
438 	kfree(kqd);
439 }
440 
441 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
442 {
443 	unsigned int i;
444 
445 	spin_lock_init(&kcq->lock);
446 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447 		INIT_LIST_HEAD(&kcq->rq_list[i]);
448 }
449 
450 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
451 {
452 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
453 	struct blk_mq_tags *tags = hctx->sched_tags;
454 	unsigned int shift = tags->bitmap_tags->sb.shift;
455 
456 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
457 
458 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
459 }
460 
461 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
462 {
463 	struct kyber_hctx_data *khd;
464 	int i;
465 
466 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
467 	if (!khd)
468 		return -ENOMEM;
469 
470 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
471 				       sizeof(struct kyber_ctx_queue),
472 				       GFP_KERNEL, hctx->numa_node);
473 	if (!khd->kcqs)
474 		goto err_khd;
475 
476 	for (i = 0; i < hctx->nr_ctx; i++)
477 		kyber_ctx_queue_init(&khd->kcqs[i]);
478 
479 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
480 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
481 				      ilog2(8), GFP_KERNEL, hctx->numa_node,
482 				      false, false)) {
483 			while (--i >= 0)
484 				sbitmap_free(&khd->kcq_map[i]);
485 			goto err_kcqs;
486 		}
487 	}
488 
489 	spin_lock_init(&khd->lock);
490 
491 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492 		INIT_LIST_HEAD(&khd->rqs[i]);
493 		khd->domain_wait[i].sbq = NULL;
494 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
495 					  kyber_domain_wake);
496 		khd->domain_wait[i].wait.private = hctx;
497 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
498 		atomic_set(&khd->wait_index[i], 0);
499 	}
500 
501 	khd->cur_domain = 0;
502 	khd->batching = 0;
503 
504 	hctx->sched_data = khd;
505 	kyber_depth_updated(hctx);
506 
507 	return 0;
508 
509 err_kcqs:
510 	kfree(khd->kcqs);
511 err_khd:
512 	kfree(khd);
513 	return -ENOMEM;
514 }
515 
516 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
517 {
518 	struct kyber_hctx_data *khd = hctx->sched_data;
519 	int i;
520 
521 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
522 		sbitmap_free(&khd->kcq_map[i]);
523 	kfree(khd->kcqs);
524 	kfree(hctx->sched_data);
525 }
526 
527 static int rq_get_domain_token(struct request *rq)
528 {
529 	return (long)rq->elv.priv[0];
530 }
531 
532 static void rq_set_domain_token(struct request *rq, int token)
533 {
534 	rq->elv.priv[0] = (void *)(long)token;
535 }
536 
537 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
538 				  struct request *rq)
539 {
540 	unsigned int sched_domain;
541 	int nr;
542 
543 	nr = rq_get_domain_token(rq);
544 	if (nr != -1) {
545 		sched_domain = kyber_sched_domain(rq->cmd_flags);
546 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
547 				    rq->mq_ctx->cpu);
548 	}
549 }
550 
551 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
552 {
553 	/*
554 	 * We use the scheduler tags as per-hardware queue queueing tokens.
555 	 * Async requests can be limited at this stage.
556 	 */
557 	if (!op_is_sync(op)) {
558 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
559 
560 		data->shallow_depth = kqd->async_depth;
561 	}
562 }
563 
564 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
565 		unsigned int nr_segs)
566 {
567 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
568 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
569 	struct kyber_hctx_data *khd = hctx->sched_data;
570 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
571 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
572 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
573 	bool merged;
574 
575 	spin_lock(&kcq->lock);
576 	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
577 	spin_unlock(&kcq->lock);
578 
579 	return merged;
580 }
581 
582 static void kyber_prepare_request(struct request *rq)
583 {
584 	rq_set_domain_token(rq, -1);
585 }
586 
587 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
588 				  struct list_head *rq_list, bool at_head)
589 {
590 	struct kyber_hctx_data *khd = hctx->sched_data;
591 	struct request *rq, *next;
592 
593 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
594 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
595 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
596 		struct list_head *head = &kcq->rq_list[sched_domain];
597 
598 		spin_lock(&kcq->lock);
599 		trace_block_rq_insert(rq);
600 		if (at_head)
601 			list_move(&rq->queuelist, head);
602 		else
603 			list_move_tail(&rq->queuelist, head);
604 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
605 				rq->mq_ctx->index_hw[hctx->type]);
606 		spin_unlock(&kcq->lock);
607 	}
608 }
609 
610 static void kyber_finish_request(struct request *rq)
611 {
612 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
613 
614 	rq_clear_domain_token(kqd, rq);
615 }
616 
617 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
618 			       unsigned int sched_domain, unsigned int type,
619 			       u64 target, u64 latency)
620 {
621 	unsigned int bucket;
622 	u64 divisor;
623 
624 	if (latency > 0) {
625 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
626 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
627 			       KYBER_LATENCY_BUCKETS - 1);
628 	} else {
629 		bucket = 0;
630 	}
631 
632 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
633 }
634 
635 static void kyber_completed_request(struct request *rq, u64 now)
636 {
637 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
638 	struct kyber_cpu_latency *cpu_latency;
639 	unsigned int sched_domain;
640 	u64 target;
641 
642 	sched_domain = kyber_sched_domain(rq->cmd_flags);
643 	if (sched_domain == KYBER_OTHER)
644 		return;
645 
646 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
647 	target = kqd->latency_targets[sched_domain];
648 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
649 			   target, now - rq->start_time_ns);
650 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
651 			   now - rq->io_start_time_ns);
652 	put_cpu_ptr(kqd->cpu_latency);
653 
654 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
655 }
656 
657 struct flush_kcq_data {
658 	struct kyber_hctx_data *khd;
659 	unsigned int sched_domain;
660 	struct list_head *list;
661 };
662 
663 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
664 {
665 	struct flush_kcq_data *flush_data = data;
666 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
667 
668 	spin_lock(&kcq->lock);
669 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
670 			      flush_data->list);
671 	sbitmap_clear_bit(sb, bitnr);
672 	spin_unlock(&kcq->lock);
673 
674 	return true;
675 }
676 
677 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
678 				  unsigned int sched_domain,
679 				  struct list_head *list)
680 {
681 	struct flush_kcq_data data = {
682 		.khd = khd,
683 		.sched_domain = sched_domain,
684 		.list = list,
685 	};
686 
687 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
688 			     flush_busy_kcq, &data);
689 }
690 
691 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
692 			     void *key)
693 {
694 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
695 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
696 
697 	sbitmap_del_wait_queue(wait);
698 	blk_mq_run_hw_queue(hctx, true);
699 	return 1;
700 }
701 
702 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
703 				  struct kyber_hctx_data *khd,
704 				  struct blk_mq_hw_ctx *hctx)
705 {
706 	unsigned int sched_domain = khd->cur_domain;
707 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
708 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
709 	struct sbq_wait_state *ws;
710 	int nr;
711 
712 	nr = __sbitmap_queue_get(domain_tokens);
713 
714 	/*
715 	 * If we failed to get a domain token, make sure the hardware queue is
716 	 * run when one becomes available. Note that this is serialized on
717 	 * khd->lock, but we still need to be careful about the waker.
718 	 */
719 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
720 		ws = sbq_wait_ptr(domain_tokens,
721 				  &khd->wait_index[sched_domain]);
722 		khd->domain_ws[sched_domain] = ws;
723 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
724 
725 		/*
726 		 * Try again in case a token was freed before we got on the wait
727 		 * queue.
728 		 */
729 		nr = __sbitmap_queue_get(domain_tokens);
730 	}
731 
732 	/*
733 	 * If we got a token while we were on the wait queue, remove ourselves
734 	 * from the wait queue to ensure that all wake ups make forward
735 	 * progress. It's possible that the waker already deleted the entry
736 	 * between the !list_empty_careful() check and us grabbing the lock, but
737 	 * list_del_init() is okay with that.
738 	 */
739 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
740 		ws = khd->domain_ws[sched_domain];
741 		spin_lock_irq(&ws->wait.lock);
742 		sbitmap_del_wait_queue(wait);
743 		spin_unlock_irq(&ws->wait.lock);
744 	}
745 
746 	return nr;
747 }
748 
749 static struct request *
750 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
751 			  struct kyber_hctx_data *khd,
752 			  struct blk_mq_hw_ctx *hctx)
753 {
754 	struct list_head *rqs;
755 	struct request *rq;
756 	int nr;
757 
758 	rqs = &khd->rqs[khd->cur_domain];
759 
760 	/*
761 	 * If we already have a flushed request, then we just need to get a
762 	 * token for it. Otherwise, if there are pending requests in the kcqs,
763 	 * flush the kcqs, but only if we can get a token. If not, we should
764 	 * leave the requests in the kcqs so that they can be merged. Note that
765 	 * khd->lock serializes the flushes, so if we observed any bit set in
766 	 * the kcq_map, we will always get a request.
767 	 */
768 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
769 	if (rq) {
770 		nr = kyber_get_domain_token(kqd, khd, hctx);
771 		if (nr >= 0) {
772 			khd->batching++;
773 			rq_set_domain_token(rq, nr);
774 			list_del_init(&rq->queuelist);
775 			return rq;
776 		} else {
777 			trace_kyber_throttled(kqd->q,
778 					      kyber_domain_names[khd->cur_domain]);
779 		}
780 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
781 		nr = kyber_get_domain_token(kqd, khd, hctx);
782 		if (nr >= 0) {
783 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
784 			rq = list_first_entry(rqs, struct request, queuelist);
785 			khd->batching++;
786 			rq_set_domain_token(rq, nr);
787 			list_del_init(&rq->queuelist);
788 			return rq;
789 		} else {
790 			trace_kyber_throttled(kqd->q,
791 					      kyber_domain_names[khd->cur_domain]);
792 		}
793 	}
794 
795 	/* There were either no pending requests or no tokens. */
796 	return NULL;
797 }
798 
799 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
800 {
801 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
802 	struct kyber_hctx_data *khd = hctx->sched_data;
803 	struct request *rq;
804 	int i;
805 
806 	spin_lock(&khd->lock);
807 
808 	/*
809 	 * First, if we are still entitled to batch, try to dispatch a request
810 	 * from the batch.
811 	 */
812 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
813 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
814 		if (rq)
815 			goto out;
816 	}
817 
818 	/*
819 	 * Either,
820 	 * 1. We were no longer entitled to a batch.
821 	 * 2. The domain we were batching didn't have any requests.
822 	 * 3. The domain we were batching was out of tokens.
823 	 *
824 	 * Start another batch. Note that this wraps back around to the original
825 	 * domain if no other domains have requests or tokens.
826 	 */
827 	khd->batching = 0;
828 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
829 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
830 			khd->cur_domain = 0;
831 		else
832 			khd->cur_domain++;
833 
834 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
835 		if (rq)
836 			goto out;
837 	}
838 
839 	rq = NULL;
840 out:
841 	spin_unlock(&khd->lock);
842 	return rq;
843 }
844 
845 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
846 {
847 	struct kyber_hctx_data *khd = hctx->sched_data;
848 	int i;
849 
850 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
851 		if (!list_empty_careful(&khd->rqs[i]) ||
852 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
853 			return true;
854 	}
855 
856 	return false;
857 }
858 
859 #define KYBER_LAT_SHOW_STORE(domain, name)				\
860 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
861 				       char *page)			\
862 {									\
863 	struct kyber_queue_data *kqd = e->elevator_data;		\
864 									\
865 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
866 }									\
867 									\
868 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
869 					const char *page, size_t count)	\
870 {									\
871 	struct kyber_queue_data *kqd = e->elevator_data;		\
872 	unsigned long long nsec;					\
873 	int ret;							\
874 									\
875 	ret = kstrtoull(page, 10, &nsec);				\
876 	if (ret)							\
877 		return ret;						\
878 									\
879 	kqd->latency_targets[domain] = nsec;				\
880 									\
881 	return count;							\
882 }
883 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
884 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
885 #undef KYBER_LAT_SHOW_STORE
886 
887 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
888 static struct elv_fs_entry kyber_sched_attrs[] = {
889 	KYBER_LAT_ATTR(read),
890 	KYBER_LAT_ATTR(write),
891 	__ATTR_NULL
892 };
893 #undef KYBER_LAT_ATTR
894 
895 #ifdef CONFIG_BLK_DEBUG_FS
896 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
897 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
898 {									\
899 	struct request_queue *q = data;					\
900 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
901 									\
902 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
903 	return 0;							\
904 }									\
905 									\
906 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
907 	__acquires(&khd->lock)						\
908 {									\
909 	struct blk_mq_hw_ctx *hctx = m->private;			\
910 	struct kyber_hctx_data *khd = hctx->sched_data;			\
911 									\
912 	spin_lock(&khd->lock);						\
913 	return seq_list_start(&khd->rqs[domain], *pos);			\
914 }									\
915 									\
916 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
917 				     loff_t *pos)			\
918 {									\
919 	struct blk_mq_hw_ctx *hctx = m->private;			\
920 	struct kyber_hctx_data *khd = hctx->sched_data;			\
921 									\
922 	return seq_list_next(v, &khd->rqs[domain], pos);		\
923 }									\
924 									\
925 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
926 	__releases(&khd->lock)						\
927 {									\
928 	struct blk_mq_hw_ctx *hctx = m->private;			\
929 	struct kyber_hctx_data *khd = hctx->sched_data;			\
930 									\
931 	spin_unlock(&khd->lock);					\
932 }									\
933 									\
934 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
935 	.start	= kyber_##name##_rqs_start,				\
936 	.next	= kyber_##name##_rqs_next,				\
937 	.stop	= kyber_##name##_rqs_stop,				\
938 	.show	= blk_mq_debugfs_rq_show,				\
939 };									\
940 									\
941 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
942 {									\
943 	struct blk_mq_hw_ctx *hctx = data;				\
944 	struct kyber_hctx_data *khd = hctx->sched_data;			\
945 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
946 									\
947 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
948 	return 0;							\
949 }
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
954 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
955 
956 static int kyber_async_depth_show(void *data, struct seq_file *m)
957 {
958 	struct request_queue *q = data;
959 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
960 
961 	seq_printf(m, "%u\n", kqd->async_depth);
962 	return 0;
963 }
964 
965 static int kyber_cur_domain_show(void *data, struct seq_file *m)
966 {
967 	struct blk_mq_hw_ctx *hctx = data;
968 	struct kyber_hctx_data *khd = hctx->sched_data;
969 
970 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
971 	return 0;
972 }
973 
974 static int kyber_batching_show(void *data, struct seq_file *m)
975 {
976 	struct blk_mq_hw_ctx *hctx = data;
977 	struct kyber_hctx_data *khd = hctx->sched_data;
978 
979 	seq_printf(m, "%u\n", khd->batching);
980 	return 0;
981 }
982 
983 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
984 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
985 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
986 	KYBER_QUEUE_DOMAIN_ATTRS(read),
987 	KYBER_QUEUE_DOMAIN_ATTRS(write),
988 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
989 	KYBER_QUEUE_DOMAIN_ATTRS(other),
990 	{"async_depth", 0400, kyber_async_depth_show},
991 	{},
992 };
993 #undef KYBER_QUEUE_DOMAIN_ATTRS
994 
995 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
996 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
997 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
998 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
999 	KYBER_HCTX_DOMAIN_ATTRS(read),
1000 	KYBER_HCTX_DOMAIN_ATTRS(write),
1001 	KYBER_HCTX_DOMAIN_ATTRS(discard),
1002 	KYBER_HCTX_DOMAIN_ATTRS(other),
1003 	{"cur_domain", 0400, kyber_cur_domain_show},
1004 	{"batching", 0400, kyber_batching_show},
1005 	{},
1006 };
1007 #undef KYBER_HCTX_DOMAIN_ATTRS
1008 #endif
1009 
1010 static struct elevator_type kyber_sched = {
1011 	.ops = {
1012 		.init_sched = kyber_init_sched,
1013 		.exit_sched = kyber_exit_sched,
1014 		.init_hctx = kyber_init_hctx,
1015 		.exit_hctx = kyber_exit_hctx,
1016 		.limit_depth = kyber_limit_depth,
1017 		.bio_merge = kyber_bio_merge,
1018 		.prepare_request = kyber_prepare_request,
1019 		.insert_requests = kyber_insert_requests,
1020 		.finish_request = kyber_finish_request,
1021 		.requeue_request = kyber_finish_request,
1022 		.completed_request = kyber_completed_request,
1023 		.dispatch_request = kyber_dispatch_request,
1024 		.has_work = kyber_has_work,
1025 		.depth_updated = kyber_depth_updated,
1026 	},
1027 #ifdef CONFIG_BLK_DEBUG_FS
1028 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1029 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1030 #endif
1031 	.elevator_attrs = kyber_sched_attrs,
1032 	.elevator_name = "kyber",
1033 	.elevator_features = ELEVATOR_F_MQ_AWARE,
1034 	.elevator_owner = THIS_MODULE,
1035 };
1036 
1037 static int __init kyber_init(void)
1038 {
1039 	return elv_register(&kyber_sched);
1040 }
1041 
1042 static void __exit kyber_exit(void)
1043 {
1044 	elv_unregister(&kyber_sched);
1045 }
1046 
1047 module_init(kyber_init);
1048 module_exit(kyber_exit);
1049 
1050 MODULE_AUTHOR("Omar Sandoval");
1051 MODULE_LICENSE("GPL");
1052 MODULE_DESCRIPTION("Kyber I/O scheduler");
1053