1 /* 2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using 3 * scalable techniques. 4 * 5 * Copyright (C) 2017 Facebook 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public 9 * License v2 as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <https://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/blkdev.h> 22 #include <linux/blk-mq.h> 23 #include <linux/elevator.h> 24 #include <linux/module.h> 25 #include <linux/sbitmap.h> 26 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-debugfs.h" 30 #include "blk-mq-sched.h" 31 #include "blk-mq-tag.h" 32 #include "blk-stat.h" 33 34 /* Scheduling domains. */ 35 enum { 36 KYBER_READ, 37 KYBER_SYNC_WRITE, 38 KYBER_OTHER, /* Async writes, discard, etc. */ 39 KYBER_NUM_DOMAINS, 40 }; 41 42 enum { 43 KYBER_MIN_DEPTH = 256, 44 45 /* 46 * In order to prevent starvation of synchronous requests by a flood of 47 * asynchronous requests, we reserve 25% of requests for synchronous 48 * operations. 49 */ 50 KYBER_ASYNC_PERCENT = 75, 51 }; 52 53 /* 54 * Initial device-wide depths for each scheduling domain. 55 * 56 * Even for fast devices with lots of tags like NVMe, you can saturate 57 * the device with only a fraction of the maximum possible queue depth. 58 * So, we cap these to a reasonable value. 59 */ 60 static const unsigned int kyber_depth[] = { 61 [KYBER_READ] = 256, 62 [KYBER_SYNC_WRITE] = 128, 63 [KYBER_OTHER] = 64, 64 }; 65 66 /* 67 * Scheduling domain batch sizes. We favor reads. 68 */ 69 static const unsigned int kyber_batch_size[] = { 70 [KYBER_READ] = 16, 71 [KYBER_SYNC_WRITE] = 8, 72 [KYBER_OTHER] = 8, 73 }; 74 75 struct kyber_queue_data { 76 struct request_queue *q; 77 78 struct blk_stat_callback *cb; 79 80 /* 81 * The device is divided into multiple scheduling domains based on the 82 * request type. Each domain has a fixed number of in-flight requests of 83 * that type device-wide, limited by these tokens. 84 */ 85 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; 86 87 /* 88 * Async request percentage, converted to per-word depth for 89 * sbitmap_get_shallow(). 90 */ 91 unsigned int async_depth; 92 93 /* Target latencies in nanoseconds. */ 94 u64 read_lat_nsec, write_lat_nsec; 95 }; 96 97 struct kyber_hctx_data { 98 spinlock_t lock; 99 struct list_head rqs[KYBER_NUM_DOMAINS]; 100 unsigned int cur_domain; 101 unsigned int batching; 102 wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS]; 103 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS]; 104 atomic_t wait_index[KYBER_NUM_DOMAINS]; 105 }; 106 107 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 108 void *key); 109 110 static int rq_sched_domain(const struct request *rq) 111 { 112 unsigned int op = rq->cmd_flags; 113 114 if ((op & REQ_OP_MASK) == REQ_OP_READ) 115 return KYBER_READ; 116 else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op)) 117 return KYBER_SYNC_WRITE; 118 else 119 return KYBER_OTHER; 120 } 121 122 enum { 123 NONE = 0, 124 GOOD = 1, 125 GREAT = 2, 126 BAD = -1, 127 AWFUL = -2, 128 }; 129 130 #define IS_GOOD(status) ((status) > 0) 131 #define IS_BAD(status) ((status) < 0) 132 133 static int kyber_lat_status(struct blk_stat_callback *cb, 134 unsigned int sched_domain, u64 target) 135 { 136 u64 latency; 137 138 if (!cb->stat[sched_domain].nr_samples) 139 return NONE; 140 141 latency = cb->stat[sched_domain].mean; 142 if (latency >= 2 * target) 143 return AWFUL; 144 else if (latency > target) 145 return BAD; 146 else if (latency <= target / 2) 147 return GREAT; 148 else /* (latency <= target) */ 149 return GOOD; 150 } 151 152 /* 153 * Adjust the read or synchronous write depth given the status of reads and 154 * writes. The goal is that the latencies of the two domains are fair (i.e., if 155 * one is good, then the other is good). 156 */ 157 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd, 158 unsigned int sched_domain, int this_status, 159 int other_status) 160 { 161 unsigned int orig_depth, depth; 162 163 /* 164 * If this domain had no samples, or reads and writes are both good or 165 * both bad, don't adjust the depth. 166 */ 167 if (this_status == NONE || 168 (IS_GOOD(this_status) && IS_GOOD(other_status)) || 169 (IS_BAD(this_status) && IS_BAD(other_status))) 170 return; 171 172 orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth; 173 174 if (other_status == NONE) { 175 depth++; 176 } else { 177 switch (this_status) { 178 case GOOD: 179 if (other_status == AWFUL) 180 depth -= max(depth / 4, 1U); 181 else 182 depth -= max(depth / 8, 1U); 183 break; 184 case GREAT: 185 if (other_status == AWFUL) 186 depth /= 2; 187 else 188 depth -= max(depth / 4, 1U); 189 break; 190 case BAD: 191 depth++; 192 break; 193 case AWFUL: 194 if (other_status == GREAT) 195 depth += 2; 196 else 197 depth++; 198 break; 199 } 200 } 201 202 depth = clamp(depth, 1U, kyber_depth[sched_domain]); 203 if (depth != orig_depth) 204 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); 205 } 206 207 /* 208 * Adjust the depth of other requests given the status of reads and synchronous 209 * writes. As long as either domain is doing fine, we don't throttle, but if 210 * both domains are doing badly, we throttle heavily. 211 */ 212 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd, 213 int read_status, int write_status, 214 bool have_samples) 215 { 216 unsigned int orig_depth, depth; 217 int status; 218 219 orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth; 220 221 if (read_status == NONE && write_status == NONE) { 222 depth += 2; 223 } else if (have_samples) { 224 if (read_status == NONE) 225 status = write_status; 226 else if (write_status == NONE) 227 status = read_status; 228 else 229 status = max(read_status, write_status); 230 switch (status) { 231 case GREAT: 232 depth += 2; 233 break; 234 case GOOD: 235 depth++; 236 break; 237 case BAD: 238 depth -= max(depth / 4, 1U); 239 break; 240 case AWFUL: 241 depth /= 2; 242 break; 243 } 244 } 245 246 depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]); 247 if (depth != orig_depth) 248 sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth); 249 } 250 251 /* 252 * Apply heuristics for limiting queue depths based on gathered latency 253 * statistics. 254 */ 255 static void kyber_stat_timer_fn(struct blk_stat_callback *cb) 256 { 257 struct kyber_queue_data *kqd = cb->data; 258 int read_status, write_status; 259 260 read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec); 261 write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec); 262 263 kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status); 264 kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status); 265 kyber_adjust_other_depth(kqd, read_status, write_status, 266 cb->stat[KYBER_OTHER].nr_samples != 0); 267 268 /* 269 * Continue monitoring latencies if we aren't hitting the targets or 270 * we're still throttling other requests. 271 */ 272 if (!blk_stat_is_active(kqd->cb) && 273 ((IS_BAD(read_status) || IS_BAD(write_status) || 274 kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER]))) 275 blk_stat_activate_msecs(kqd->cb, 100); 276 } 277 278 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd) 279 { 280 /* 281 * All of the hardware queues have the same depth, so we can just grab 282 * the shift of the first one. 283 */ 284 return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift; 285 } 286 287 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) 288 { 289 struct kyber_queue_data *kqd; 290 unsigned int max_tokens; 291 unsigned int shift; 292 int ret = -ENOMEM; 293 int i; 294 295 kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); 296 if (!kqd) 297 goto err; 298 kqd->q = q; 299 300 kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain, 301 KYBER_NUM_DOMAINS, kqd); 302 if (!kqd->cb) 303 goto err_kqd; 304 305 /* 306 * The maximum number of tokens for any scheduling domain is at least 307 * the queue depth of a single hardware queue. If the hardware doesn't 308 * have many tags, still provide a reasonable number. 309 */ 310 max_tokens = max_t(unsigned int, q->tag_set->queue_depth, 311 KYBER_MIN_DEPTH); 312 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 313 WARN_ON(!kyber_depth[i]); 314 WARN_ON(!kyber_batch_size[i]); 315 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], 316 max_tokens, -1, false, GFP_KERNEL, 317 q->node); 318 if (ret) { 319 while (--i >= 0) 320 sbitmap_queue_free(&kqd->domain_tokens[i]); 321 goto err_cb; 322 } 323 sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]); 324 } 325 326 shift = kyber_sched_tags_shift(kqd); 327 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U; 328 329 kqd->read_lat_nsec = 2000000ULL; 330 kqd->write_lat_nsec = 10000000ULL; 331 332 return kqd; 333 334 err_cb: 335 blk_stat_free_callback(kqd->cb); 336 err_kqd: 337 kfree(kqd); 338 err: 339 return ERR_PTR(ret); 340 } 341 342 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e) 343 { 344 struct kyber_queue_data *kqd; 345 struct elevator_queue *eq; 346 347 eq = elevator_alloc(q, e); 348 if (!eq) 349 return -ENOMEM; 350 351 kqd = kyber_queue_data_alloc(q); 352 if (IS_ERR(kqd)) { 353 kobject_put(&eq->kobj); 354 return PTR_ERR(kqd); 355 } 356 357 eq->elevator_data = kqd; 358 q->elevator = eq; 359 360 blk_stat_add_callback(q, kqd->cb); 361 362 return 0; 363 } 364 365 static void kyber_exit_sched(struct elevator_queue *e) 366 { 367 struct kyber_queue_data *kqd = e->elevator_data; 368 struct request_queue *q = kqd->q; 369 int i; 370 371 blk_stat_remove_callback(q, kqd->cb); 372 373 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 374 sbitmap_queue_free(&kqd->domain_tokens[i]); 375 blk_stat_free_callback(kqd->cb); 376 kfree(kqd); 377 } 378 379 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 380 { 381 struct kyber_hctx_data *khd; 382 int i; 383 384 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); 385 if (!khd) 386 return -ENOMEM; 387 388 spin_lock_init(&khd->lock); 389 390 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 391 INIT_LIST_HEAD(&khd->rqs[i]); 392 init_waitqueue_func_entry(&khd->domain_wait[i], 393 kyber_domain_wake); 394 khd->domain_wait[i].private = hctx; 395 INIT_LIST_HEAD(&khd->domain_wait[i].entry); 396 atomic_set(&khd->wait_index[i], 0); 397 } 398 399 khd->cur_domain = 0; 400 khd->batching = 0; 401 402 hctx->sched_data = khd; 403 404 return 0; 405 } 406 407 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 408 { 409 kfree(hctx->sched_data); 410 } 411 412 static int rq_get_domain_token(struct request *rq) 413 { 414 return (long)rq->elv.priv[0]; 415 } 416 417 static void rq_set_domain_token(struct request *rq, int token) 418 { 419 rq->elv.priv[0] = (void *)(long)token; 420 } 421 422 static void rq_clear_domain_token(struct kyber_queue_data *kqd, 423 struct request *rq) 424 { 425 unsigned int sched_domain; 426 int nr; 427 428 nr = rq_get_domain_token(rq); 429 if (nr != -1) { 430 sched_domain = rq_sched_domain(rq); 431 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, 432 rq->mq_ctx->cpu); 433 } 434 } 435 436 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data) 437 { 438 /* 439 * We use the scheduler tags as per-hardware queue queueing tokens. 440 * Async requests can be limited at this stage. 441 */ 442 if (!op_is_sync(op)) { 443 struct kyber_queue_data *kqd = data->q->elevator->elevator_data; 444 445 data->shallow_depth = kqd->async_depth; 446 } 447 } 448 449 static void kyber_prepare_request(struct request *rq, struct bio *bio) 450 { 451 rq_set_domain_token(rq, -1); 452 } 453 454 static void kyber_finish_request(struct request *rq) 455 { 456 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 457 458 rq_clear_domain_token(kqd, rq); 459 } 460 461 static void kyber_completed_request(struct request *rq) 462 { 463 struct request_queue *q = rq->q; 464 struct kyber_queue_data *kqd = q->elevator->elevator_data; 465 unsigned int sched_domain; 466 u64 now, latency, target; 467 468 /* 469 * Check if this request met our latency goal. If not, quickly gather 470 * some statistics and start throttling. 471 */ 472 sched_domain = rq_sched_domain(rq); 473 switch (sched_domain) { 474 case KYBER_READ: 475 target = kqd->read_lat_nsec; 476 break; 477 case KYBER_SYNC_WRITE: 478 target = kqd->write_lat_nsec; 479 break; 480 default: 481 return; 482 } 483 484 /* If we are already monitoring latencies, don't check again. */ 485 if (blk_stat_is_active(kqd->cb)) 486 return; 487 488 now = __blk_stat_time(ktime_to_ns(ktime_get())); 489 if (now < blk_stat_time(&rq->issue_stat)) 490 return; 491 492 latency = now - blk_stat_time(&rq->issue_stat); 493 494 if (latency > target) 495 blk_stat_activate_msecs(kqd->cb, 10); 496 } 497 498 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd, 499 struct blk_mq_hw_ctx *hctx) 500 { 501 LIST_HEAD(rq_list); 502 struct request *rq, *next; 503 504 blk_mq_flush_busy_ctxs(hctx, &rq_list); 505 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 506 unsigned int sched_domain; 507 508 sched_domain = rq_sched_domain(rq); 509 list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]); 510 } 511 } 512 513 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 514 void *key) 515 { 516 struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private); 517 518 list_del_init(&wait->entry); 519 blk_mq_run_hw_queue(hctx, true); 520 return 1; 521 } 522 523 static int kyber_get_domain_token(struct kyber_queue_data *kqd, 524 struct kyber_hctx_data *khd, 525 struct blk_mq_hw_ctx *hctx) 526 { 527 unsigned int sched_domain = khd->cur_domain; 528 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; 529 wait_queue_entry_t *wait = &khd->domain_wait[sched_domain]; 530 struct sbq_wait_state *ws; 531 int nr; 532 533 nr = __sbitmap_queue_get(domain_tokens); 534 535 /* 536 * If we failed to get a domain token, make sure the hardware queue is 537 * run when one becomes available. Note that this is serialized on 538 * khd->lock, but we still need to be careful about the waker. 539 */ 540 if (nr < 0 && list_empty_careful(&wait->entry)) { 541 ws = sbq_wait_ptr(domain_tokens, 542 &khd->wait_index[sched_domain]); 543 khd->domain_ws[sched_domain] = ws; 544 add_wait_queue(&ws->wait, wait); 545 546 /* 547 * Try again in case a token was freed before we got on the wait 548 * queue. 549 */ 550 nr = __sbitmap_queue_get(domain_tokens); 551 } 552 553 /* 554 * If we got a token while we were on the wait queue, remove ourselves 555 * from the wait queue to ensure that all wake ups make forward 556 * progress. It's possible that the waker already deleted the entry 557 * between the !list_empty_careful() check and us grabbing the lock, but 558 * list_del_init() is okay with that. 559 */ 560 if (nr >= 0 && !list_empty_careful(&wait->entry)) { 561 ws = khd->domain_ws[sched_domain]; 562 spin_lock_irq(&ws->wait.lock); 563 list_del_init(&wait->entry); 564 spin_unlock_irq(&ws->wait.lock); 565 } 566 567 return nr; 568 } 569 570 static struct request * 571 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, 572 struct kyber_hctx_data *khd, 573 struct blk_mq_hw_ctx *hctx, 574 bool *flushed) 575 { 576 struct list_head *rqs; 577 struct request *rq; 578 int nr; 579 580 rqs = &khd->rqs[khd->cur_domain]; 581 rq = list_first_entry_or_null(rqs, struct request, queuelist); 582 583 /* 584 * If there wasn't already a pending request and we haven't flushed the 585 * software queues yet, flush the software queues and check again. 586 */ 587 if (!rq && !*flushed) { 588 kyber_flush_busy_ctxs(khd, hctx); 589 *flushed = true; 590 rq = list_first_entry_or_null(rqs, struct request, queuelist); 591 } 592 593 if (rq) { 594 nr = kyber_get_domain_token(kqd, khd, hctx); 595 if (nr >= 0) { 596 khd->batching++; 597 rq_set_domain_token(rq, nr); 598 list_del_init(&rq->queuelist); 599 return rq; 600 } 601 } 602 603 /* There were either no pending requests or no tokens. */ 604 return NULL; 605 } 606 607 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) 608 { 609 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 610 struct kyber_hctx_data *khd = hctx->sched_data; 611 bool flushed = false; 612 struct request *rq; 613 int i; 614 615 spin_lock(&khd->lock); 616 617 /* 618 * First, if we are still entitled to batch, try to dispatch a request 619 * from the batch. 620 */ 621 if (khd->batching < kyber_batch_size[khd->cur_domain]) { 622 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed); 623 if (rq) 624 goto out; 625 } 626 627 /* 628 * Either, 629 * 1. We were no longer entitled to a batch. 630 * 2. The domain we were batching didn't have any requests. 631 * 3. The domain we were batching was out of tokens. 632 * 633 * Start another batch. Note that this wraps back around to the original 634 * domain if no other domains have requests or tokens. 635 */ 636 khd->batching = 0; 637 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 638 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) 639 khd->cur_domain = 0; 640 else 641 khd->cur_domain++; 642 643 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed); 644 if (rq) 645 goto out; 646 } 647 648 rq = NULL; 649 out: 650 spin_unlock(&khd->lock); 651 return rq; 652 } 653 654 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) 655 { 656 struct kyber_hctx_data *khd = hctx->sched_data; 657 int i; 658 659 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 660 if (!list_empty_careful(&khd->rqs[i])) 661 return true; 662 } 663 return sbitmap_any_bit_set(&hctx->ctx_map); 664 } 665 666 #define KYBER_LAT_SHOW_STORE(op) \ 667 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e, \ 668 char *page) \ 669 { \ 670 struct kyber_queue_data *kqd = e->elevator_data; \ 671 \ 672 return sprintf(page, "%llu\n", kqd->op##_lat_nsec); \ 673 } \ 674 \ 675 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e, \ 676 const char *page, size_t count) \ 677 { \ 678 struct kyber_queue_data *kqd = e->elevator_data; \ 679 unsigned long long nsec; \ 680 int ret; \ 681 \ 682 ret = kstrtoull(page, 10, &nsec); \ 683 if (ret) \ 684 return ret; \ 685 \ 686 kqd->op##_lat_nsec = nsec; \ 687 \ 688 return count; \ 689 } 690 KYBER_LAT_SHOW_STORE(read); 691 KYBER_LAT_SHOW_STORE(write); 692 #undef KYBER_LAT_SHOW_STORE 693 694 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) 695 static struct elv_fs_entry kyber_sched_attrs[] = { 696 KYBER_LAT_ATTR(read), 697 KYBER_LAT_ATTR(write), 698 __ATTR_NULL 699 }; 700 #undef KYBER_LAT_ATTR 701 702 #ifdef CONFIG_BLK_DEBUG_FS 703 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ 704 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ 705 { \ 706 struct request_queue *q = data; \ 707 struct kyber_queue_data *kqd = q->elevator->elevator_data; \ 708 \ 709 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ 710 return 0; \ 711 } \ 712 \ 713 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ 714 __acquires(&khd->lock) \ 715 { \ 716 struct blk_mq_hw_ctx *hctx = m->private; \ 717 struct kyber_hctx_data *khd = hctx->sched_data; \ 718 \ 719 spin_lock(&khd->lock); \ 720 return seq_list_start(&khd->rqs[domain], *pos); \ 721 } \ 722 \ 723 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ 724 loff_t *pos) \ 725 { \ 726 struct blk_mq_hw_ctx *hctx = m->private; \ 727 struct kyber_hctx_data *khd = hctx->sched_data; \ 728 \ 729 return seq_list_next(v, &khd->rqs[domain], pos); \ 730 } \ 731 \ 732 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ 733 __releases(&khd->lock) \ 734 { \ 735 struct blk_mq_hw_ctx *hctx = m->private; \ 736 struct kyber_hctx_data *khd = hctx->sched_data; \ 737 \ 738 spin_unlock(&khd->lock); \ 739 } \ 740 \ 741 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ 742 .start = kyber_##name##_rqs_start, \ 743 .next = kyber_##name##_rqs_next, \ 744 .stop = kyber_##name##_rqs_stop, \ 745 .show = blk_mq_debugfs_rq_show, \ 746 }; \ 747 \ 748 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ 749 { \ 750 struct blk_mq_hw_ctx *hctx = data; \ 751 struct kyber_hctx_data *khd = hctx->sched_data; \ 752 wait_queue_entry_t *wait = &khd->domain_wait[domain]; \ 753 \ 754 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \ 755 return 0; \ 756 } 757 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) 758 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write) 759 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) 760 #undef KYBER_DEBUGFS_DOMAIN_ATTRS 761 762 static int kyber_async_depth_show(void *data, struct seq_file *m) 763 { 764 struct request_queue *q = data; 765 struct kyber_queue_data *kqd = q->elevator->elevator_data; 766 767 seq_printf(m, "%u\n", kqd->async_depth); 768 return 0; 769 } 770 771 static int kyber_cur_domain_show(void *data, struct seq_file *m) 772 { 773 struct blk_mq_hw_ctx *hctx = data; 774 struct kyber_hctx_data *khd = hctx->sched_data; 775 776 switch (khd->cur_domain) { 777 case KYBER_READ: 778 seq_puts(m, "READ\n"); 779 break; 780 case KYBER_SYNC_WRITE: 781 seq_puts(m, "SYNC_WRITE\n"); 782 break; 783 case KYBER_OTHER: 784 seq_puts(m, "OTHER\n"); 785 break; 786 default: 787 seq_printf(m, "%u\n", khd->cur_domain); 788 break; 789 } 790 return 0; 791 } 792 793 static int kyber_batching_show(void *data, struct seq_file *m) 794 { 795 struct blk_mq_hw_ctx *hctx = data; 796 struct kyber_hctx_data *khd = hctx->sched_data; 797 798 seq_printf(m, "%u\n", khd->batching); 799 return 0; 800 } 801 802 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ 803 {#name "_tokens", 0400, kyber_##name##_tokens_show} 804 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { 805 KYBER_QUEUE_DOMAIN_ATTRS(read), 806 KYBER_QUEUE_DOMAIN_ATTRS(sync_write), 807 KYBER_QUEUE_DOMAIN_ATTRS(other), 808 {"async_depth", 0400, kyber_async_depth_show}, 809 {}, 810 }; 811 #undef KYBER_QUEUE_DOMAIN_ATTRS 812 813 #define KYBER_HCTX_DOMAIN_ATTRS(name) \ 814 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ 815 {#name "_waiting", 0400, kyber_##name##_waiting_show} 816 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { 817 KYBER_HCTX_DOMAIN_ATTRS(read), 818 KYBER_HCTX_DOMAIN_ATTRS(sync_write), 819 KYBER_HCTX_DOMAIN_ATTRS(other), 820 {"cur_domain", 0400, kyber_cur_domain_show}, 821 {"batching", 0400, kyber_batching_show}, 822 {}, 823 }; 824 #undef KYBER_HCTX_DOMAIN_ATTRS 825 #endif 826 827 static struct elevator_type kyber_sched = { 828 .ops.mq = { 829 .init_sched = kyber_init_sched, 830 .exit_sched = kyber_exit_sched, 831 .init_hctx = kyber_init_hctx, 832 .exit_hctx = kyber_exit_hctx, 833 .limit_depth = kyber_limit_depth, 834 .prepare_request = kyber_prepare_request, 835 .finish_request = kyber_finish_request, 836 .completed_request = kyber_completed_request, 837 .dispatch_request = kyber_dispatch_request, 838 .has_work = kyber_has_work, 839 }, 840 .uses_mq = true, 841 #ifdef CONFIG_BLK_DEBUG_FS 842 .queue_debugfs_attrs = kyber_queue_debugfs_attrs, 843 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, 844 #endif 845 .elevator_attrs = kyber_sched_attrs, 846 .elevator_name = "kyber", 847 .elevator_owner = THIS_MODULE, 848 }; 849 850 static int __init kyber_init(void) 851 { 852 return elv_register(&kyber_sched); 853 } 854 855 static void __exit kyber_exit(void) 856 { 857 elv_unregister(&kyber_sched); 858 } 859 860 module_init(kyber_init); 861 module_exit(kyber_exit); 862 863 MODULE_AUTHOR("Omar Sandoval"); 864 MODULE_LICENSE("GPL"); 865 MODULE_DESCRIPTION("Kyber I/O scheduler"); 866