1 /* 2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using 3 * scalable techniques. 4 * 5 * Copyright (C) 2017 Facebook 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public 9 * License v2 as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <https://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/blkdev.h> 22 #include <linux/blk-mq.h> 23 #include <linux/elevator.h> 24 #include <linux/module.h> 25 #include <linux/sbitmap.h> 26 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-debugfs.h" 30 #include "blk-mq-sched.h" 31 #include "blk-mq-tag.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/kyber.h> 35 36 /* 37 * Scheduling domains: the device is divided into multiple domains based on the 38 * request type. 39 */ 40 enum { 41 KYBER_READ, 42 KYBER_WRITE, 43 KYBER_DISCARD, 44 KYBER_OTHER, 45 KYBER_NUM_DOMAINS, 46 }; 47 48 static const char *kyber_domain_names[] = { 49 [KYBER_READ] = "READ", 50 [KYBER_WRITE] = "WRITE", 51 [KYBER_DISCARD] = "DISCARD", 52 [KYBER_OTHER] = "OTHER", 53 }; 54 55 enum { 56 /* 57 * In order to prevent starvation of synchronous requests by a flood of 58 * asynchronous requests, we reserve 25% of requests for synchronous 59 * operations. 60 */ 61 KYBER_ASYNC_PERCENT = 75, 62 }; 63 64 /* 65 * Maximum device-wide depth for each scheduling domain. 66 * 67 * Even for fast devices with lots of tags like NVMe, you can saturate the 68 * device with only a fraction of the maximum possible queue depth. So, we cap 69 * these to a reasonable value. 70 */ 71 static const unsigned int kyber_depth[] = { 72 [KYBER_READ] = 256, 73 [KYBER_WRITE] = 128, 74 [KYBER_DISCARD] = 64, 75 [KYBER_OTHER] = 16, 76 }; 77 78 /* 79 * Default latency targets for each scheduling domain. 80 */ 81 static const u64 kyber_latency_targets[] = { 82 [KYBER_READ] = 2ULL * NSEC_PER_MSEC, 83 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC, 84 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC, 85 }; 86 87 /* 88 * Batch size (number of requests we'll dispatch in a row) for each scheduling 89 * domain. 90 */ 91 static const unsigned int kyber_batch_size[] = { 92 [KYBER_READ] = 16, 93 [KYBER_WRITE] = 8, 94 [KYBER_DISCARD] = 1, 95 [KYBER_OTHER] = 1, 96 }; 97 98 /* 99 * Requests latencies are recorded in a histogram with buckets defined relative 100 * to the target latency: 101 * 102 * <= 1/4 * target latency 103 * <= 1/2 * target latency 104 * <= 3/4 * target latency 105 * <= target latency 106 * <= 1 1/4 * target latency 107 * <= 1 1/2 * target latency 108 * <= 1 3/4 * target latency 109 * > 1 3/4 * target latency 110 */ 111 enum { 112 /* 113 * The width of the latency histogram buckets is 114 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency. 115 */ 116 KYBER_LATENCY_SHIFT = 2, 117 /* 118 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency, 119 * thus, "good". 120 */ 121 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT, 122 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */ 123 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT, 124 }; 125 126 /* 127 * We measure both the total latency and the I/O latency (i.e., latency after 128 * submitting to the device). 129 */ 130 enum { 131 KYBER_TOTAL_LATENCY, 132 KYBER_IO_LATENCY, 133 }; 134 135 static const char *kyber_latency_type_names[] = { 136 [KYBER_TOTAL_LATENCY] = "total", 137 [KYBER_IO_LATENCY] = "I/O", 138 }; 139 140 /* 141 * Per-cpu latency histograms: total latency and I/O latency for each scheduling 142 * domain except for KYBER_OTHER. 143 */ 144 struct kyber_cpu_latency { 145 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 146 }; 147 148 /* 149 * There is a same mapping between ctx & hctx and kcq & khd, 150 * we use request->mq_ctx->index_hw to index the kcq in khd. 151 */ 152 struct kyber_ctx_queue { 153 /* 154 * Used to ensure operations on rq_list and kcq_map to be an atmoic one. 155 * Also protect the rqs on rq_list when merge. 156 */ 157 spinlock_t lock; 158 struct list_head rq_list[KYBER_NUM_DOMAINS]; 159 } ____cacheline_aligned_in_smp; 160 161 struct kyber_queue_data { 162 struct request_queue *q; 163 164 /* 165 * Each scheduling domain has a limited number of in-flight requests 166 * device-wide, limited by these tokens. 167 */ 168 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; 169 170 /* 171 * Async request percentage, converted to per-word depth for 172 * sbitmap_get_shallow(). 173 */ 174 unsigned int async_depth; 175 176 struct kyber_cpu_latency __percpu *cpu_latency; 177 178 /* Timer for stats aggregation and adjusting domain tokens. */ 179 struct timer_list timer; 180 181 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 182 183 unsigned long latency_timeout[KYBER_OTHER]; 184 185 int domain_p99[KYBER_OTHER]; 186 187 /* Target latencies in nanoseconds. */ 188 u64 latency_targets[KYBER_OTHER]; 189 }; 190 191 struct kyber_hctx_data { 192 spinlock_t lock; 193 struct list_head rqs[KYBER_NUM_DOMAINS]; 194 unsigned int cur_domain; 195 unsigned int batching; 196 struct kyber_ctx_queue *kcqs; 197 struct sbitmap kcq_map[KYBER_NUM_DOMAINS]; 198 wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS]; 199 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS]; 200 atomic_t wait_index[KYBER_NUM_DOMAINS]; 201 }; 202 203 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 204 void *key); 205 206 static unsigned int kyber_sched_domain(unsigned int op) 207 { 208 switch (op & REQ_OP_MASK) { 209 case REQ_OP_READ: 210 return KYBER_READ; 211 case REQ_OP_WRITE: 212 return KYBER_WRITE; 213 case REQ_OP_DISCARD: 214 return KYBER_DISCARD; 215 default: 216 return KYBER_OTHER; 217 } 218 } 219 220 static void flush_latency_buckets(struct kyber_queue_data *kqd, 221 struct kyber_cpu_latency *cpu_latency, 222 unsigned int sched_domain, unsigned int type) 223 { 224 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 225 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type]; 226 unsigned int bucket; 227 228 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 229 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0); 230 } 231 232 /* 233 * Calculate the histogram bucket with the given percentile rank, or -1 if there 234 * aren't enough samples yet. 235 */ 236 static int calculate_percentile(struct kyber_queue_data *kqd, 237 unsigned int sched_domain, unsigned int type, 238 unsigned int percentile) 239 { 240 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 241 unsigned int bucket, samples = 0, percentile_samples; 242 243 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 244 samples += buckets[bucket]; 245 246 if (!samples) 247 return -1; 248 249 /* 250 * We do the calculation once we have 500 samples or one second passes 251 * since the first sample was recorded, whichever comes first. 252 */ 253 if (!kqd->latency_timeout[sched_domain]) 254 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL); 255 if (samples < 500 && 256 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) { 257 return -1; 258 } 259 kqd->latency_timeout[sched_domain] = 0; 260 261 percentile_samples = DIV_ROUND_UP(samples * percentile, 100); 262 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) { 263 if (buckets[bucket] >= percentile_samples) 264 break; 265 percentile_samples -= buckets[bucket]; 266 } 267 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type])); 268 269 trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain], 270 kyber_latency_type_names[type], percentile, 271 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples); 272 273 return bucket; 274 } 275 276 static void kyber_resize_domain(struct kyber_queue_data *kqd, 277 unsigned int sched_domain, unsigned int depth) 278 { 279 depth = clamp(depth, 1U, kyber_depth[sched_domain]); 280 if (depth != kqd->domain_tokens[sched_domain].sb.depth) { 281 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); 282 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain], 283 depth); 284 } 285 } 286 287 static void kyber_timer_fn(struct timer_list *t) 288 { 289 struct kyber_queue_data *kqd = from_timer(kqd, t, timer); 290 unsigned int sched_domain; 291 int cpu; 292 bool bad = false; 293 294 /* Sum all of the per-cpu latency histograms. */ 295 for_each_online_cpu(cpu) { 296 struct kyber_cpu_latency *cpu_latency; 297 298 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu); 299 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 300 flush_latency_buckets(kqd, cpu_latency, sched_domain, 301 KYBER_TOTAL_LATENCY); 302 flush_latency_buckets(kqd, cpu_latency, sched_domain, 303 KYBER_IO_LATENCY); 304 } 305 } 306 307 /* 308 * Check if any domains have a high I/O latency, which might indicate 309 * congestion in the device. Note that we use the p90; we don't want to 310 * be too sensitive to outliers here. 311 */ 312 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 313 int p90; 314 315 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY, 316 90); 317 if (p90 >= KYBER_GOOD_BUCKETS) 318 bad = true; 319 } 320 321 /* 322 * Adjust the scheduling domain depths. If we determined that there was 323 * congestion, we throttle all domains with good latencies. Either way, 324 * we ease up on throttling domains with bad latencies. 325 */ 326 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 327 unsigned int orig_depth, depth; 328 int p99; 329 330 p99 = calculate_percentile(kqd, sched_domain, 331 KYBER_TOTAL_LATENCY, 99); 332 /* 333 * This is kind of subtle: different domains will not 334 * necessarily have enough samples to calculate the latency 335 * percentiles during the same window, so we have to remember 336 * the p99 for the next time we observe congestion; once we do, 337 * we don't want to throttle again until we get more data, so we 338 * reset it to -1. 339 */ 340 if (bad) { 341 if (p99 < 0) 342 p99 = kqd->domain_p99[sched_domain]; 343 kqd->domain_p99[sched_domain] = -1; 344 } else if (p99 >= 0) { 345 kqd->domain_p99[sched_domain] = p99; 346 } 347 if (p99 < 0) 348 continue; 349 350 /* 351 * If this domain has bad latency, throttle less. Otherwise, 352 * throttle more iff we determined that there is congestion. 353 * 354 * The new depth is scaled linearly with the p99 latency vs the 355 * latency target. E.g., if the p99 is 3/4 of the target, then 356 * we throttle down to 3/4 of the current depth, and if the p99 357 * is 2x the target, then we double the depth. 358 */ 359 if (bad || p99 >= KYBER_GOOD_BUCKETS) { 360 orig_depth = kqd->domain_tokens[sched_domain].sb.depth; 361 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT; 362 kyber_resize_domain(kqd, sched_domain, depth); 363 } 364 } 365 } 366 367 static unsigned int kyber_sched_tags_shift(struct request_queue *q) 368 { 369 /* 370 * All of the hardware queues have the same depth, so we can just grab 371 * the shift of the first one. 372 */ 373 return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift; 374 } 375 376 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) 377 { 378 struct kyber_queue_data *kqd; 379 unsigned int shift; 380 int ret = -ENOMEM; 381 int i; 382 383 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); 384 if (!kqd) 385 goto err; 386 387 kqd->q = q; 388 389 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency, 390 GFP_KERNEL | __GFP_ZERO); 391 if (!kqd->cpu_latency) 392 goto err_kqd; 393 394 timer_setup(&kqd->timer, kyber_timer_fn, 0); 395 396 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 397 WARN_ON(!kyber_depth[i]); 398 WARN_ON(!kyber_batch_size[i]); 399 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], 400 kyber_depth[i], -1, false, 401 GFP_KERNEL, q->node); 402 if (ret) { 403 while (--i >= 0) 404 sbitmap_queue_free(&kqd->domain_tokens[i]); 405 goto err_buckets; 406 } 407 } 408 409 for (i = 0; i < KYBER_OTHER; i++) { 410 kqd->domain_p99[i] = -1; 411 kqd->latency_targets[i] = kyber_latency_targets[i]; 412 } 413 414 shift = kyber_sched_tags_shift(q); 415 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U; 416 417 return kqd; 418 419 err_buckets: 420 free_percpu(kqd->cpu_latency); 421 err_kqd: 422 kfree(kqd); 423 err: 424 return ERR_PTR(ret); 425 } 426 427 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e) 428 { 429 struct kyber_queue_data *kqd; 430 struct elevator_queue *eq; 431 432 eq = elevator_alloc(q, e); 433 if (!eq) 434 return -ENOMEM; 435 436 kqd = kyber_queue_data_alloc(q); 437 if (IS_ERR(kqd)) { 438 kobject_put(&eq->kobj); 439 return PTR_ERR(kqd); 440 } 441 442 blk_stat_enable_accounting(q); 443 444 eq->elevator_data = kqd; 445 q->elevator = eq; 446 447 return 0; 448 } 449 450 static void kyber_exit_sched(struct elevator_queue *e) 451 { 452 struct kyber_queue_data *kqd = e->elevator_data; 453 int i; 454 455 del_timer_sync(&kqd->timer); 456 457 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 458 sbitmap_queue_free(&kqd->domain_tokens[i]); 459 free_percpu(kqd->cpu_latency); 460 kfree(kqd); 461 } 462 463 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq) 464 { 465 unsigned int i; 466 467 spin_lock_init(&kcq->lock); 468 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 469 INIT_LIST_HEAD(&kcq->rq_list[i]); 470 } 471 472 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 473 { 474 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 475 struct kyber_hctx_data *khd; 476 int i; 477 478 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); 479 if (!khd) 480 return -ENOMEM; 481 482 khd->kcqs = kmalloc_array_node(hctx->nr_ctx, 483 sizeof(struct kyber_ctx_queue), 484 GFP_KERNEL, hctx->numa_node); 485 if (!khd->kcqs) 486 goto err_khd; 487 488 for (i = 0; i < hctx->nr_ctx; i++) 489 kyber_ctx_queue_init(&khd->kcqs[i]); 490 491 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 492 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx, 493 ilog2(8), GFP_KERNEL, hctx->numa_node)) { 494 while (--i >= 0) 495 sbitmap_free(&khd->kcq_map[i]); 496 goto err_kcqs; 497 } 498 } 499 500 spin_lock_init(&khd->lock); 501 502 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 503 INIT_LIST_HEAD(&khd->rqs[i]); 504 init_waitqueue_func_entry(&khd->domain_wait[i], 505 kyber_domain_wake); 506 khd->domain_wait[i].private = hctx; 507 INIT_LIST_HEAD(&khd->domain_wait[i].entry); 508 atomic_set(&khd->wait_index[i], 0); 509 } 510 511 khd->cur_domain = 0; 512 khd->batching = 0; 513 514 hctx->sched_data = khd; 515 sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags, 516 kqd->async_depth); 517 518 return 0; 519 520 err_kcqs: 521 kfree(khd->kcqs); 522 err_khd: 523 kfree(khd); 524 return -ENOMEM; 525 } 526 527 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 528 { 529 struct kyber_hctx_data *khd = hctx->sched_data; 530 int i; 531 532 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 533 sbitmap_free(&khd->kcq_map[i]); 534 kfree(khd->kcqs); 535 kfree(hctx->sched_data); 536 } 537 538 static int rq_get_domain_token(struct request *rq) 539 { 540 return (long)rq->elv.priv[0]; 541 } 542 543 static void rq_set_domain_token(struct request *rq, int token) 544 { 545 rq->elv.priv[0] = (void *)(long)token; 546 } 547 548 static void rq_clear_domain_token(struct kyber_queue_data *kqd, 549 struct request *rq) 550 { 551 unsigned int sched_domain; 552 int nr; 553 554 nr = rq_get_domain_token(rq); 555 if (nr != -1) { 556 sched_domain = kyber_sched_domain(rq->cmd_flags); 557 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, 558 rq->mq_ctx->cpu); 559 } 560 } 561 562 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data) 563 { 564 /* 565 * We use the scheduler tags as per-hardware queue queueing tokens. 566 * Async requests can be limited at this stage. 567 */ 568 if (!op_is_sync(op)) { 569 struct kyber_queue_data *kqd = data->q->elevator->elevator_data; 570 571 data->shallow_depth = kqd->async_depth; 572 } 573 } 574 575 static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) 576 { 577 struct kyber_hctx_data *khd = hctx->sched_data; 578 struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue); 579 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw]; 580 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf); 581 struct list_head *rq_list = &kcq->rq_list[sched_domain]; 582 bool merged; 583 584 spin_lock(&kcq->lock); 585 merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio); 586 spin_unlock(&kcq->lock); 587 blk_mq_put_ctx(ctx); 588 589 return merged; 590 } 591 592 static void kyber_prepare_request(struct request *rq, struct bio *bio) 593 { 594 rq_set_domain_token(rq, -1); 595 } 596 597 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx, 598 struct list_head *rq_list, bool at_head) 599 { 600 struct kyber_hctx_data *khd = hctx->sched_data; 601 struct request *rq, *next; 602 603 list_for_each_entry_safe(rq, next, rq_list, queuelist) { 604 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags); 605 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw]; 606 struct list_head *head = &kcq->rq_list[sched_domain]; 607 608 spin_lock(&kcq->lock); 609 if (at_head) 610 list_move(&rq->queuelist, head); 611 else 612 list_move_tail(&rq->queuelist, head); 613 sbitmap_set_bit(&khd->kcq_map[sched_domain], 614 rq->mq_ctx->index_hw); 615 blk_mq_sched_request_inserted(rq); 616 spin_unlock(&kcq->lock); 617 } 618 } 619 620 static void kyber_finish_request(struct request *rq) 621 { 622 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 623 624 rq_clear_domain_token(kqd, rq); 625 } 626 627 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency, 628 unsigned int sched_domain, unsigned int type, 629 u64 target, u64 latency) 630 { 631 unsigned int bucket; 632 u64 divisor; 633 634 if (latency > 0) { 635 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1); 636 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor), 637 KYBER_LATENCY_BUCKETS - 1); 638 } else { 639 bucket = 0; 640 } 641 642 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]); 643 } 644 645 static void kyber_completed_request(struct request *rq, u64 now) 646 { 647 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 648 struct kyber_cpu_latency *cpu_latency; 649 unsigned int sched_domain; 650 u64 target; 651 652 sched_domain = kyber_sched_domain(rq->cmd_flags); 653 if (sched_domain == KYBER_OTHER) 654 return; 655 656 cpu_latency = get_cpu_ptr(kqd->cpu_latency); 657 target = kqd->latency_targets[sched_domain]; 658 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY, 659 target, now - rq->start_time_ns); 660 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target, 661 now - rq->io_start_time_ns); 662 put_cpu_ptr(kqd->cpu_latency); 663 664 timer_reduce(&kqd->timer, jiffies + HZ / 10); 665 } 666 667 struct flush_kcq_data { 668 struct kyber_hctx_data *khd; 669 unsigned int sched_domain; 670 struct list_head *list; 671 }; 672 673 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data) 674 { 675 struct flush_kcq_data *flush_data = data; 676 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr]; 677 678 spin_lock(&kcq->lock); 679 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain], 680 flush_data->list); 681 sbitmap_clear_bit(sb, bitnr); 682 spin_unlock(&kcq->lock); 683 684 return true; 685 } 686 687 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd, 688 unsigned int sched_domain, 689 struct list_head *list) 690 { 691 struct flush_kcq_data data = { 692 .khd = khd, 693 .sched_domain = sched_domain, 694 .list = list, 695 }; 696 697 sbitmap_for_each_set(&khd->kcq_map[sched_domain], 698 flush_busy_kcq, &data); 699 } 700 701 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 702 void *key) 703 { 704 struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private); 705 706 list_del_init(&wait->entry); 707 blk_mq_run_hw_queue(hctx, true); 708 return 1; 709 } 710 711 static int kyber_get_domain_token(struct kyber_queue_data *kqd, 712 struct kyber_hctx_data *khd, 713 struct blk_mq_hw_ctx *hctx) 714 { 715 unsigned int sched_domain = khd->cur_domain; 716 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; 717 wait_queue_entry_t *wait = &khd->domain_wait[sched_domain]; 718 struct sbq_wait_state *ws; 719 int nr; 720 721 nr = __sbitmap_queue_get(domain_tokens); 722 723 /* 724 * If we failed to get a domain token, make sure the hardware queue is 725 * run when one becomes available. Note that this is serialized on 726 * khd->lock, but we still need to be careful about the waker. 727 */ 728 if (nr < 0 && list_empty_careful(&wait->entry)) { 729 ws = sbq_wait_ptr(domain_tokens, 730 &khd->wait_index[sched_domain]); 731 khd->domain_ws[sched_domain] = ws; 732 add_wait_queue(&ws->wait, wait); 733 734 /* 735 * Try again in case a token was freed before we got on the wait 736 * queue. 737 */ 738 nr = __sbitmap_queue_get(domain_tokens); 739 } 740 741 /* 742 * If we got a token while we were on the wait queue, remove ourselves 743 * from the wait queue to ensure that all wake ups make forward 744 * progress. It's possible that the waker already deleted the entry 745 * between the !list_empty_careful() check and us grabbing the lock, but 746 * list_del_init() is okay with that. 747 */ 748 if (nr >= 0 && !list_empty_careful(&wait->entry)) { 749 ws = khd->domain_ws[sched_domain]; 750 spin_lock_irq(&ws->wait.lock); 751 list_del_init(&wait->entry); 752 spin_unlock_irq(&ws->wait.lock); 753 } 754 755 return nr; 756 } 757 758 static struct request * 759 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, 760 struct kyber_hctx_data *khd, 761 struct blk_mq_hw_ctx *hctx) 762 { 763 struct list_head *rqs; 764 struct request *rq; 765 int nr; 766 767 rqs = &khd->rqs[khd->cur_domain]; 768 769 /* 770 * If we already have a flushed request, then we just need to get a 771 * token for it. Otherwise, if there are pending requests in the kcqs, 772 * flush the kcqs, but only if we can get a token. If not, we should 773 * leave the requests in the kcqs so that they can be merged. Note that 774 * khd->lock serializes the flushes, so if we observed any bit set in 775 * the kcq_map, we will always get a request. 776 */ 777 rq = list_first_entry_or_null(rqs, struct request, queuelist); 778 if (rq) { 779 nr = kyber_get_domain_token(kqd, khd, hctx); 780 if (nr >= 0) { 781 khd->batching++; 782 rq_set_domain_token(rq, nr); 783 list_del_init(&rq->queuelist); 784 return rq; 785 } else { 786 trace_kyber_throttled(kqd->q, 787 kyber_domain_names[khd->cur_domain]); 788 } 789 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) { 790 nr = kyber_get_domain_token(kqd, khd, hctx); 791 if (nr >= 0) { 792 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs); 793 rq = list_first_entry(rqs, struct request, queuelist); 794 khd->batching++; 795 rq_set_domain_token(rq, nr); 796 list_del_init(&rq->queuelist); 797 return rq; 798 } else { 799 trace_kyber_throttled(kqd->q, 800 kyber_domain_names[khd->cur_domain]); 801 } 802 } 803 804 /* There were either no pending requests or no tokens. */ 805 return NULL; 806 } 807 808 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) 809 { 810 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 811 struct kyber_hctx_data *khd = hctx->sched_data; 812 struct request *rq; 813 int i; 814 815 spin_lock(&khd->lock); 816 817 /* 818 * First, if we are still entitled to batch, try to dispatch a request 819 * from the batch. 820 */ 821 if (khd->batching < kyber_batch_size[khd->cur_domain]) { 822 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 823 if (rq) 824 goto out; 825 } 826 827 /* 828 * Either, 829 * 1. We were no longer entitled to a batch. 830 * 2. The domain we were batching didn't have any requests. 831 * 3. The domain we were batching was out of tokens. 832 * 833 * Start another batch. Note that this wraps back around to the original 834 * domain if no other domains have requests or tokens. 835 */ 836 khd->batching = 0; 837 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 838 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) 839 khd->cur_domain = 0; 840 else 841 khd->cur_domain++; 842 843 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 844 if (rq) 845 goto out; 846 } 847 848 rq = NULL; 849 out: 850 spin_unlock(&khd->lock); 851 return rq; 852 } 853 854 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) 855 { 856 struct kyber_hctx_data *khd = hctx->sched_data; 857 int i; 858 859 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 860 if (!list_empty_careful(&khd->rqs[i]) || 861 sbitmap_any_bit_set(&khd->kcq_map[i])) 862 return true; 863 } 864 865 return false; 866 } 867 868 #define KYBER_LAT_SHOW_STORE(domain, name) \ 869 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \ 870 char *page) \ 871 { \ 872 struct kyber_queue_data *kqd = e->elevator_data; \ 873 \ 874 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \ 875 } \ 876 \ 877 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \ 878 const char *page, size_t count) \ 879 { \ 880 struct kyber_queue_data *kqd = e->elevator_data; \ 881 unsigned long long nsec; \ 882 int ret; \ 883 \ 884 ret = kstrtoull(page, 10, &nsec); \ 885 if (ret) \ 886 return ret; \ 887 \ 888 kqd->latency_targets[domain] = nsec; \ 889 \ 890 return count; \ 891 } 892 KYBER_LAT_SHOW_STORE(KYBER_READ, read); 893 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write); 894 #undef KYBER_LAT_SHOW_STORE 895 896 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) 897 static struct elv_fs_entry kyber_sched_attrs[] = { 898 KYBER_LAT_ATTR(read), 899 KYBER_LAT_ATTR(write), 900 __ATTR_NULL 901 }; 902 #undef KYBER_LAT_ATTR 903 904 #ifdef CONFIG_BLK_DEBUG_FS 905 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ 906 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ 907 { \ 908 struct request_queue *q = data; \ 909 struct kyber_queue_data *kqd = q->elevator->elevator_data; \ 910 \ 911 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ 912 return 0; \ 913 } \ 914 \ 915 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ 916 __acquires(&khd->lock) \ 917 { \ 918 struct blk_mq_hw_ctx *hctx = m->private; \ 919 struct kyber_hctx_data *khd = hctx->sched_data; \ 920 \ 921 spin_lock(&khd->lock); \ 922 return seq_list_start(&khd->rqs[domain], *pos); \ 923 } \ 924 \ 925 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ 926 loff_t *pos) \ 927 { \ 928 struct blk_mq_hw_ctx *hctx = m->private; \ 929 struct kyber_hctx_data *khd = hctx->sched_data; \ 930 \ 931 return seq_list_next(v, &khd->rqs[domain], pos); \ 932 } \ 933 \ 934 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ 935 __releases(&khd->lock) \ 936 { \ 937 struct blk_mq_hw_ctx *hctx = m->private; \ 938 struct kyber_hctx_data *khd = hctx->sched_data; \ 939 \ 940 spin_unlock(&khd->lock); \ 941 } \ 942 \ 943 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ 944 .start = kyber_##name##_rqs_start, \ 945 .next = kyber_##name##_rqs_next, \ 946 .stop = kyber_##name##_rqs_stop, \ 947 .show = blk_mq_debugfs_rq_show, \ 948 }; \ 949 \ 950 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ 951 { \ 952 struct blk_mq_hw_ctx *hctx = data; \ 953 struct kyber_hctx_data *khd = hctx->sched_data; \ 954 wait_queue_entry_t *wait = &khd->domain_wait[domain]; \ 955 \ 956 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \ 957 return 0; \ 958 } 959 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) 960 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write) 961 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard) 962 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) 963 #undef KYBER_DEBUGFS_DOMAIN_ATTRS 964 965 static int kyber_async_depth_show(void *data, struct seq_file *m) 966 { 967 struct request_queue *q = data; 968 struct kyber_queue_data *kqd = q->elevator->elevator_data; 969 970 seq_printf(m, "%u\n", kqd->async_depth); 971 return 0; 972 } 973 974 static int kyber_cur_domain_show(void *data, struct seq_file *m) 975 { 976 struct blk_mq_hw_ctx *hctx = data; 977 struct kyber_hctx_data *khd = hctx->sched_data; 978 979 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]); 980 return 0; 981 } 982 983 static int kyber_batching_show(void *data, struct seq_file *m) 984 { 985 struct blk_mq_hw_ctx *hctx = data; 986 struct kyber_hctx_data *khd = hctx->sched_data; 987 988 seq_printf(m, "%u\n", khd->batching); 989 return 0; 990 } 991 992 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ 993 {#name "_tokens", 0400, kyber_##name##_tokens_show} 994 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { 995 KYBER_QUEUE_DOMAIN_ATTRS(read), 996 KYBER_QUEUE_DOMAIN_ATTRS(write), 997 KYBER_QUEUE_DOMAIN_ATTRS(discard), 998 KYBER_QUEUE_DOMAIN_ATTRS(other), 999 {"async_depth", 0400, kyber_async_depth_show}, 1000 {}, 1001 }; 1002 #undef KYBER_QUEUE_DOMAIN_ATTRS 1003 1004 #define KYBER_HCTX_DOMAIN_ATTRS(name) \ 1005 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ 1006 {#name "_waiting", 0400, kyber_##name##_waiting_show} 1007 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { 1008 KYBER_HCTX_DOMAIN_ATTRS(read), 1009 KYBER_HCTX_DOMAIN_ATTRS(write), 1010 KYBER_HCTX_DOMAIN_ATTRS(discard), 1011 KYBER_HCTX_DOMAIN_ATTRS(other), 1012 {"cur_domain", 0400, kyber_cur_domain_show}, 1013 {"batching", 0400, kyber_batching_show}, 1014 {}, 1015 }; 1016 #undef KYBER_HCTX_DOMAIN_ATTRS 1017 #endif 1018 1019 static struct elevator_type kyber_sched = { 1020 .ops.mq = { 1021 .init_sched = kyber_init_sched, 1022 .exit_sched = kyber_exit_sched, 1023 .init_hctx = kyber_init_hctx, 1024 .exit_hctx = kyber_exit_hctx, 1025 .limit_depth = kyber_limit_depth, 1026 .bio_merge = kyber_bio_merge, 1027 .prepare_request = kyber_prepare_request, 1028 .insert_requests = kyber_insert_requests, 1029 .finish_request = kyber_finish_request, 1030 .requeue_request = kyber_finish_request, 1031 .completed_request = kyber_completed_request, 1032 .dispatch_request = kyber_dispatch_request, 1033 .has_work = kyber_has_work, 1034 }, 1035 .uses_mq = true, 1036 #ifdef CONFIG_BLK_DEBUG_FS 1037 .queue_debugfs_attrs = kyber_queue_debugfs_attrs, 1038 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, 1039 #endif 1040 .elevator_attrs = kyber_sched_attrs, 1041 .elevator_name = "kyber", 1042 .elevator_owner = THIS_MODULE, 1043 }; 1044 1045 static int __init kyber_init(void) 1046 { 1047 return elv_register(&kyber_sched); 1048 } 1049 1050 static void __exit kyber_exit(void) 1051 { 1052 elv_unregister(&kyber_sched); 1053 } 1054 1055 module_init(kyber_init); 1056 module_exit(kyber_exit); 1057 1058 MODULE_AUTHOR("Omar Sandoval"); 1059 MODULE_LICENSE("GPL"); 1060 MODULE_DESCRIPTION("Kyber I/O scheduler"); 1061