xref: /openbmc/linux/block/kyber-iosched.c (revision 4fc4dca8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15 
16 #include "blk.h"
17 #include "blk-mq.h"
18 #include "blk-mq-debugfs.h"
19 #include "blk-mq-sched.h"
20 #include "blk-mq-tag.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
24 
25 /*
26  * Scheduling domains: the device is divided into multiple domains based on the
27  * request type.
28  */
29 enum {
30 	KYBER_READ,
31 	KYBER_WRITE,
32 	KYBER_DISCARD,
33 	KYBER_OTHER,
34 	KYBER_NUM_DOMAINS,
35 };
36 
37 static const char *kyber_domain_names[] = {
38 	[KYBER_READ] = "READ",
39 	[KYBER_WRITE] = "WRITE",
40 	[KYBER_DISCARD] = "DISCARD",
41 	[KYBER_OTHER] = "OTHER",
42 };
43 
44 enum {
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Maximum device-wide depth for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate the
57  * device with only a fraction of the maximum possible queue depth. So, we cap
58  * these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_WRITE] = 128,
63 	[KYBER_DISCARD] = 64,
64 	[KYBER_OTHER] = 16,
65 };
66 
67 /*
68  * Default latency targets for each scheduling domain.
69  */
70 static const u64 kyber_latency_targets[] = {
71 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74 };
75 
76 /*
77  * Batch size (number of requests we'll dispatch in a row) for each scheduling
78  * domain.
79  */
80 static const unsigned int kyber_batch_size[] = {
81 	[KYBER_READ] = 16,
82 	[KYBER_WRITE] = 8,
83 	[KYBER_DISCARD] = 1,
84 	[KYBER_OTHER] = 1,
85 };
86 
87 /*
88  * Requests latencies are recorded in a histogram with buckets defined relative
89  * to the target latency:
90  *
91  * <= 1/4 * target latency
92  * <= 1/2 * target latency
93  * <= 3/4 * target latency
94  * <= target latency
95  * <= 1 1/4 * target latency
96  * <= 1 1/2 * target latency
97  * <= 1 3/4 * target latency
98  * > 1 3/4 * target latency
99  */
100 enum {
101 	/*
102 	 * The width of the latency histogram buckets is
103 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 	 */
105 	KYBER_LATENCY_SHIFT = 2,
106 	/*
107 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 	 * thus, "good".
109 	 */
110 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113 };
114 
115 /*
116  * We measure both the total latency and the I/O latency (i.e., latency after
117  * submitting to the device).
118  */
119 enum {
120 	KYBER_TOTAL_LATENCY,
121 	KYBER_IO_LATENCY,
122 };
123 
124 static const char *kyber_latency_type_names[] = {
125 	[KYBER_TOTAL_LATENCY] = "total",
126 	[KYBER_IO_LATENCY] = "I/O",
127 };
128 
129 /*
130  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131  * domain except for KYBER_OTHER.
132  */
133 struct kyber_cpu_latency {
134 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135 };
136 
137 /*
138  * There is a same mapping between ctx & hctx and kcq & khd,
139  * we use request->mq_ctx->index_hw to index the kcq in khd.
140  */
141 struct kyber_ctx_queue {
142 	/*
143 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 	 * Also protect the rqs on rq_list when merge.
145 	 */
146 	spinlock_t lock;
147 	struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
149 
150 struct kyber_queue_data {
151 	struct request_queue *q;
152 
153 	/*
154 	 * Each scheduling domain has a limited number of in-flight requests
155 	 * device-wide, limited by these tokens.
156 	 */
157 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
158 
159 	/*
160 	 * Async request percentage, converted to per-word depth for
161 	 * sbitmap_get_shallow().
162 	 */
163 	unsigned int async_depth;
164 
165 	struct kyber_cpu_latency __percpu *cpu_latency;
166 
167 	/* Timer for stats aggregation and adjusting domain tokens. */
168 	struct timer_list timer;
169 
170 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
171 
172 	unsigned long latency_timeout[KYBER_OTHER];
173 
174 	int domain_p99[KYBER_OTHER];
175 
176 	/* Target latencies in nanoseconds. */
177 	u64 latency_targets[KYBER_OTHER];
178 };
179 
180 struct kyber_hctx_data {
181 	spinlock_t lock;
182 	struct list_head rqs[KYBER_NUM_DOMAINS];
183 	unsigned int cur_domain;
184 	unsigned int batching;
185 	struct kyber_ctx_queue *kcqs;
186 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
187 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
188 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
189 	atomic_t wait_index[KYBER_NUM_DOMAINS];
190 };
191 
192 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
193 			     void *key);
194 
195 static unsigned int kyber_sched_domain(unsigned int op)
196 {
197 	switch (op & REQ_OP_MASK) {
198 	case REQ_OP_READ:
199 		return KYBER_READ;
200 	case REQ_OP_WRITE:
201 		return KYBER_WRITE;
202 	case REQ_OP_DISCARD:
203 		return KYBER_DISCARD;
204 	default:
205 		return KYBER_OTHER;
206 	}
207 }
208 
209 static void flush_latency_buckets(struct kyber_queue_data *kqd,
210 				  struct kyber_cpu_latency *cpu_latency,
211 				  unsigned int sched_domain, unsigned int type)
212 {
213 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
215 	unsigned int bucket;
216 
217 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
219 }
220 
221 /*
222  * Calculate the histogram bucket with the given percentile rank, or -1 if there
223  * aren't enough samples yet.
224  */
225 static int calculate_percentile(struct kyber_queue_data *kqd,
226 				unsigned int sched_domain, unsigned int type,
227 				unsigned int percentile)
228 {
229 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230 	unsigned int bucket, samples = 0, percentile_samples;
231 
232 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233 		samples += buckets[bucket];
234 
235 	if (!samples)
236 		return -1;
237 
238 	/*
239 	 * We do the calculation once we have 500 samples or one second passes
240 	 * since the first sample was recorded, whichever comes first.
241 	 */
242 	if (!kqd->latency_timeout[sched_domain])
243 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
244 	if (samples < 500 &&
245 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
246 		return -1;
247 	}
248 	kqd->latency_timeout[sched_domain] = 0;
249 
250 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252 		if (buckets[bucket] >= percentile_samples)
253 			break;
254 		percentile_samples -= buckets[bucket];
255 	}
256 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
257 
258 	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259 			    kyber_latency_type_names[type], percentile,
260 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
261 
262 	return bucket;
263 }
264 
265 static void kyber_resize_domain(struct kyber_queue_data *kqd,
266 				unsigned int sched_domain, unsigned int depth)
267 {
268 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
269 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
270 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
271 		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
272 				   depth);
273 	}
274 }
275 
276 static void kyber_timer_fn(struct timer_list *t)
277 {
278 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279 	unsigned int sched_domain;
280 	int cpu;
281 	bool bad = false;
282 
283 	/* Sum all of the per-cpu latency histograms. */
284 	for_each_online_cpu(cpu) {
285 		struct kyber_cpu_latency *cpu_latency;
286 
287 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 					      KYBER_TOTAL_LATENCY);
291 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 					      KYBER_IO_LATENCY);
293 		}
294 	}
295 
296 	/*
297 	 * Check if any domains have a high I/O latency, which might indicate
298 	 * congestion in the device. Note that we use the p90; we don't want to
299 	 * be too sensitive to outliers here.
300 	 */
301 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
302 		int p90;
303 
304 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
305 					   90);
306 		if (p90 >= KYBER_GOOD_BUCKETS)
307 			bad = true;
308 	}
309 
310 	/*
311 	 * Adjust the scheduling domain depths. If we determined that there was
312 	 * congestion, we throttle all domains with good latencies. Either way,
313 	 * we ease up on throttling domains with bad latencies.
314 	 */
315 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316 		unsigned int orig_depth, depth;
317 		int p99;
318 
319 		p99 = calculate_percentile(kqd, sched_domain,
320 					   KYBER_TOTAL_LATENCY, 99);
321 		/*
322 		 * This is kind of subtle: different domains will not
323 		 * necessarily have enough samples to calculate the latency
324 		 * percentiles during the same window, so we have to remember
325 		 * the p99 for the next time we observe congestion; once we do,
326 		 * we don't want to throttle again until we get more data, so we
327 		 * reset it to -1.
328 		 */
329 		if (bad) {
330 			if (p99 < 0)
331 				p99 = kqd->domain_p99[sched_domain];
332 			kqd->domain_p99[sched_domain] = -1;
333 		} else if (p99 >= 0) {
334 			kqd->domain_p99[sched_domain] = p99;
335 		}
336 		if (p99 < 0)
337 			continue;
338 
339 		/*
340 		 * If this domain has bad latency, throttle less. Otherwise,
341 		 * throttle more iff we determined that there is congestion.
342 		 *
343 		 * The new depth is scaled linearly with the p99 latency vs the
344 		 * latency target. E.g., if the p99 is 3/4 of the target, then
345 		 * we throttle down to 3/4 of the current depth, and if the p99
346 		 * is 2x the target, then we double the depth.
347 		 */
348 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351 			kyber_resize_domain(kqd, sched_domain, depth);
352 		}
353 	}
354 }
355 
356 static unsigned int kyber_sched_tags_shift(struct request_queue *q)
357 {
358 	/*
359 	 * All of the hardware queues have the same depth, so we can just grab
360 	 * the shift of the first one.
361 	 */
362 	return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
363 }
364 
365 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
366 {
367 	struct kyber_queue_data *kqd;
368 	unsigned int shift;
369 	int ret = -ENOMEM;
370 	int i;
371 
372 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
373 	if (!kqd)
374 		goto err;
375 
376 	kqd->q = q;
377 
378 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
379 					    GFP_KERNEL | __GFP_ZERO);
380 	if (!kqd->cpu_latency)
381 		goto err_kqd;
382 
383 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
384 
385 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
386 		WARN_ON(!kyber_depth[i]);
387 		WARN_ON(!kyber_batch_size[i]);
388 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
389 					      kyber_depth[i], -1, false,
390 					      GFP_KERNEL, q->node);
391 		if (ret) {
392 			while (--i >= 0)
393 				sbitmap_queue_free(&kqd->domain_tokens[i]);
394 			goto err_buckets;
395 		}
396 	}
397 
398 	for (i = 0; i < KYBER_OTHER; i++) {
399 		kqd->domain_p99[i] = -1;
400 		kqd->latency_targets[i] = kyber_latency_targets[i];
401 	}
402 
403 	shift = kyber_sched_tags_shift(q);
404 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
405 
406 	return kqd;
407 
408 err_buckets:
409 	free_percpu(kqd->cpu_latency);
410 err_kqd:
411 	kfree(kqd);
412 err:
413 	return ERR_PTR(ret);
414 }
415 
416 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
417 {
418 	struct kyber_queue_data *kqd;
419 	struct elevator_queue *eq;
420 
421 	eq = elevator_alloc(q, e);
422 	if (!eq)
423 		return -ENOMEM;
424 
425 	kqd = kyber_queue_data_alloc(q);
426 	if (IS_ERR(kqd)) {
427 		kobject_put(&eq->kobj);
428 		return PTR_ERR(kqd);
429 	}
430 
431 	blk_stat_enable_accounting(q);
432 
433 	eq->elevator_data = kqd;
434 	q->elevator = eq;
435 
436 	return 0;
437 }
438 
439 static void kyber_exit_sched(struct elevator_queue *e)
440 {
441 	struct kyber_queue_data *kqd = e->elevator_data;
442 	int i;
443 
444 	del_timer_sync(&kqd->timer);
445 
446 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447 		sbitmap_queue_free(&kqd->domain_tokens[i]);
448 	free_percpu(kqd->cpu_latency);
449 	kfree(kqd);
450 }
451 
452 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
453 {
454 	unsigned int i;
455 
456 	spin_lock_init(&kcq->lock);
457 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
458 		INIT_LIST_HEAD(&kcq->rq_list[i]);
459 }
460 
461 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
462 {
463 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
464 	struct kyber_hctx_data *khd;
465 	int i;
466 
467 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
468 	if (!khd)
469 		return -ENOMEM;
470 
471 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
472 				       sizeof(struct kyber_ctx_queue),
473 				       GFP_KERNEL, hctx->numa_node);
474 	if (!khd->kcqs)
475 		goto err_khd;
476 
477 	for (i = 0; i < hctx->nr_ctx; i++)
478 		kyber_ctx_queue_init(&khd->kcqs[i]);
479 
480 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
481 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
482 				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
483 			while (--i >= 0)
484 				sbitmap_free(&khd->kcq_map[i]);
485 			goto err_kcqs;
486 		}
487 	}
488 
489 	spin_lock_init(&khd->lock);
490 
491 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492 		INIT_LIST_HEAD(&khd->rqs[i]);
493 		khd->domain_wait[i].sbq = NULL;
494 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
495 					  kyber_domain_wake);
496 		khd->domain_wait[i].wait.private = hctx;
497 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
498 		atomic_set(&khd->wait_index[i], 0);
499 	}
500 
501 	khd->cur_domain = 0;
502 	khd->batching = 0;
503 
504 	hctx->sched_data = khd;
505 	sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
506 					kqd->async_depth);
507 
508 	return 0;
509 
510 err_kcqs:
511 	kfree(khd->kcqs);
512 err_khd:
513 	kfree(khd);
514 	return -ENOMEM;
515 }
516 
517 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
518 {
519 	struct kyber_hctx_data *khd = hctx->sched_data;
520 	int i;
521 
522 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
523 		sbitmap_free(&khd->kcq_map[i]);
524 	kfree(khd->kcqs);
525 	kfree(hctx->sched_data);
526 }
527 
528 static int rq_get_domain_token(struct request *rq)
529 {
530 	return (long)rq->elv.priv[0];
531 }
532 
533 static void rq_set_domain_token(struct request *rq, int token)
534 {
535 	rq->elv.priv[0] = (void *)(long)token;
536 }
537 
538 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
539 				  struct request *rq)
540 {
541 	unsigned int sched_domain;
542 	int nr;
543 
544 	nr = rq_get_domain_token(rq);
545 	if (nr != -1) {
546 		sched_domain = kyber_sched_domain(rq->cmd_flags);
547 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
548 				    rq->mq_ctx->cpu);
549 	}
550 }
551 
552 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
553 {
554 	/*
555 	 * We use the scheduler tags as per-hardware queue queueing tokens.
556 	 * Async requests can be limited at this stage.
557 	 */
558 	if (!op_is_sync(op)) {
559 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
560 
561 		data->shallow_depth = kqd->async_depth;
562 	}
563 }
564 
565 static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
566 {
567 	struct kyber_hctx_data *khd = hctx->sched_data;
568 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
569 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
570 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
571 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
572 	bool merged;
573 
574 	spin_lock(&kcq->lock);
575 	merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio);
576 	spin_unlock(&kcq->lock);
577 	blk_mq_put_ctx(ctx);
578 
579 	return merged;
580 }
581 
582 static void kyber_prepare_request(struct request *rq, struct bio *bio)
583 {
584 	rq_set_domain_token(rq, -1);
585 }
586 
587 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
588 				  struct list_head *rq_list, bool at_head)
589 {
590 	struct kyber_hctx_data *khd = hctx->sched_data;
591 	struct request *rq, *next;
592 
593 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
594 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
595 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
596 		struct list_head *head = &kcq->rq_list[sched_domain];
597 
598 		spin_lock(&kcq->lock);
599 		if (at_head)
600 			list_move(&rq->queuelist, head);
601 		else
602 			list_move_tail(&rq->queuelist, head);
603 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
604 				rq->mq_ctx->index_hw[hctx->type]);
605 		blk_mq_sched_request_inserted(rq);
606 		spin_unlock(&kcq->lock);
607 	}
608 }
609 
610 static void kyber_finish_request(struct request *rq)
611 {
612 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
613 
614 	rq_clear_domain_token(kqd, rq);
615 }
616 
617 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
618 			       unsigned int sched_domain, unsigned int type,
619 			       u64 target, u64 latency)
620 {
621 	unsigned int bucket;
622 	u64 divisor;
623 
624 	if (latency > 0) {
625 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
626 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
627 			       KYBER_LATENCY_BUCKETS - 1);
628 	} else {
629 		bucket = 0;
630 	}
631 
632 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
633 }
634 
635 static void kyber_completed_request(struct request *rq, u64 now)
636 {
637 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
638 	struct kyber_cpu_latency *cpu_latency;
639 	unsigned int sched_domain;
640 	u64 target;
641 
642 	sched_domain = kyber_sched_domain(rq->cmd_flags);
643 	if (sched_domain == KYBER_OTHER)
644 		return;
645 
646 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
647 	target = kqd->latency_targets[sched_domain];
648 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
649 			   target, now - rq->start_time_ns);
650 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
651 			   now - rq->io_start_time_ns);
652 	put_cpu_ptr(kqd->cpu_latency);
653 
654 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
655 }
656 
657 struct flush_kcq_data {
658 	struct kyber_hctx_data *khd;
659 	unsigned int sched_domain;
660 	struct list_head *list;
661 };
662 
663 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
664 {
665 	struct flush_kcq_data *flush_data = data;
666 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
667 
668 	spin_lock(&kcq->lock);
669 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
670 			      flush_data->list);
671 	sbitmap_clear_bit(sb, bitnr);
672 	spin_unlock(&kcq->lock);
673 
674 	return true;
675 }
676 
677 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
678 				  unsigned int sched_domain,
679 				  struct list_head *list)
680 {
681 	struct flush_kcq_data data = {
682 		.khd = khd,
683 		.sched_domain = sched_domain,
684 		.list = list,
685 	};
686 
687 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
688 			     flush_busy_kcq, &data);
689 }
690 
691 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
692 			     void *key)
693 {
694 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
695 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
696 
697 	sbitmap_del_wait_queue(wait);
698 	blk_mq_run_hw_queue(hctx, true);
699 	return 1;
700 }
701 
702 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
703 				  struct kyber_hctx_data *khd,
704 				  struct blk_mq_hw_ctx *hctx)
705 {
706 	unsigned int sched_domain = khd->cur_domain;
707 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
708 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
709 	struct sbq_wait_state *ws;
710 	int nr;
711 
712 	nr = __sbitmap_queue_get(domain_tokens);
713 
714 	/*
715 	 * If we failed to get a domain token, make sure the hardware queue is
716 	 * run when one becomes available. Note that this is serialized on
717 	 * khd->lock, but we still need to be careful about the waker.
718 	 */
719 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
720 		ws = sbq_wait_ptr(domain_tokens,
721 				  &khd->wait_index[sched_domain]);
722 		khd->domain_ws[sched_domain] = ws;
723 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
724 
725 		/*
726 		 * Try again in case a token was freed before we got on the wait
727 		 * queue.
728 		 */
729 		nr = __sbitmap_queue_get(domain_tokens);
730 	}
731 
732 	/*
733 	 * If we got a token while we were on the wait queue, remove ourselves
734 	 * from the wait queue to ensure that all wake ups make forward
735 	 * progress. It's possible that the waker already deleted the entry
736 	 * between the !list_empty_careful() check and us grabbing the lock, but
737 	 * list_del_init() is okay with that.
738 	 */
739 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
740 		ws = khd->domain_ws[sched_domain];
741 		spin_lock_irq(&ws->wait.lock);
742 		sbitmap_del_wait_queue(wait);
743 		spin_unlock_irq(&ws->wait.lock);
744 	}
745 
746 	return nr;
747 }
748 
749 static struct request *
750 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
751 			  struct kyber_hctx_data *khd,
752 			  struct blk_mq_hw_ctx *hctx)
753 {
754 	struct list_head *rqs;
755 	struct request *rq;
756 	int nr;
757 
758 	rqs = &khd->rqs[khd->cur_domain];
759 
760 	/*
761 	 * If we already have a flushed request, then we just need to get a
762 	 * token for it. Otherwise, if there are pending requests in the kcqs,
763 	 * flush the kcqs, but only if we can get a token. If not, we should
764 	 * leave the requests in the kcqs so that they can be merged. Note that
765 	 * khd->lock serializes the flushes, so if we observed any bit set in
766 	 * the kcq_map, we will always get a request.
767 	 */
768 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
769 	if (rq) {
770 		nr = kyber_get_domain_token(kqd, khd, hctx);
771 		if (nr >= 0) {
772 			khd->batching++;
773 			rq_set_domain_token(rq, nr);
774 			list_del_init(&rq->queuelist);
775 			return rq;
776 		} else {
777 			trace_kyber_throttled(kqd->q,
778 					      kyber_domain_names[khd->cur_domain]);
779 		}
780 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
781 		nr = kyber_get_domain_token(kqd, khd, hctx);
782 		if (nr >= 0) {
783 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
784 			rq = list_first_entry(rqs, struct request, queuelist);
785 			khd->batching++;
786 			rq_set_domain_token(rq, nr);
787 			list_del_init(&rq->queuelist);
788 			return rq;
789 		} else {
790 			trace_kyber_throttled(kqd->q,
791 					      kyber_domain_names[khd->cur_domain]);
792 		}
793 	}
794 
795 	/* There were either no pending requests or no tokens. */
796 	return NULL;
797 }
798 
799 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
800 {
801 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
802 	struct kyber_hctx_data *khd = hctx->sched_data;
803 	struct request *rq;
804 	int i;
805 
806 	spin_lock(&khd->lock);
807 
808 	/*
809 	 * First, if we are still entitled to batch, try to dispatch a request
810 	 * from the batch.
811 	 */
812 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
813 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
814 		if (rq)
815 			goto out;
816 	}
817 
818 	/*
819 	 * Either,
820 	 * 1. We were no longer entitled to a batch.
821 	 * 2. The domain we were batching didn't have any requests.
822 	 * 3. The domain we were batching was out of tokens.
823 	 *
824 	 * Start another batch. Note that this wraps back around to the original
825 	 * domain if no other domains have requests or tokens.
826 	 */
827 	khd->batching = 0;
828 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
829 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
830 			khd->cur_domain = 0;
831 		else
832 			khd->cur_domain++;
833 
834 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
835 		if (rq)
836 			goto out;
837 	}
838 
839 	rq = NULL;
840 out:
841 	spin_unlock(&khd->lock);
842 	return rq;
843 }
844 
845 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
846 {
847 	struct kyber_hctx_data *khd = hctx->sched_data;
848 	int i;
849 
850 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
851 		if (!list_empty_careful(&khd->rqs[i]) ||
852 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
853 			return true;
854 	}
855 
856 	return false;
857 }
858 
859 #define KYBER_LAT_SHOW_STORE(domain, name)				\
860 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
861 				       char *page)			\
862 {									\
863 	struct kyber_queue_data *kqd = e->elevator_data;		\
864 									\
865 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
866 }									\
867 									\
868 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
869 					const char *page, size_t count)	\
870 {									\
871 	struct kyber_queue_data *kqd = e->elevator_data;		\
872 	unsigned long long nsec;					\
873 	int ret;							\
874 									\
875 	ret = kstrtoull(page, 10, &nsec);				\
876 	if (ret)							\
877 		return ret;						\
878 									\
879 	kqd->latency_targets[domain] = nsec;				\
880 									\
881 	return count;							\
882 }
883 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
884 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
885 #undef KYBER_LAT_SHOW_STORE
886 
887 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
888 static struct elv_fs_entry kyber_sched_attrs[] = {
889 	KYBER_LAT_ATTR(read),
890 	KYBER_LAT_ATTR(write),
891 	__ATTR_NULL
892 };
893 #undef KYBER_LAT_ATTR
894 
895 #ifdef CONFIG_BLK_DEBUG_FS
896 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
897 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
898 {									\
899 	struct request_queue *q = data;					\
900 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
901 									\
902 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
903 	return 0;							\
904 }									\
905 									\
906 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
907 	__acquires(&khd->lock)						\
908 {									\
909 	struct blk_mq_hw_ctx *hctx = m->private;			\
910 	struct kyber_hctx_data *khd = hctx->sched_data;			\
911 									\
912 	spin_lock(&khd->lock);						\
913 	return seq_list_start(&khd->rqs[domain], *pos);			\
914 }									\
915 									\
916 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
917 				     loff_t *pos)			\
918 {									\
919 	struct blk_mq_hw_ctx *hctx = m->private;			\
920 	struct kyber_hctx_data *khd = hctx->sched_data;			\
921 									\
922 	return seq_list_next(v, &khd->rqs[domain], pos);		\
923 }									\
924 									\
925 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
926 	__releases(&khd->lock)						\
927 {									\
928 	struct blk_mq_hw_ctx *hctx = m->private;			\
929 	struct kyber_hctx_data *khd = hctx->sched_data;			\
930 									\
931 	spin_unlock(&khd->lock);					\
932 }									\
933 									\
934 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
935 	.start	= kyber_##name##_rqs_start,				\
936 	.next	= kyber_##name##_rqs_next,				\
937 	.stop	= kyber_##name##_rqs_stop,				\
938 	.show	= blk_mq_debugfs_rq_show,				\
939 };									\
940 									\
941 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
942 {									\
943 	struct blk_mq_hw_ctx *hctx = data;				\
944 	struct kyber_hctx_data *khd = hctx->sched_data;			\
945 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
946 									\
947 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
948 	return 0;							\
949 }
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
954 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
955 
956 static int kyber_async_depth_show(void *data, struct seq_file *m)
957 {
958 	struct request_queue *q = data;
959 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
960 
961 	seq_printf(m, "%u\n", kqd->async_depth);
962 	return 0;
963 }
964 
965 static int kyber_cur_domain_show(void *data, struct seq_file *m)
966 {
967 	struct blk_mq_hw_ctx *hctx = data;
968 	struct kyber_hctx_data *khd = hctx->sched_data;
969 
970 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
971 	return 0;
972 }
973 
974 static int kyber_batching_show(void *data, struct seq_file *m)
975 {
976 	struct blk_mq_hw_ctx *hctx = data;
977 	struct kyber_hctx_data *khd = hctx->sched_data;
978 
979 	seq_printf(m, "%u\n", khd->batching);
980 	return 0;
981 }
982 
983 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
984 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
985 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
986 	KYBER_QUEUE_DOMAIN_ATTRS(read),
987 	KYBER_QUEUE_DOMAIN_ATTRS(write),
988 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
989 	KYBER_QUEUE_DOMAIN_ATTRS(other),
990 	{"async_depth", 0400, kyber_async_depth_show},
991 	{},
992 };
993 #undef KYBER_QUEUE_DOMAIN_ATTRS
994 
995 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
996 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
997 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
998 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
999 	KYBER_HCTX_DOMAIN_ATTRS(read),
1000 	KYBER_HCTX_DOMAIN_ATTRS(write),
1001 	KYBER_HCTX_DOMAIN_ATTRS(discard),
1002 	KYBER_HCTX_DOMAIN_ATTRS(other),
1003 	{"cur_domain", 0400, kyber_cur_domain_show},
1004 	{"batching", 0400, kyber_batching_show},
1005 	{},
1006 };
1007 #undef KYBER_HCTX_DOMAIN_ATTRS
1008 #endif
1009 
1010 static struct elevator_type kyber_sched = {
1011 	.ops = {
1012 		.init_sched = kyber_init_sched,
1013 		.exit_sched = kyber_exit_sched,
1014 		.init_hctx = kyber_init_hctx,
1015 		.exit_hctx = kyber_exit_hctx,
1016 		.limit_depth = kyber_limit_depth,
1017 		.bio_merge = kyber_bio_merge,
1018 		.prepare_request = kyber_prepare_request,
1019 		.insert_requests = kyber_insert_requests,
1020 		.finish_request = kyber_finish_request,
1021 		.requeue_request = kyber_finish_request,
1022 		.completed_request = kyber_completed_request,
1023 		.dispatch_request = kyber_dispatch_request,
1024 		.has_work = kyber_has_work,
1025 	},
1026 #ifdef CONFIG_BLK_DEBUG_FS
1027 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1028 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1029 #endif
1030 	.elevator_attrs = kyber_sched_attrs,
1031 	.elevator_name = "kyber",
1032 	.elevator_owner = THIS_MODULE,
1033 };
1034 
1035 static int __init kyber_init(void)
1036 {
1037 	return elv_register(&kyber_sched);
1038 }
1039 
1040 static void __exit kyber_exit(void)
1041 {
1042 	elv_unregister(&kyber_sched);
1043 }
1044 
1045 module_init(kyber_init);
1046 module_exit(kyber_exit);
1047 
1048 MODULE_AUTHOR("Omar Sandoval");
1049 MODULE_LICENSE("GPL");
1050 MODULE_DESCRIPTION("Kyber I/O scheduler");
1051