1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using 4 * scalable techniques. 5 * 6 * Copyright (C) 2017 Facebook 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/module.h> 13 #include <linux/sbitmap.h> 14 15 #include <trace/events/block.h> 16 17 #include "elevator.h" 18 #include "blk.h" 19 #include "blk-mq.h" 20 #include "blk-mq-debugfs.h" 21 #include "blk-mq-sched.h" 22 #include "blk-mq-tag.h" 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/kyber.h> 26 27 /* 28 * Scheduling domains: the device is divided into multiple domains based on the 29 * request type. 30 */ 31 enum { 32 KYBER_READ, 33 KYBER_WRITE, 34 KYBER_DISCARD, 35 KYBER_OTHER, 36 KYBER_NUM_DOMAINS, 37 }; 38 39 static const char *kyber_domain_names[] = { 40 [KYBER_READ] = "READ", 41 [KYBER_WRITE] = "WRITE", 42 [KYBER_DISCARD] = "DISCARD", 43 [KYBER_OTHER] = "OTHER", 44 }; 45 46 enum { 47 /* 48 * In order to prevent starvation of synchronous requests by a flood of 49 * asynchronous requests, we reserve 25% of requests for synchronous 50 * operations. 51 */ 52 KYBER_ASYNC_PERCENT = 75, 53 }; 54 55 /* 56 * Maximum device-wide depth for each scheduling domain. 57 * 58 * Even for fast devices with lots of tags like NVMe, you can saturate the 59 * device with only a fraction of the maximum possible queue depth. So, we cap 60 * these to a reasonable value. 61 */ 62 static const unsigned int kyber_depth[] = { 63 [KYBER_READ] = 256, 64 [KYBER_WRITE] = 128, 65 [KYBER_DISCARD] = 64, 66 [KYBER_OTHER] = 16, 67 }; 68 69 /* 70 * Default latency targets for each scheduling domain. 71 */ 72 static const u64 kyber_latency_targets[] = { 73 [KYBER_READ] = 2ULL * NSEC_PER_MSEC, 74 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC, 75 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC, 76 }; 77 78 /* 79 * Batch size (number of requests we'll dispatch in a row) for each scheduling 80 * domain. 81 */ 82 static const unsigned int kyber_batch_size[] = { 83 [KYBER_READ] = 16, 84 [KYBER_WRITE] = 8, 85 [KYBER_DISCARD] = 1, 86 [KYBER_OTHER] = 1, 87 }; 88 89 /* 90 * Requests latencies are recorded in a histogram with buckets defined relative 91 * to the target latency: 92 * 93 * <= 1/4 * target latency 94 * <= 1/2 * target latency 95 * <= 3/4 * target latency 96 * <= target latency 97 * <= 1 1/4 * target latency 98 * <= 1 1/2 * target latency 99 * <= 1 3/4 * target latency 100 * > 1 3/4 * target latency 101 */ 102 enum { 103 /* 104 * The width of the latency histogram buckets is 105 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency. 106 */ 107 KYBER_LATENCY_SHIFT = 2, 108 /* 109 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency, 110 * thus, "good". 111 */ 112 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT, 113 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */ 114 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT, 115 }; 116 117 /* 118 * We measure both the total latency and the I/O latency (i.e., latency after 119 * submitting to the device). 120 */ 121 enum { 122 KYBER_TOTAL_LATENCY, 123 KYBER_IO_LATENCY, 124 }; 125 126 static const char *kyber_latency_type_names[] = { 127 [KYBER_TOTAL_LATENCY] = "total", 128 [KYBER_IO_LATENCY] = "I/O", 129 }; 130 131 /* 132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling 133 * domain except for KYBER_OTHER. 134 */ 135 struct kyber_cpu_latency { 136 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 137 }; 138 139 /* 140 * There is a same mapping between ctx & hctx and kcq & khd, 141 * we use request->mq_ctx->index_hw to index the kcq in khd. 142 */ 143 struct kyber_ctx_queue { 144 /* 145 * Used to ensure operations on rq_list and kcq_map to be an atmoic one. 146 * Also protect the rqs on rq_list when merge. 147 */ 148 spinlock_t lock; 149 struct list_head rq_list[KYBER_NUM_DOMAINS]; 150 } ____cacheline_aligned_in_smp; 151 152 struct kyber_queue_data { 153 struct request_queue *q; 154 dev_t dev; 155 156 /* 157 * Each scheduling domain has a limited number of in-flight requests 158 * device-wide, limited by these tokens. 159 */ 160 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; 161 162 /* 163 * Async request percentage, converted to per-word depth for 164 * sbitmap_get_shallow(). 165 */ 166 unsigned int async_depth; 167 168 struct kyber_cpu_latency __percpu *cpu_latency; 169 170 /* Timer for stats aggregation and adjusting domain tokens. */ 171 struct timer_list timer; 172 173 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 174 175 unsigned long latency_timeout[KYBER_OTHER]; 176 177 int domain_p99[KYBER_OTHER]; 178 179 /* Target latencies in nanoseconds. */ 180 u64 latency_targets[KYBER_OTHER]; 181 }; 182 183 struct kyber_hctx_data { 184 spinlock_t lock; 185 struct list_head rqs[KYBER_NUM_DOMAINS]; 186 unsigned int cur_domain; 187 unsigned int batching; 188 struct kyber_ctx_queue *kcqs; 189 struct sbitmap kcq_map[KYBER_NUM_DOMAINS]; 190 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS]; 191 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS]; 192 atomic_t wait_index[KYBER_NUM_DOMAINS]; 193 }; 194 195 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 196 void *key); 197 198 static unsigned int kyber_sched_domain(blk_opf_t opf) 199 { 200 switch (opf & REQ_OP_MASK) { 201 case REQ_OP_READ: 202 return KYBER_READ; 203 case REQ_OP_WRITE: 204 return KYBER_WRITE; 205 case REQ_OP_DISCARD: 206 return KYBER_DISCARD; 207 default: 208 return KYBER_OTHER; 209 } 210 } 211 212 static void flush_latency_buckets(struct kyber_queue_data *kqd, 213 struct kyber_cpu_latency *cpu_latency, 214 unsigned int sched_domain, unsigned int type) 215 { 216 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 217 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type]; 218 unsigned int bucket; 219 220 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 221 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0); 222 } 223 224 /* 225 * Calculate the histogram bucket with the given percentile rank, or -1 if there 226 * aren't enough samples yet. 227 */ 228 static int calculate_percentile(struct kyber_queue_data *kqd, 229 unsigned int sched_domain, unsigned int type, 230 unsigned int percentile) 231 { 232 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 233 unsigned int bucket, samples = 0, percentile_samples; 234 235 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 236 samples += buckets[bucket]; 237 238 if (!samples) 239 return -1; 240 241 /* 242 * We do the calculation once we have 500 samples or one second passes 243 * since the first sample was recorded, whichever comes first. 244 */ 245 if (!kqd->latency_timeout[sched_domain]) 246 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL); 247 if (samples < 500 && 248 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) { 249 return -1; 250 } 251 kqd->latency_timeout[sched_domain] = 0; 252 253 percentile_samples = DIV_ROUND_UP(samples * percentile, 100); 254 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) { 255 if (buckets[bucket] >= percentile_samples) 256 break; 257 percentile_samples -= buckets[bucket]; 258 } 259 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type])); 260 261 trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain], 262 kyber_latency_type_names[type], percentile, 263 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples); 264 265 return bucket; 266 } 267 268 static void kyber_resize_domain(struct kyber_queue_data *kqd, 269 unsigned int sched_domain, unsigned int depth) 270 { 271 depth = clamp(depth, 1U, kyber_depth[sched_domain]); 272 if (depth != kqd->domain_tokens[sched_domain].sb.depth) { 273 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); 274 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain], 275 depth); 276 } 277 } 278 279 static void kyber_timer_fn(struct timer_list *t) 280 { 281 struct kyber_queue_data *kqd = from_timer(kqd, t, timer); 282 unsigned int sched_domain; 283 int cpu; 284 bool bad = false; 285 286 /* Sum all of the per-cpu latency histograms. */ 287 for_each_online_cpu(cpu) { 288 struct kyber_cpu_latency *cpu_latency; 289 290 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu); 291 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 292 flush_latency_buckets(kqd, cpu_latency, sched_domain, 293 KYBER_TOTAL_LATENCY); 294 flush_latency_buckets(kqd, cpu_latency, sched_domain, 295 KYBER_IO_LATENCY); 296 } 297 } 298 299 /* 300 * Check if any domains have a high I/O latency, which might indicate 301 * congestion in the device. Note that we use the p90; we don't want to 302 * be too sensitive to outliers here. 303 */ 304 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 305 int p90; 306 307 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY, 308 90); 309 if (p90 >= KYBER_GOOD_BUCKETS) 310 bad = true; 311 } 312 313 /* 314 * Adjust the scheduling domain depths. If we determined that there was 315 * congestion, we throttle all domains with good latencies. Either way, 316 * we ease up on throttling domains with bad latencies. 317 */ 318 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 319 unsigned int orig_depth, depth; 320 int p99; 321 322 p99 = calculate_percentile(kqd, sched_domain, 323 KYBER_TOTAL_LATENCY, 99); 324 /* 325 * This is kind of subtle: different domains will not 326 * necessarily have enough samples to calculate the latency 327 * percentiles during the same window, so we have to remember 328 * the p99 for the next time we observe congestion; once we do, 329 * we don't want to throttle again until we get more data, so we 330 * reset it to -1. 331 */ 332 if (bad) { 333 if (p99 < 0) 334 p99 = kqd->domain_p99[sched_domain]; 335 kqd->domain_p99[sched_domain] = -1; 336 } else if (p99 >= 0) { 337 kqd->domain_p99[sched_domain] = p99; 338 } 339 if (p99 < 0) 340 continue; 341 342 /* 343 * If this domain has bad latency, throttle less. Otherwise, 344 * throttle more iff we determined that there is congestion. 345 * 346 * The new depth is scaled linearly with the p99 latency vs the 347 * latency target. E.g., if the p99 is 3/4 of the target, then 348 * we throttle down to 3/4 of the current depth, and if the p99 349 * is 2x the target, then we double the depth. 350 */ 351 if (bad || p99 >= KYBER_GOOD_BUCKETS) { 352 orig_depth = kqd->domain_tokens[sched_domain].sb.depth; 353 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT; 354 kyber_resize_domain(kqd, sched_domain, depth); 355 } 356 } 357 } 358 359 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) 360 { 361 struct kyber_queue_data *kqd; 362 int ret = -ENOMEM; 363 int i; 364 365 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); 366 if (!kqd) 367 goto err; 368 369 kqd->q = q; 370 kqd->dev = disk_devt(q->disk); 371 372 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency, 373 GFP_KERNEL | __GFP_ZERO); 374 if (!kqd->cpu_latency) 375 goto err_kqd; 376 377 timer_setup(&kqd->timer, kyber_timer_fn, 0); 378 379 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 380 WARN_ON(!kyber_depth[i]); 381 WARN_ON(!kyber_batch_size[i]); 382 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], 383 kyber_depth[i], -1, false, 384 GFP_KERNEL, q->node); 385 if (ret) { 386 while (--i >= 0) 387 sbitmap_queue_free(&kqd->domain_tokens[i]); 388 goto err_buckets; 389 } 390 } 391 392 for (i = 0; i < KYBER_OTHER; i++) { 393 kqd->domain_p99[i] = -1; 394 kqd->latency_targets[i] = kyber_latency_targets[i]; 395 } 396 397 return kqd; 398 399 err_buckets: 400 free_percpu(kqd->cpu_latency); 401 err_kqd: 402 kfree(kqd); 403 err: 404 return ERR_PTR(ret); 405 } 406 407 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e) 408 { 409 struct kyber_queue_data *kqd; 410 struct elevator_queue *eq; 411 412 eq = elevator_alloc(q, e); 413 if (!eq) 414 return -ENOMEM; 415 416 kqd = kyber_queue_data_alloc(q); 417 if (IS_ERR(kqd)) { 418 kobject_put(&eq->kobj); 419 return PTR_ERR(kqd); 420 } 421 422 blk_stat_enable_accounting(q); 423 424 blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q); 425 426 eq->elevator_data = kqd; 427 q->elevator = eq; 428 429 return 0; 430 } 431 432 static void kyber_exit_sched(struct elevator_queue *e) 433 { 434 struct kyber_queue_data *kqd = e->elevator_data; 435 int i; 436 437 timer_shutdown_sync(&kqd->timer); 438 blk_stat_disable_accounting(kqd->q); 439 440 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 441 sbitmap_queue_free(&kqd->domain_tokens[i]); 442 free_percpu(kqd->cpu_latency); 443 kfree(kqd); 444 } 445 446 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq) 447 { 448 unsigned int i; 449 450 spin_lock_init(&kcq->lock); 451 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 452 INIT_LIST_HEAD(&kcq->rq_list[i]); 453 } 454 455 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx) 456 { 457 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 458 struct blk_mq_tags *tags = hctx->sched_tags; 459 unsigned int shift = tags->bitmap_tags.sb.shift; 460 461 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U; 462 463 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth); 464 } 465 466 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 467 { 468 struct kyber_hctx_data *khd; 469 int i; 470 471 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); 472 if (!khd) 473 return -ENOMEM; 474 475 khd->kcqs = kmalloc_array_node(hctx->nr_ctx, 476 sizeof(struct kyber_ctx_queue), 477 GFP_KERNEL, hctx->numa_node); 478 if (!khd->kcqs) 479 goto err_khd; 480 481 for (i = 0; i < hctx->nr_ctx; i++) 482 kyber_ctx_queue_init(&khd->kcqs[i]); 483 484 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 485 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx, 486 ilog2(8), GFP_KERNEL, hctx->numa_node, 487 false, false)) { 488 while (--i >= 0) 489 sbitmap_free(&khd->kcq_map[i]); 490 goto err_kcqs; 491 } 492 } 493 494 spin_lock_init(&khd->lock); 495 496 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 497 INIT_LIST_HEAD(&khd->rqs[i]); 498 khd->domain_wait[i].sbq = NULL; 499 init_waitqueue_func_entry(&khd->domain_wait[i].wait, 500 kyber_domain_wake); 501 khd->domain_wait[i].wait.private = hctx; 502 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry); 503 atomic_set(&khd->wait_index[i], 0); 504 } 505 506 khd->cur_domain = 0; 507 khd->batching = 0; 508 509 hctx->sched_data = khd; 510 kyber_depth_updated(hctx); 511 512 return 0; 513 514 err_kcqs: 515 kfree(khd->kcqs); 516 err_khd: 517 kfree(khd); 518 return -ENOMEM; 519 } 520 521 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 522 { 523 struct kyber_hctx_data *khd = hctx->sched_data; 524 int i; 525 526 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 527 sbitmap_free(&khd->kcq_map[i]); 528 kfree(khd->kcqs); 529 kfree(hctx->sched_data); 530 } 531 532 static int rq_get_domain_token(struct request *rq) 533 { 534 return (long)rq->elv.priv[0]; 535 } 536 537 static void rq_set_domain_token(struct request *rq, int token) 538 { 539 rq->elv.priv[0] = (void *)(long)token; 540 } 541 542 static void rq_clear_domain_token(struct kyber_queue_data *kqd, 543 struct request *rq) 544 { 545 unsigned int sched_domain; 546 int nr; 547 548 nr = rq_get_domain_token(rq); 549 if (nr != -1) { 550 sched_domain = kyber_sched_domain(rq->cmd_flags); 551 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, 552 rq->mq_ctx->cpu); 553 } 554 } 555 556 static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data) 557 { 558 /* 559 * We use the scheduler tags as per-hardware queue queueing tokens. 560 * Async requests can be limited at this stage. 561 */ 562 if (!op_is_sync(opf)) { 563 struct kyber_queue_data *kqd = data->q->elevator->elevator_data; 564 565 data->shallow_depth = kqd->async_depth; 566 } 567 } 568 569 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio, 570 unsigned int nr_segs) 571 { 572 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 573 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 574 struct kyber_hctx_data *khd = hctx->sched_data; 575 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]]; 576 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf); 577 struct list_head *rq_list = &kcq->rq_list[sched_domain]; 578 bool merged; 579 580 spin_lock(&kcq->lock); 581 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs); 582 spin_unlock(&kcq->lock); 583 584 return merged; 585 } 586 587 static void kyber_prepare_request(struct request *rq) 588 { 589 rq_set_domain_token(rq, -1); 590 } 591 592 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx, 593 struct list_head *rq_list, bool at_head) 594 { 595 struct kyber_hctx_data *khd = hctx->sched_data; 596 struct request *rq, *next; 597 598 list_for_each_entry_safe(rq, next, rq_list, queuelist) { 599 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags); 600 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]]; 601 struct list_head *head = &kcq->rq_list[sched_domain]; 602 603 spin_lock(&kcq->lock); 604 trace_block_rq_insert(rq); 605 if (at_head) 606 list_move(&rq->queuelist, head); 607 else 608 list_move_tail(&rq->queuelist, head); 609 sbitmap_set_bit(&khd->kcq_map[sched_domain], 610 rq->mq_ctx->index_hw[hctx->type]); 611 spin_unlock(&kcq->lock); 612 } 613 } 614 615 static void kyber_finish_request(struct request *rq) 616 { 617 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 618 619 rq_clear_domain_token(kqd, rq); 620 } 621 622 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency, 623 unsigned int sched_domain, unsigned int type, 624 u64 target, u64 latency) 625 { 626 unsigned int bucket; 627 u64 divisor; 628 629 if (latency > 0) { 630 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1); 631 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor), 632 KYBER_LATENCY_BUCKETS - 1); 633 } else { 634 bucket = 0; 635 } 636 637 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]); 638 } 639 640 static void kyber_completed_request(struct request *rq, u64 now) 641 { 642 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 643 struct kyber_cpu_latency *cpu_latency; 644 unsigned int sched_domain; 645 u64 target; 646 647 sched_domain = kyber_sched_domain(rq->cmd_flags); 648 if (sched_domain == KYBER_OTHER) 649 return; 650 651 cpu_latency = get_cpu_ptr(kqd->cpu_latency); 652 target = kqd->latency_targets[sched_domain]; 653 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY, 654 target, now - rq->start_time_ns); 655 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target, 656 now - rq->io_start_time_ns); 657 put_cpu_ptr(kqd->cpu_latency); 658 659 timer_reduce(&kqd->timer, jiffies + HZ / 10); 660 } 661 662 struct flush_kcq_data { 663 struct kyber_hctx_data *khd; 664 unsigned int sched_domain; 665 struct list_head *list; 666 }; 667 668 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data) 669 { 670 struct flush_kcq_data *flush_data = data; 671 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr]; 672 673 spin_lock(&kcq->lock); 674 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain], 675 flush_data->list); 676 sbitmap_clear_bit(sb, bitnr); 677 spin_unlock(&kcq->lock); 678 679 return true; 680 } 681 682 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd, 683 unsigned int sched_domain, 684 struct list_head *list) 685 { 686 struct flush_kcq_data data = { 687 .khd = khd, 688 .sched_domain = sched_domain, 689 .list = list, 690 }; 691 692 sbitmap_for_each_set(&khd->kcq_map[sched_domain], 693 flush_busy_kcq, &data); 694 } 695 696 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags, 697 void *key) 698 { 699 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private); 700 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait); 701 702 sbitmap_del_wait_queue(wait); 703 blk_mq_run_hw_queue(hctx, true); 704 return 1; 705 } 706 707 static int kyber_get_domain_token(struct kyber_queue_data *kqd, 708 struct kyber_hctx_data *khd, 709 struct blk_mq_hw_ctx *hctx) 710 { 711 unsigned int sched_domain = khd->cur_domain; 712 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; 713 struct sbq_wait *wait = &khd->domain_wait[sched_domain]; 714 struct sbq_wait_state *ws; 715 int nr; 716 717 nr = __sbitmap_queue_get(domain_tokens); 718 719 /* 720 * If we failed to get a domain token, make sure the hardware queue is 721 * run when one becomes available. Note that this is serialized on 722 * khd->lock, but we still need to be careful about the waker. 723 */ 724 if (nr < 0 && list_empty_careful(&wait->wait.entry)) { 725 ws = sbq_wait_ptr(domain_tokens, 726 &khd->wait_index[sched_domain]); 727 khd->domain_ws[sched_domain] = ws; 728 sbitmap_add_wait_queue(domain_tokens, ws, wait); 729 730 /* 731 * Try again in case a token was freed before we got on the wait 732 * queue. 733 */ 734 nr = __sbitmap_queue_get(domain_tokens); 735 } 736 737 /* 738 * If we got a token while we were on the wait queue, remove ourselves 739 * from the wait queue to ensure that all wake ups make forward 740 * progress. It's possible that the waker already deleted the entry 741 * between the !list_empty_careful() check and us grabbing the lock, but 742 * list_del_init() is okay with that. 743 */ 744 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) { 745 ws = khd->domain_ws[sched_domain]; 746 spin_lock_irq(&ws->wait.lock); 747 sbitmap_del_wait_queue(wait); 748 spin_unlock_irq(&ws->wait.lock); 749 } 750 751 return nr; 752 } 753 754 static struct request * 755 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, 756 struct kyber_hctx_data *khd, 757 struct blk_mq_hw_ctx *hctx) 758 { 759 struct list_head *rqs; 760 struct request *rq; 761 int nr; 762 763 rqs = &khd->rqs[khd->cur_domain]; 764 765 /* 766 * If we already have a flushed request, then we just need to get a 767 * token for it. Otherwise, if there are pending requests in the kcqs, 768 * flush the kcqs, but only if we can get a token. If not, we should 769 * leave the requests in the kcqs so that they can be merged. Note that 770 * khd->lock serializes the flushes, so if we observed any bit set in 771 * the kcq_map, we will always get a request. 772 */ 773 rq = list_first_entry_or_null(rqs, struct request, queuelist); 774 if (rq) { 775 nr = kyber_get_domain_token(kqd, khd, hctx); 776 if (nr >= 0) { 777 khd->batching++; 778 rq_set_domain_token(rq, nr); 779 list_del_init(&rq->queuelist); 780 return rq; 781 } else { 782 trace_kyber_throttled(kqd->dev, 783 kyber_domain_names[khd->cur_domain]); 784 } 785 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) { 786 nr = kyber_get_domain_token(kqd, khd, hctx); 787 if (nr >= 0) { 788 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs); 789 rq = list_first_entry(rqs, struct request, queuelist); 790 khd->batching++; 791 rq_set_domain_token(rq, nr); 792 list_del_init(&rq->queuelist); 793 return rq; 794 } else { 795 trace_kyber_throttled(kqd->dev, 796 kyber_domain_names[khd->cur_domain]); 797 } 798 } 799 800 /* There were either no pending requests or no tokens. */ 801 return NULL; 802 } 803 804 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) 805 { 806 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 807 struct kyber_hctx_data *khd = hctx->sched_data; 808 struct request *rq; 809 int i; 810 811 spin_lock(&khd->lock); 812 813 /* 814 * First, if we are still entitled to batch, try to dispatch a request 815 * from the batch. 816 */ 817 if (khd->batching < kyber_batch_size[khd->cur_domain]) { 818 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 819 if (rq) 820 goto out; 821 } 822 823 /* 824 * Either, 825 * 1. We were no longer entitled to a batch. 826 * 2. The domain we were batching didn't have any requests. 827 * 3. The domain we were batching was out of tokens. 828 * 829 * Start another batch. Note that this wraps back around to the original 830 * domain if no other domains have requests or tokens. 831 */ 832 khd->batching = 0; 833 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 834 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) 835 khd->cur_domain = 0; 836 else 837 khd->cur_domain++; 838 839 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 840 if (rq) 841 goto out; 842 } 843 844 rq = NULL; 845 out: 846 spin_unlock(&khd->lock); 847 return rq; 848 } 849 850 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) 851 { 852 struct kyber_hctx_data *khd = hctx->sched_data; 853 int i; 854 855 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 856 if (!list_empty_careful(&khd->rqs[i]) || 857 sbitmap_any_bit_set(&khd->kcq_map[i])) 858 return true; 859 } 860 861 return false; 862 } 863 864 #define KYBER_LAT_SHOW_STORE(domain, name) \ 865 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \ 866 char *page) \ 867 { \ 868 struct kyber_queue_data *kqd = e->elevator_data; \ 869 \ 870 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \ 871 } \ 872 \ 873 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \ 874 const char *page, size_t count) \ 875 { \ 876 struct kyber_queue_data *kqd = e->elevator_data; \ 877 unsigned long long nsec; \ 878 int ret; \ 879 \ 880 ret = kstrtoull(page, 10, &nsec); \ 881 if (ret) \ 882 return ret; \ 883 \ 884 kqd->latency_targets[domain] = nsec; \ 885 \ 886 return count; \ 887 } 888 KYBER_LAT_SHOW_STORE(KYBER_READ, read); 889 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write); 890 #undef KYBER_LAT_SHOW_STORE 891 892 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) 893 static struct elv_fs_entry kyber_sched_attrs[] = { 894 KYBER_LAT_ATTR(read), 895 KYBER_LAT_ATTR(write), 896 __ATTR_NULL 897 }; 898 #undef KYBER_LAT_ATTR 899 900 #ifdef CONFIG_BLK_DEBUG_FS 901 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ 902 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ 903 { \ 904 struct request_queue *q = data; \ 905 struct kyber_queue_data *kqd = q->elevator->elevator_data; \ 906 \ 907 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ 908 return 0; \ 909 } \ 910 \ 911 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ 912 __acquires(&khd->lock) \ 913 { \ 914 struct blk_mq_hw_ctx *hctx = m->private; \ 915 struct kyber_hctx_data *khd = hctx->sched_data; \ 916 \ 917 spin_lock(&khd->lock); \ 918 return seq_list_start(&khd->rqs[domain], *pos); \ 919 } \ 920 \ 921 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ 922 loff_t *pos) \ 923 { \ 924 struct blk_mq_hw_ctx *hctx = m->private; \ 925 struct kyber_hctx_data *khd = hctx->sched_data; \ 926 \ 927 return seq_list_next(v, &khd->rqs[domain], pos); \ 928 } \ 929 \ 930 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ 931 __releases(&khd->lock) \ 932 { \ 933 struct blk_mq_hw_ctx *hctx = m->private; \ 934 struct kyber_hctx_data *khd = hctx->sched_data; \ 935 \ 936 spin_unlock(&khd->lock); \ 937 } \ 938 \ 939 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ 940 .start = kyber_##name##_rqs_start, \ 941 .next = kyber_##name##_rqs_next, \ 942 .stop = kyber_##name##_rqs_stop, \ 943 .show = blk_mq_debugfs_rq_show, \ 944 }; \ 945 \ 946 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ 947 { \ 948 struct blk_mq_hw_ctx *hctx = data; \ 949 struct kyber_hctx_data *khd = hctx->sched_data; \ 950 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \ 951 \ 952 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \ 953 return 0; \ 954 } 955 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) 956 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write) 957 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard) 958 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) 959 #undef KYBER_DEBUGFS_DOMAIN_ATTRS 960 961 static int kyber_async_depth_show(void *data, struct seq_file *m) 962 { 963 struct request_queue *q = data; 964 struct kyber_queue_data *kqd = q->elevator->elevator_data; 965 966 seq_printf(m, "%u\n", kqd->async_depth); 967 return 0; 968 } 969 970 static int kyber_cur_domain_show(void *data, struct seq_file *m) 971 { 972 struct blk_mq_hw_ctx *hctx = data; 973 struct kyber_hctx_data *khd = hctx->sched_data; 974 975 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]); 976 return 0; 977 } 978 979 static int kyber_batching_show(void *data, struct seq_file *m) 980 { 981 struct blk_mq_hw_ctx *hctx = data; 982 struct kyber_hctx_data *khd = hctx->sched_data; 983 984 seq_printf(m, "%u\n", khd->batching); 985 return 0; 986 } 987 988 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ 989 {#name "_tokens", 0400, kyber_##name##_tokens_show} 990 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { 991 KYBER_QUEUE_DOMAIN_ATTRS(read), 992 KYBER_QUEUE_DOMAIN_ATTRS(write), 993 KYBER_QUEUE_DOMAIN_ATTRS(discard), 994 KYBER_QUEUE_DOMAIN_ATTRS(other), 995 {"async_depth", 0400, kyber_async_depth_show}, 996 {}, 997 }; 998 #undef KYBER_QUEUE_DOMAIN_ATTRS 999 1000 #define KYBER_HCTX_DOMAIN_ATTRS(name) \ 1001 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ 1002 {#name "_waiting", 0400, kyber_##name##_waiting_show} 1003 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { 1004 KYBER_HCTX_DOMAIN_ATTRS(read), 1005 KYBER_HCTX_DOMAIN_ATTRS(write), 1006 KYBER_HCTX_DOMAIN_ATTRS(discard), 1007 KYBER_HCTX_DOMAIN_ATTRS(other), 1008 {"cur_domain", 0400, kyber_cur_domain_show}, 1009 {"batching", 0400, kyber_batching_show}, 1010 {}, 1011 }; 1012 #undef KYBER_HCTX_DOMAIN_ATTRS 1013 #endif 1014 1015 static struct elevator_type kyber_sched = { 1016 .ops = { 1017 .init_sched = kyber_init_sched, 1018 .exit_sched = kyber_exit_sched, 1019 .init_hctx = kyber_init_hctx, 1020 .exit_hctx = kyber_exit_hctx, 1021 .limit_depth = kyber_limit_depth, 1022 .bio_merge = kyber_bio_merge, 1023 .prepare_request = kyber_prepare_request, 1024 .insert_requests = kyber_insert_requests, 1025 .finish_request = kyber_finish_request, 1026 .requeue_request = kyber_finish_request, 1027 .completed_request = kyber_completed_request, 1028 .dispatch_request = kyber_dispatch_request, 1029 .has_work = kyber_has_work, 1030 .depth_updated = kyber_depth_updated, 1031 }, 1032 #ifdef CONFIG_BLK_DEBUG_FS 1033 .queue_debugfs_attrs = kyber_queue_debugfs_attrs, 1034 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, 1035 #endif 1036 .elevator_attrs = kyber_sched_attrs, 1037 .elevator_name = "kyber", 1038 .elevator_owner = THIS_MODULE, 1039 }; 1040 1041 static int __init kyber_init(void) 1042 { 1043 return elv_register(&kyber_sched); 1044 } 1045 1046 static void __exit kyber_exit(void) 1047 { 1048 elv_unregister(&kyber_sched); 1049 } 1050 1051 module_init(kyber_init); 1052 module_exit(kyber_exit); 1053 1054 MODULE_AUTHOR("Omar Sandoval"); 1055 MODULE_LICENSE("GPL"); 1056 MODULE_DESCRIPTION("Kyber I/O scheduler"); 1057