xref: /openbmc/linux/block/kyber-iosched.c (revision 020c5260)
1 /*
2  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3  * scalable techniques.
4  *
5  * Copyright (C) 2017 Facebook
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public
9  * License v2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
26 
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32 #include "blk-stat.h"
33 
34 /* Scheduling domains. */
35 enum {
36 	KYBER_READ,
37 	KYBER_SYNC_WRITE,
38 	KYBER_OTHER, /* Async writes, discard, etc. */
39 	KYBER_NUM_DOMAINS,
40 };
41 
42 enum {
43 	KYBER_MIN_DEPTH = 256,
44 
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Initial device-wide depths for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate
57  * the device with only a fraction of the maximum possible queue depth.
58  * So, we cap these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_SYNC_WRITE] = 128,
63 	[KYBER_OTHER] = 64,
64 };
65 
66 /*
67  * Scheduling domain batch sizes. We favor reads.
68  */
69 static const unsigned int kyber_batch_size[] = {
70 	[KYBER_READ] = 16,
71 	[KYBER_SYNC_WRITE] = 8,
72 	[KYBER_OTHER] = 8,
73 };
74 
75 struct kyber_queue_data {
76 	struct request_queue *q;
77 
78 	struct blk_stat_callback *cb;
79 
80 	/*
81 	 * The device is divided into multiple scheduling domains based on the
82 	 * request type. Each domain has a fixed number of in-flight requests of
83 	 * that type device-wide, limited by these tokens.
84 	 */
85 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
86 
87 	/*
88 	 * Async request percentage, converted to per-word depth for
89 	 * sbitmap_get_shallow().
90 	 */
91 	unsigned int async_depth;
92 
93 	/* Target latencies in nanoseconds. */
94 	u64 read_lat_nsec, write_lat_nsec;
95 };
96 
97 struct kyber_hctx_data {
98 	spinlock_t lock;
99 	struct list_head rqs[KYBER_NUM_DOMAINS];
100 	unsigned int cur_domain;
101 	unsigned int batching;
102 	wait_queue_t domain_wait[KYBER_NUM_DOMAINS];
103 	atomic_t wait_index[KYBER_NUM_DOMAINS];
104 };
105 
106 static int rq_sched_domain(const struct request *rq)
107 {
108 	unsigned int op = rq->cmd_flags;
109 
110 	if ((op & REQ_OP_MASK) == REQ_OP_READ)
111 		return KYBER_READ;
112 	else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
113 		return KYBER_SYNC_WRITE;
114 	else
115 		return KYBER_OTHER;
116 }
117 
118 enum {
119 	NONE = 0,
120 	GOOD = 1,
121 	GREAT = 2,
122 	BAD = -1,
123 	AWFUL = -2,
124 };
125 
126 #define IS_GOOD(status) ((status) > 0)
127 #define IS_BAD(status) ((status) < 0)
128 
129 static int kyber_lat_status(struct blk_stat_callback *cb,
130 			    unsigned int sched_domain, u64 target)
131 {
132 	u64 latency;
133 
134 	if (!cb->stat[sched_domain].nr_samples)
135 		return NONE;
136 
137 	latency = cb->stat[sched_domain].mean;
138 	if (latency >= 2 * target)
139 		return AWFUL;
140 	else if (latency > target)
141 		return BAD;
142 	else if (latency <= target / 2)
143 		return GREAT;
144 	else /* (latency <= target) */
145 		return GOOD;
146 }
147 
148 /*
149  * Adjust the read or synchronous write depth given the status of reads and
150  * writes. The goal is that the latencies of the two domains are fair (i.e., if
151  * one is good, then the other is good).
152  */
153 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
154 				  unsigned int sched_domain, int this_status,
155 				  int other_status)
156 {
157 	unsigned int orig_depth, depth;
158 
159 	/*
160 	 * If this domain had no samples, or reads and writes are both good or
161 	 * both bad, don't adjust the depth.
162 	 */
163 	if (this_status == NONE ||
164 	    (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
165 	    (IS_BAD(this_status) && IS_BAD(other_status)))
166 		return;
167 
168 	orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
169 
170 	if (other_status == NONE) {
171 		depth++;
172 	} else {
173 		switch (this_status) {
174 		case GOOD:
175 			if (other_status == AWFUL)
176 				depth -= max(depth / 4, 1U);
177 			else
178 				depth -= max(depth / 8, 1U);
179 			break;
180 		case GREAT:
181 			if (other_status == AWFUL)
182 				depth /= 2;
183 			else
184 				depth -= max(depth / 4, 1U);
185 			break;
186 		case BAD:
187 			depth++;
188 			break;
189 		case AWFUL:
190 			if (other_status == GREAT)
191 				depth += 2;
192 			else
193 				depth++;
194 			break;
195 		}
196 	}
197 
198 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
199 	if (depth != orig_depth)
200 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
201 }
202 
203 /*
204  * Adjust the depth of other requests given the status of reads and synchronous
205  * writes. As long as either domain is doing fine, we don't throttle, but if
206  * both domains are doing badly, we throttle heavily.
207  */
208 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
209 				     int read_status, int write_status,
210 				     bool have_samples)
211 {
212 	unsigned int orig_depth, depth;
213 	int status;
214 
215 	orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
216 
217 	if (read_status == NONE && write_status == NONE) {
218 		depth += 2;
219 	} else if (have_samples) {
220 		if (read_status == NONE)
221 			status = write_status;
222 		else if (write_status == NONE)
223 			status = read_status;
224 		else
225 			status = max(read_status, write_status);
226 		switch (status) {
227 		case GREAT:
228 			depth += 2;
229 			break;
230 		case GOOD:
231 			depth++;
232 			break;
233 		case BAD:
234 			depth -= max(depth / 4, 1U);
235 			break;
236 		case AWFUL:
237 			depth /= 2;
238 			break;
239 		}
240 	}
241 
242 	depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
243 	if (depth != orig_depth)
244 		sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
245 }
246 
247 /*
248  * Apply heuristics for limiting queue depths based on gathered latency
249  * statistics.
250  */
251 static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
252 {
253 	struct kyber_queue_data *kqd = cb->data;
254 	int read_status, write_status;
255 
256 	read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
257 	write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
258 
259 	kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
260 	kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
261 	kyber_adjust_other_depth(kqd, read_status, write_status,
262 				 cb->stat[KYBER_OTHER].nr_samples != 0);
263 
264 	/*
265 	 * Continue monitoring latencies if we aren't hitting the targets or
266 	 * we're still throttling other requests.
267 	 */
268 	if (!blk_stat_is_active(kqd->cb) &&
269 	    ((IS_BAD(read_status) || IS_BAD(write_status) ||
270 	      kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
271 		blk_stat_activate_msecs(kqd->cb, 100);
272 }
273 
274 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
275 {
276 	/*
277 	 * All of the hardware queues have the same depth, so we can just grab
278 	 * the shift of the first one.
279 	 */
280 	return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
281 }
282 
283 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
284 {
285 	struct kyber_queue_data *kqd;
286 	unsigned int max_tokens;
287 	unsigned int shift;
288 	int ret = -ENOMEM;
289 	int i;
290 
291 	kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
292 	if (!kqd)
293 		goto err;
294 	kqd->q = q;
295 
296 	kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
297 					  KYBER_NUM_DOMAINS, kqd);
298 	if (!kqd->cb)
299 		goto err_kqd;
300 
301 	/*
302 	 * The maximum number of tokens for any scheduling domain is at least
303 	 * the queue depth of a single hardware queue. If the hardware doesn't
304 	 * have many tags, still provide a reasonable number.
305 	 */
306 	max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
307 			   KYBER_MIN_DEPTH);
308 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
309 		WARN_ON(!kyber_depth[i]);
310 		WARN_ON(!kyber_batch_size[i]);
311 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
312 					      max_tokens, -1, false, GFP_KERNEL,
313 					      q->node);
314 		if (ret) {
315 			while (--i >= 0)
316 				sbitmap_queue_free(&kqd->domain_tokens[i]);
317 			goto err_cb;
318 		}
319 		sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
320 	}
321 
322 	shift = kyber_sched_tags_shift(kqd);
323 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
324 
325 	kqd->read_lat_nsec = 2000000ULL;
326 	kqd->write_lat_nsec = 10000000ULL;
327 
328 	return kqd;
329 
330 err_cb:
331 	blk_stat_free_callback(kqd->cb);
332 err_kqd:
333 	kfree(kqd);
334 err:
335 	return ERR_PTR(ret);
336 }
337 
338 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
339 {
340 	struct kyber_queue_data *kqd;
341 	struct elevator_queue *eq;
342 
343 	eq = elevator_alloc(q, e);
344 	if (!eq)
345 		return -ENOMEM;
346 
347 	kqd = kyber_queue_data_alloc(q);
348 	if (IS_ERR(kqd)) {
349 		kobject_put(&eq->kobj);
350 		return PTR_ERR(kqd);
351 	}
352 
353 	eq->elevator_data = kqd;
354 	q->elevator = eq;
355 
356 	blk_stat_add_callback(q, kqd->cb);
357 
358 	return 0;
359 }
360 
361 static void kyber_exit_sched(struct elevator_queue *e)
362 {
363 	struct kyber_queue_data *kqd = e->elevator_data;
364 	struct request_queue *q = kqd->q;
365 	int i;
366 
367 	blk_stat_remove_callback(q, kqd->cb);
368 
369 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
370 		sbitmap_queue_free(&kqd->domain_tokens[i]);
371 	blk_stat_free_callback(kqd->cb);
372 	kfree(kqd);
373 }
374 
375 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
376 {
377 	struct kyber_hctx_data *khd;
378 	int i;
379 
380 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
381 	if (!khd)
382 		return -ENOMEM;
383 
384 	spin_lock_init(&khd->lock);
385 
386 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
387 		INIT_LIST_HEAD(&khd->rqs[i]);
388 		INIT_LIST_HEAD(&khd->domain_wait[i].task_list);
389 		atomic_set(&khd->wait_index[i], 0);
390 	}
391 
392 	khd->cur_domain = 0;
393 	khd->batching = 0;
394 
395 	hctx->sched_data = khd;
396 
397 	return 0;
398 }
399 
400 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
401 {
402 	kfree(hctx->sched_data);
403 }
404 
405 static int rq_get_domain_token(struct request *rq)
406 {
407 	return (long)rq->elv.priv[0];
408 }
409 
410 static void rq_set_domain_token(struct request *rq, int token)
411 {
412 	rq->elv.priv[0] = (void *)(long)token;
413 }
414 
415 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
416 				  struct request *rq)
417 {
418 	unsigned int sched_domain;
419 	int nr;
420 
421 	nr = rq_get_domain_token(rq);
422 	if (nr != -1) {
423 		sched_domain = rq_sched_domain(rq);
424 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
425 				    rq->mq_ctx->cpu);
426 	}
427 }
428 
429 static struct request *kyber_get_request(struct request_queue *q,
430 					 unsigned int op,
431 					 struct blk_mq_alloc_data *data)
432 {
433 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
434 	struct request *rq;
435 
436 	/*
437 	 * We use the scheduler tags as per-hardware queue queueing tokens.
438 	 * Async requests can be limited at this stage.
439 	 */
440 	if (!op_is_sync(op))
441 		data->shallow_depth = kqd->async_depth;
442 
443 	rq = __blk_mq_alloc_request(data, op);
444 	if (rq)
445 		rq_set_domain_token(rq, -1);
446 	return rq;
447 }
448 
449 static void kyber_put_request(struct request *rq)
450 {
451 	struct request_queue *q = rq->q;
452 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
453 
454 	rq_clear_domain_token(kqd, rq);
455 	blk_mq_finish_request(rq);
456 }
457 
458 static void kyber_completed_request(struct request *rq)
459 {
460 	struct request_queue *q = rq->q;
461 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
462 	unsigned int sched_domain;
463 	u64 now, latency, target;
464 
465 	/*
466 	 * Check if this request met our latency goal. If not, quickly gather
467 	 * some statistics and start throttling.
468 	 */
469 	sched_domain = rq_sched_domain(rq);
470 	switch (sched_domain) {
471 	case KYBER_READ:
472 		target = kqd->read_lat_nsec;
473 		break;
474 	case KYBER_SYNC_WRITE:
475 		target = kqd->write_lat_nsec;
476 		break;
477 	default:
478 		return;
479 	}
480 
481 	/* If we are already monitoring latencies, don't check again. */
482 	if (blk_stat_is_active(kqd->cb))
483 		return;
484 
485 	now = __blk_stat_time(ktime_to_ns(ktime_get()));
486 	if (now < blk_stat_time(&rq->issue_stat))
487 		return;
488 
489 	latency = now - blk_stat_time(&rq->issue_stat);
490 
491 	if (latency > target)
492 		blk_stat_activate_msecs(kqd->cb, 10);
493 }
494 
495 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
496 				  struct blk_mq_hw_ctx *hctx)
497 {
498 	LIST_HEAD(rq_list);
499 	struct request *rq, *next;
500 
501 	blk_mq_flush_busy_ctxs(hctx, &rq_list);
502 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
503 		unsigned int sched_domain;
504 
505 		sched_domain = rq_sched_domain(rq);
506 		list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
507 	}
508 }
509 
510 static int kyber_domain_wake(wait_queue_t *wait, unsigned mode, int flags,
511 			     void *key)
512 {
513 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
514 
515 	list_del_init(&wait->task_list);
516 	blk_mq_run_hw_queue(hctx, true);
517 	return 1;
518 }
519 
520 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
521 				  struct kyber_hctx_data *khd,
522 				  struct blk_mq_hw_ctx *hctx)
523 {
524 	unsigned int sched_domain = khd->cur_domain;
525 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
526 	wait_queue_t *wait = &khd->domain_wait[sched_domain];
527 	struct sbq_wait_state *ws;
528 	int nr;
529 
530 	nr = __sbitmap_queue_get(domain_tokens);
531 	if (nr >= 0)
532 		return nr;
533 
534 	/*
535 	 * If we failed to get a domain token, make sure the hardware queue is
536 	 * run when one becomes available. Note that this is serialized on
537 	 * khd->lock, but we still need to be careful about the waker.
538 	 */
539 	if (list_empty_careful(&wait->task_list)) {
540 		init_waitqueue_func_entry(wait, kyber_domain_wake);
541 		wait->private = hctx;
542 		ws = sbq_wait_ptr(domain_tokens,
543 				  &khd->wait_index[sched_domain]);
544 		add_wait_queue(&ws->wait, wait);
545 
546 		/*
547 		 * Try again in case a token was freed before we got on the wait
548 		 * queue.
549 		 */
550 		nr = __sbitmap_queue_get(domain_tokens);
551 	}
552 	return nr;
553 }
554 
555 static struct request *
556 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
557 			  struct kyber_hctx_data *khd,
558 			  struct blk_mq_hw_ctx *hctx,
559 			  bool *flushed)
560 {
561 	struct list_head *rqs;
562 	struct request *rq;
563 	int nr;
564 
565 	rqs = &khd->rqs[khd->cur_domain];
566 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
567 
568 	/*
569 	 * If there wasn't already a pending request and we haven't flushed the
570 	 * software queues yet, flush the software queues and check again.
571 	 */
572 	if (!rq && !*flushed) {
573 		kyber_flush_busy_ctxs(khd, hctx);
574 		*flushed = true;
575 		rq = list_first_entry_or_null(rqs, struct request, queuelist);
576 	}
577 
578 	if (rq) {
579 		nr = kyber_get_domain_token(kqd, khd, hctx);
580 		if (nr >= 0) {
581 			khd->batching++;
582 			rq_set_domain_token(rq, nr);
583 			list_del_init(&rq->queuelist);
584 			return rq;
585 		}
586 	}
587 
588 	/* There were either no pending requests or no tokens. */
589 	return NULL;
590 }
591 
592 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
593 {
594 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
595 	struct kyber_hctx_data *khd = hctx->sched_data;
596 	bool flushed = false;
597 	struct request *rq;
598 	int i;
599 
600 	spin_lock(&khd->lock);
601 
602 	/*
603 	 * First, if we are still entitled to batch, try to dispatch a request
604 	 * from the batch.
605 	 */
606 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
607 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
608 		if (rq)
609 			goto out;
610 	}
611 
612 	/*
613 	 * Either,
614 	 * 1. We were no longer entitled to a batch.
615 	 * 2. The domain we were batching didn't have any requests.
616 	 * 3. The domain we were batching was out of tokens.
617 	 *
618 	 * Start another batch. Note that this wraps back around to the original
619 	 * domain if no other domains have requests or tokens.
620 	 */
621 	khd->batching = 0;
622 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
623 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
624 			khd->cur_domain = 0;
625 		else
626 			khd->cur_domain++;
627 
628 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
629 		if (rq)
630 			goto out;
631 	}
632 
633 	rq = NULL;
634 out:
635 	spin_unlock(&khd->lock);
636 	return rq;
637 }
638 
639 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
640 {
641 	struct kyber_hctx_data *khd = hctx->sched_data;
642 	int i;
643 
644 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
645 		if (!list_empty_careful(&khd->rqs[i]))
646 			return true;
647 	}
648 	return false;
649 }
650 
651 #define KYBER_LAT_SHOW_STORE(op)					\
652 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,		\
653 				     char *page)			\
654 {									\
655 	struct kyber_queue_data *kqd = e->elevator_data;		\
656 									\
657 	return sprintf(page, "%llu\n", kqd->op##_lat_nsec);		\
658 }									\
659 									\
660 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,		\
661 				      const char *page, size_t count)	\
662 {									\
663 	struct kyber_queue_data *kqd = e->elevator_data;		\
664 	unsigned long long nsec;					\
665 	int ret;							\
666 									\
667 	ret = kstrtoull(page, 10, &nsec);				\
668 	if (ret)							\
669 		return ret;						\
670 									\
671 	kqd->op##_lat_nsec = nsec;					\
672 									\
673 	return count;							\
674 }
675 KYBER_LAT_SHOW_STORE(read);
676 KYBER_LAT_SHOW_STORE(write);
677 #undef KYBER_LAT_SHOW_STORE
678 
679 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
680 static struct elv_fs_entry kyber_sched_attrs[] = {
681 	KYBER_LAT_ATTR(read),
682 	KYBER_LAT_ATTR(write),
683 	__ATTR_NULL
684 };
685 #undef KYBER_LAT_ATTR
686 
687 #ifdef CONFIG_BLK_DEBUG_FS
688 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
689 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
690 {									\
691 	struct request_queue *q = data;					\
692 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
693 									\
694 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
695 	return 0;							\
696 }									\
697 									\
698 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
699 	__acquires(&khd->lock)						\
700 {									\
701 	struct blk_mq_hw_ctx *hctx = m->private;			\
702 	struct kyber_hctx_data *khd = hctx->sched_data;			\
703 									\
704 	spin_lock(&khd->lock);						\
705 	return seq_list_start(&khd->rqs[domain], *pos);			\
706 }									\
707 									\
708 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
709 				     loff_t *pos)			\
710 {									\
711 	struct blk_mq_hw_ctx *hctx = m->private;			\
712 	struct kyber_hctx_data *khd = hctx->sched_data;			\
713 									\
714 	return seq_list_next(v, &khd->rqs[domain], pos);		\
715 }									\
716 									\
717 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
718 	__releases(&khd->lock)						\
719 {									\
720 	struct blk_mq_hw_ctx *hctx = m->private;			\
721 	struct kyber_hctx_data *khd = hctx->sched_data;			\
722 									\
723 	spin_unlock(&khd->lock);					\
724 }									\
725 									\
726 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
727 	.start	= kyber_##name##_rqs_start,				\
728 	.next	= kyber_##name##_rqs_next,				\
729 	.stop	= kyber_##name##_rqs_stop,				\
730 	.show	= blk_mq_debugfs_rq_show,				\
731 };									\
732 									\
733 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
734 {									\
735 	struct blk_mq_hw_ctx *hctx = data;				\
736 	struct kyber_hctx_data *khd = hctx->sched_data;			\
737 	wait_queue_t *wait = &khd->domain_wait[domain];			\
738 									\
739 	seq_printf(m, "%d\n", !list_empty_careful(&wait->task_list));	\
740 	return 0;							\
741 }
742 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
743 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
744 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
745 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
746 
747 static int kyber_async_depth_show(void *data, struct seq_file *m)
748 {
749 	struct request_queue *q = data;
750 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
751 
752 	seq_printf(m, "%u\n", kqd->async_depth);
753 	return 0;
754 }
755 
756 static int kyber_cur_domain_show(void *data, struct seq_file *m)
757 {
758 	struct blk_mq_hw_ctx *hctx = data;
759 	struct kyber_hctx_data *khd = hctx->sched_data;
760 
761 	switch (khd->cur_domain) {
762 	case KYBER_READ:
763 		seq_puts(m, "READ\n");
764 		break;
765 	case KYBER_SYNC_WRITE:
766 		seq_puts(m, "SYNC_WRITE\n");
767 		break;
768 	case KYBER_OTHER:
769 		seq_puts(m, "OTHER\n");
770 		break;
771 	default:
772 		seq_printf(m, "%u\n", khd->cur_domain);
773 		break;
774 	}
775 	return 0;
776 }
777 
778 static int kyber_batching_show(void *data, struct seq_file *m)
779 {
780 	struct blk_mq_hw_ctx *hctx = data;
781 	struct kyber_hctx_data *khd = hctx->sched_data;
782 
783 	seq_printf(m, "%u\n", khd->batching);
784 	return 0;
785 }
786 
787 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
788 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
789 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
790 	KYBER_QUEUE_DOMAIN_ATTRS(read),
791 	KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
792 	KYBER_QUEUE_DOMAIN_ATTRS(other),
793 	{"async_depth", 0400, kyber_async_depth_show},
794 	{},
795 };
796 #undef KYBER_QUEUE_DOMAIN_ATTRS
797 
798 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
799 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
800 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
801 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
802 	KYBER_HCTX_DOMAIN_ATTRS(read),
803 	KYBER_HCTX_DOMAIN_ATTRS(sync_write),
804 	KYBER_HCTX_DOMAIN_ATTRS(other),
805 	{"cur_domain", 0400, kyber_cur_domain_show},
806 	{"batching", 0400, kyber_batching_show},
807 	{},
808 };
809 #undef KYBER_HCTX_DOMAIN_ATTRS
810 #endif
811 
812 static struct elevator_type kyber_sched = {
813 	.ops.mq = {
814 		.init_sched = kyber_init_sched,
815 		.exit_sched = kyber_exit_sched,
816 		.init_hctx = kyber_init_hctx,
817 		.exit_hctx = kyber_exit_hctx,
818 		.get_request = kyber_get_request,
819 		.put_request = kyber_put_request,
820 		.completed_request = kyber_completed_request,
821 		.dispatch_request = kyber_dispatch_request,
822 		.has_work = kyber_has_work,
823 	},
824 	.uses_mq = true,
825 #ifdef CONFIG_BLK_DEBUG_FS
826 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
827 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
828 #endif
829 	.elevator_attrs = kyber_sched_attrs,
830 	.elevator_name = "kyber",
831 	.elevator_owner = THIS_MODULE,
832 };
833 
834 static int __init kyber_init(void)
835 {
836 	return elv_register(&kyber_sched);
837 }
838 
839 static void __exit kyber_exit(void)
840 {
841 	elv_unregister(&kyber_sched);
842 }
843 
844 module_init(kyber_init);
845 module_exit(kyber_exit);
846 
847 MODULE_AUTHOR("Omar Sandoval");
848 MODULE_LICENSE("GPL");
849 MODULE_DESCRIPTION("Kyber I/O scheduler");
850