1 /* 2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using 3 * scalable techniques. 4 * 5 * Copyright (C) 2017 Facebook 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public 9 * License v2 as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <https://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/blkdev.h> 22 #include <linux/blk-mq.h> 23 #include <linux/elevator.h> 24 #include <linux/module.h> 25 #include <linux/sbitmap.h> 26 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-debugfs.h" 30 #include "blk-mq-sched.h" 31 #include "blk-mq-tag.h" 32 #include "blk-stat.h" 33 34 /* Scheduling domains. */ 35 enum { 36 KYBER_READ, 37 KYBER_SYNC_WRITE, 38 KYBER_OTHER, /* Async writes, discard, etc. */ 39 KYBER_NUM_DOMAINS, 40 }; 41 42 enum { 43 KYBER_MIN_DEPTH = 256, 44 45 /* 46 * In order to prevent starvation of synchronous requests by a flood of 47 * asynchronous requests, we reserve 25% of requests for synchronous 48 * operations. 49 */ 50 KYBER_ASYNC_PERCENT = 75, 51 }; 52 53 /* 54 * Initial device-wide depths for each scheduling domain. 55 * 56 * Even for fast devices with lots of tags like NVMe, you can saturate 57 * the device with only a fraction of the maximum possible queue depth. 58 * So, we cap these to a reasonable value. 59 */ 60 static const unsigned int kyber_depth[] = { 61 [KYBER_READ] = 256, 62 [KYBER_SYNC_WRITE] = 128, 63 [KYBER_OTHER] = 64, 64 }; 65 66 /* 67 * Scheduling domain batch sizes. We favor reads. 68 */ 69 static const unsigned int kyber_batch_size[] = { 70 [KYBER_READ] = 16, 71 [KYBER_SYNC_WRITE] = 8, 72 [KYBER_OTHER] = 8, 73 }; 74 75 struct kyber_queue_data { 76 struct request_queue *q; 77 78 struct blk_stat_callback *cb; 79 80 /* 81 * The device is divided into multiple scheduling domains based on the 82 * request type. Each domain has a fixed number of in-flight requests of 83 * that type device-wide, limited by these tokens. 84 */ 85 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; 86 87 /* 88 * Async request percentage, converted to per-word depth for 89 * sbitmap_get_shallow(). 90 */ 91 unsigned int async_depth; 92 93 /* Target latencies in nanoseconds. */ 94 u64 read_lat_nsec, write_lat_nsec; 95 }; 96 97 struct kyber_hctx_data { 98 spinlock_t lock; 99 struct list_head rqs[KYBER_NUM_DOMAINS]; 100 unsigned int cur_domain; 101 unsigned int batching; 102 wait_queue_t domain_wait[KYBER_NUM_DOMAINS]; 103 atomic_t wait_index[KYBER_NUM_DOMAINS]; 104 }; 105 106 static int rq_sched_domain(const struct request *rq) 107 { 108 unsigned int op = rq->cmd_flags; 109 110 if ((op & REQ_OP_MASK) == REQ_OP_READ) 111 return KYBER_READ; 112 else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op)) 113 return KYBER_SYNC_WRITE; 114 else 115 return KYBER_OTHER; 116 } 117 118 enum { 119 NONE = 0, 120 GOOD = 1, 121 GREAT = 2, 122 BAD = -1, 123 AWFUL = -2, 124 }; 125 126 #define IS_GOOD(status) ((status) > 0) 127 #define IS_BAD(status) ((status) < 0) 128 129 static int kyber_lat_status(struct blk_stat_callback *cb, 130 unsigned int sched_domain, u64 target) 131 { 132 u64 latency; 133 134 if (!cb->stat[sched_domain].nr_samples) 135 return NONE; 136 137 latency = cb->stat[sched_domain].mean; 138 if (latency >= 2 * target) 139 return AWFUL; 140 else if (latency > target) 141 return BAD; 142 else if (latency <= target / 2) 143 return GREAT; 144 else /* (latency <= target) */ 145 return GOOD; 146 } 147 148 /* 149 * Adjust the read or synchronous write depth given the status of reads and 150 * writes. The goal is that the latencies of the two domains are fair (i.e., if 151 * one is good, then the other is good). 152 */ 153 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd, 154 unsigned int sched_domain, int this_status, 155 int other_status) 156 { 157 unsigned int orig_depth, depth; 158 159 /* 160 * If this domain had no samples, or reads and writes are both good or 161 * both bad, don't adjust the depth. 162 */ 163 if (this_status == NONE || 164 (IS_GOOD(this_status) && IS_GOOD(other_status)) || 165 (IS_BAD(this_status) && IS_BAD(other_status))) 166 return; 167 168 orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth; 169 170 if (other_status == NONE) { 171 depth++; 172 } else { 173 switch (this_status) { 174 case GOOD: 175 if (other_status == AWFUL) 176 depth -= max(depth / 4, 1U); 177 else 178 depth -= max(depth / 8, 1U); 179 break; 180 case GREAT: 181 if (other_status == AWFUL) 182 depth /= 2; 183 else 184 depth -= max(depth / 4, 1U); 185 break; 186 case BAD: 187 depth++; 188 break; 189 case AWFUL: 190 if (other_status == GREAT) 191 depth += 2; 192 else 193 depth++; 194 break; 195 } 196 } 197 198 depth = clamp(depth, 1U, kyber_depth[sched_domain]); 199 if (depth != orig_depth) 200 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); 201 } 202 203 /* 204 * Adjust the depth of other requests given the status of reads and synchronous 205 * writes. As long as either domain is doing fine, we don't throttle, but if 206 * both domains are doing badly, we throttle heavily. 207 */ 208 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd, 209 int read_status, int write_status, 210 bool have_samples) 211 { 212 unsigned int orig_depth, depth; 213 int status; 214 215 orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth; 216 217 if (read_status == NONE && write_status == NONE) { 218 depth += 2; 219 } else if (have_samples) { 220 if (read_status == NONE) 221 status = write_status; 222 else if (write_status == NONE) 223 status = read_status; 224 else 225 status = max(read_status, write_status); 226 switch (status) { 227 case GREAT: 228 depth += 2; 229 break; 230 case GOOD: 231 depth++; 232 break; 233 case BAD: 234 depth -= max(depth / 4, 1U); 235 break; 236 case AWFUL: 237 depth /= 2; 238 break; 239 } 240 } 241 242 depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]); 243 if (depth != orig_depth) 244 sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth); 245 } 246 247 /* 248 * Apply heuristics for limiting queue depths based on gathered latency 249 * statistics. 250 */ 251 static void kyber_stat_timer_fn(struct blk_stat_callback *cb) 252 { 253 struct kyber_queue_data *kqd = cb->data; 254 int read_status, write_status; 255 256 read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec); 257 write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec); 258 259 kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status); 260 kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status); 261 kyber_adjust_other_depth(kqd, read_status, write_status, 262 cb->stat[KYBER_OTHER].nr_samples != 0); 263 264 /* 265 * Continue monitoring latencies if we aren't hitting the targets or 266 * we're still throttling other requests. 267 */ 268 if (!blk_stat_is_active(kqd->cb) && 269 ((IS_BAD(read_status) || IS_BAD(write_status) || 270 kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER]))) 271 blk_stat_activate_msecs(kqd->cb, 100); 272 } 273 274 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd) 275 { 276 /* 277 * All of the hardware queues have the same depth, so we can just grab 278 * the shift of the first one. 279 */ 280 return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift; 281 } 282 283 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) 284 { 285 struct kyber_queue_data *kqd; 286 unsigned int max_tokens; 287 unsigned int shift; 288 int ret = -ENOMEM; 289 int i; 290 291 kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); 292 if (!kqd) 293 goto err; 294 kqd->q = q; 295 296 kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain, 297 KYBER_NUM_DOMAINS, kqd); 298 if (!kqd->cb) 299 goto err_kqd; 300 301 /* 302 * The maximum number of tokens for any scheduling domain is at least 303 * the queue depth of a single hardware queue. If the hardware doesn't 304 * have many tags, still provide a reasonable number. 305 */ 306 max_tokens = max_t(unsigned int, q->tag_set->queue_depth, 307 KYBER_MIN_DEPTH); 308 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 309 WARN_ON(!kyber_depth[i]); 310 WARN_ON(!kyber_batch_size[i]); 311 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], 312 max_tokens, -1, false, GFP_KERNEL, 313 q->node); 314 if (ret) { 315 while (--i >= 0) 316 sbitmap_queue_free(&kqd->domain_tokens[i]); 317 goto err_cb; 318 } 319 sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]); 320 } 321 322 shift = kyber_sched_tags_shift(kqd); 323 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U; 324 325 kqd->read_lat_nsec = 2000000ULL; 326 kqd->write_lat_nsec = 10000000ULL; 327 328 return kqd; 329 330 err_cb: 331 blk_stat_free_callback(kqd->cb); 332 err_kqd: 333 kfree(kqd); 334 err: 335 return ERR_PTR(ret); 336 } 337 338 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e) 339 { 340 struct kyber_queue_data *kqd; 341 struct elevator_queue *eq; 342 343 eq = elevator_alloc(q, e); 344 if (!eq) 345 return -ENOMEM; 346 347 kqd = kyber_queue_data_alloc(q); 348 if (IS_ERR(kqd)) { 349 kobject_put(&eq->kobj); 350 return PTR_ERR(kqd); 351 } 352 353 eq->elevator_data = kqd; 354 q->elevator = eq; 355 356 blk_stat_add_callback(q, kqd->cb); 357 358 return 0; 359 } 360 361 static void kyber_exit_sched(struct elevator_queue *e) 362 { 363 struct kyber_queue_data *kqd = e->elevator_data; 364 struct request_queue *q = kqd->q; 365 int i; 366 367 blk_stat_remove_callback(q, kqd->cb); 368 369 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 370 sbitmap_queue_free(&kqd->domain_tokens[i]); 371 blk_stat_free_callback(kqd->cb); 372 kfree(kqd); 373 } 374 375 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 376 { 377 struct kyber_hctx_data *khd; 378 int i; 379 380 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); 381 if (!khd) 382 return -ENOMEM; 383 384 spin_lock_init(&khd->lock); 385 386 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 387 INIT_LIST_HEAD(&khd->rqs[i]); 388 INIT_LIST_HEAD(&khd->domain_wait[i].task_list); 389 atomic_set(&khd->wait_index[i], 0); 390 } 391 392 khd->cur_domain = 0; 393 khd->batching = 0; 394 395 hctx->sched_data = khd; 396 397 return 0; 398 } 399 400 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 401 { 402 kfree(hctx->sched_data); 403 } 404 405 static int rq_get_domain_token(struct request *rq) 406 { 407 return (long)rq->elv.priv[0]; 408 } 409 410 static void rq_set_domain_token(struct request *rq, int token) 411 { 412 rq->elv.priv[0] = (void *)(long)token; 413 } 414 415 static void rq_clear_domain_token(struct kyber_queue_data *kqd, 416 struct request *rq) 417 { 418 unsigned int sched_domain; 419 int nr; 420 421 nr = rq_get_domain_token(rq); 422 if (nr != -1) { 423 sched_domain = rq_sched_domain(rq); 424 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, 425 rq->mq_ctx->cpu); 426 } 427 } 428 429 static struct request *kyber_get_request(struct request_queue *q, 430 unsigned int op, 431 struct blk_mq_alloc_data *data) 432 { 433 struct kyber_queue_data *kqd = q->elevator->elevator_data; 434 struct request *rq; 435 436 /* 437 * We use the scheduler tags as per-hardware queue queueing tokens. 438 * Async requests can be limited at this stage. 439 */ 440 if (!op_is_sync(op)) 441 data->shallow_depth = kqd->async_depth; 442 443 rq = __blk_mq_alloc_request(data, op); 444 if (rq) 445 rq_set_domain_token(rq, -1); 446 return rq; 447 } 448 449 static void kyber_put_request(struct request *rq) 450 { 451 struct request_queue *q = rq->q; 452 struct kyber_queue_data *kqd = q->elevator->elevator_data; 453 454 rq_clear_domain_token(kqd, rq); 455 blk_mq_finish_request(rq); 456 } 457 458 static void kyber_completed_request(struct request *rq) 459 { 460 struct request_queue *q = rq->q; 461 struct kyber_queue_data *kqd = q->elevator->elevator_data; 462 unsigned int sched_domain; 463 u64 now, latency, target; 464 465 /* 466 * Check if this request met our latency goal. If not, quickly gather 467 * some statistics and start throttling. 468 */ 469 sched_domain = rq_sched_domain(rq); 470 switch (sched_domain) { 471 case KYBER_READ: 472 target = kqd->read_lat_nsec; 473 break; 474 case KYBER_SYNC_WRITE: 475 target = kqd->write_lat_nsec; 476 break; 477 default: 478 return; 479 } 480 481 /* If we are already monitoring latencies, don't check again. */ 482 if (blk_stat_is_active(kqd->cb)) 483 return; 484 485 now = __blk_stat_time(ktime_to_ns(ktime_get())); 486 if (now < blk_stat_time(&rq->issue_stat)) 487 return; 488 489 latency = now - blk_stat_time(&rq->issue_stat); 490 491 if (latency > target) 492 blk_stat_activate_msecs(kqd->cb, 10); 493 } 494 495 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd, 496 struct blk_mq_hw_ctx *hctx) 497 { 498 LIST_HEAD(rq_list); 499 struct request *rq, *next; 500 501 blk_mq_flush_busy_ctxs(hctx, &rq_list); 502 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 503 unsigned int sched_domain; 504 505 sched_domain = rq_sched_domain(rq); 506 list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]); 507 } 508 } 509 510 static int kyber_domain_wake(wait_queue_t *wait, unsigned mode, int flags, 511 void *key) 512 { 513 struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private); 514 515 list_del_init(&wait->task_list); 516 blk_mq_run_hw_queue(hctx, true); 517 return 1; 518 } 519 520 static int kyber_get_domain_token(struct kyber_queue_data *kqd, 521 struct kyber_hctx_data *khd, 522 struct blk_mq_hw_ctx *hctx) 523 { 524 unsigned int sched_domain = khd->cur_domain; 525 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; 526 wait_queue_t *wait = &khd->domain_wait[sched_domain]; 527 struct sbq_wait_state *ws; 528 int nr; 529 530 nr = __sbitmap_queue_get(domain_tokens); 531 if (nr >= 0) 532 return nr; 533 534 /* 535 * If we failed to get a domain token, make sure the hardware queue is 536 * run when one becomes available. Note that this is serialized on 537 * khd->lock, but we still need to be careful about the waker. 538 */ 539 if (list_empty_careful(&wait->task_list)) { 540 init_waitqueue_func_entry(wait, kyber_domain_wake); 541 wait->private = hctx; 542 ws = sbq_wait_ptr(domain_tokens, 543 &khd->wait_index[sched_domain]); 544 add_wait_queue(&ws->wait, wait); 545 546 /* 547 * Try again in case a token was freed before we got on the wait 548 * queue. 549 */ 550 nr = __sbitmap_queue_get(domain_tokens); 551 } 552 return nr; 553 } 554 555 static struct request * 556 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, 557 struct kyber_hctx_data *khd, 558 struct blk_mq_hw_ctx *hctx, 559 bool *flushed) 560 { 561 struct list_head *rqs; 562 struct request *rq; 563 int nr; 564 565 rqs = &khd->rqs[khd->cur_domain]; 566 rq = list_first_entry_or_null(rqs, struct request, queuelist); 567 568 /* 569 * If there wasn't already a pending request and we haven't flushed the 570 * software queues yet, flush the software queues and check again. 571 */ 572 if (!rq && !*flushed) { 573 kyber_flush_busy_ctxs(khd, hctx); 574 *flushed = true; 575 rq = list_first_entry_or_null(rqs, struct request, queuelist); 576 } 577 578 if (rq) { 579 nr = kyber_get_domain_token(kqd, khd, hctx); 580 if (nr >= 0) { 581 khd->batching++; 582 rq_set_domain_token(rq, nr); 583 list_del_init(&rq->queuelist); 584 return rq; 585 } 586 } 587 588 /* There were either no pending requests or no tokens. */ 589 return NULL; 590 } 591 592 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) 593 { 594 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 595 struct kyber_hctx_data *khd = hctx->sched_data; 596 bool flushed = false; 597 struct request *rq; 598 int i; 599 600 spin_lock(&khd->lock); 601 602 /* 603 * First, if we are still entitled to batch, try to dispatch a request 604 * from the batch. 605 */ 606 if (khd->batching < kyber_batch_size[khd->cur_domain]) { 607 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed); 608 if (rq) 609 goto out; 610 } 611 612 /* 613 * Either, 614 * 1. We were no longer entitled to a batch. 615 * 2. The domain we were batching didn't have any requests. 616 * 3. The domain we were batching was out of tokens. 617 * 618 * Start another batch. Note that this wraps back around to the original 619 * domain if no other domains have requests or tokens. 620 */ 621 khd->batching = 0; 622 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 623 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) 624 khd->cur_domain = 0; 625 else 626 khd->cur_domain++; 627 628 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed); 629 if (rq) 630 goto out; 631 } 632 633 rq = NULL; 634 out: 635 spin_unlock(&khd->lock); 636 return rq; 637 } 638 639 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) 640 { 641 struct kyber_hctx_data *khd = hctx->sched_data; 642 int i; 643 644 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 645 if (!list_empty_careful(&khd->rqs[i])) 646 return true; 647 } 648 return false; 649 } 650 651 #define KYBER_LAT_SHOW_STORE(op) \ 652 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e, \ 653 char *page) \ 654 { \ 655 struct kyber_queue_data *kqd = e->elevator_data; \ 656 \ 657 return sprintf(page, "%llu\n", kqd->op##_lat_nsec); \ 658 } \ 659 \ 660 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e, \ 661 const char *page, size_t count) \ 662 { \ 663 struct kyber_queue_data *kqd = e->elevator_data; \ 664 unsigned long long nsec; \ 665 int ret; \ 666 \ 667 ret = kstrtoull(page, 10, &nsec); \ 668 if (ret) \ 669 return ret; \ 670 \ 671 kqd->op##_lat_nsec = nsec; \ 672 \ 673 return count; \ 674 } 675 KYBER_LAT_SHOW_STORE(read); 676 KYBER_LAT_SHOW_STORE(write); 677 #undef KYBER_LAT_SHOW_STORE 678 679 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) 680 static struct elv_fs_entry kyber_sched_attrs[] = { 681 KYBER_LAT_ATTR(read), 682 KYBER_LAT_ATTR(write), 683 __ATTR_NULL 684 }; 685 #undef KYBER_LAT_ATTR 686 687 #ifdef CONFIG_BLK_DEBUG_FS 688 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ 689 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ 690 { \ 691 struct request_queue *q = data; \ 692 struct kyber_queue_data *kqd = q->elevator->elevator_data; \ 693 \ 694 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ 695 return 0; \ 696 } \ 697 \ 698 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ 699 __acquires(&khd->lock) \ 700 { \ 701 struct blk_mq_hw_ctx *hctx = m->private; \ 702 struct kyber_hctx_data *khd = hctx->sched_data; \ 703 \ 704 spin_lock(&khd->lock); \ 705 return seq_list_start(&khd->rqs[domain], *pos); \ 706 } \ 707 \ 708 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ 709 loff_t *pos) \ 710 { \ 711 struct blk_mq_hw_ctx *hctx = m->private; \ 712 struct kyber_hctx_data *khd = hctx->sched_data; \ 713 \ 714 return seq_list_next(v, &khd->rqs[domain], pos); \ 715 } \ 716 \ 717 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ 718 __releases(&khd->lock) \ 719 { \ 720 struct blk_mq_hw_ctx *hctx = m->private; \ 721 struct kyber_hctx_data *khd = hctx->sched_data; \ 722 \ 723 spin_unlock(&khd->lock); \ 724 } \ 725 \ 726 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ 727 .start = kyber_##name##_rqs_start, \ 728 .next = kyber_##name##_rqs_next, \ 729 .stop = kyber_##name##_rqs_stop, \ 730 .show = blk_mq_debugfs_rq_show, \ 731 }; \ 732 \ 733 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ 734 { \ 735 struct blk_mq_hw_ctx *hctx = data; \ 736 struct kyber_hctx_data *khd = hctx->sched_data; \ 737 wait_queue_t *wait = &khd->domain_wait[domain]; \ 738 \ 739 seq_printf(m, "%d\n", !list_empty_careful(&wait->task_list)); \ 740 return 0; \ 741 } 742 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) 743 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write) 744 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) 745 #undef KYBER_DEBUGFS_DOMAIN_ATTRS 746 747 static int kyber_async_depth_show(void *data, struct seq_file *m) 748 { 749 struct request_queue *q = data; 750 struct kyber_queue_data *kqd = q->elevator->elevator_data; 751 752 seq_printf(m, "%u\n", kqd->async_depth); 753 return 0; 754 } 755 756 static int kyber_cur_domain_show(void *data, struct seq_file *m) 757 { 758 struct blk_mq_hw_ctx *hctx = data; 759 struct kyber_hctx_data *khd = hctx->sched_data; 760 761 switch (khd->cur_domain) { 762 case KYBER_READ: 763 seq_puts(m, "READ\n"); 764 break; 765 case KYBER_SYNC_WRITE: 766 seq_puts(m, "SYNC_WRITE\n"); 767 break; 768 case KYBER_OTHER: 769 seq_puts(m, "OTHER\n"); 770 break; 771 default: 772 seq_printf(m, "%u\n", khd->cur_domain); 773 break; 774 } 775 return 0; 776 } 777 778 static int kyber_batching_show(void *data, struct seq_file *m) 779 { 780 struct blk_mq_hw_ctx *hctx = data; 781 struct kyber_hctx_data *khd = hctx->sched_data; 782 783 seq_printf(m, "%u\n", khd->batching); 784 return 0; 785 } 786 787 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ 788 {#name "_tokens", 0400, kyber_##name##_tokens_show} 789 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { 790 KYBER_QUEUE_DOMAIN_ATTRS(read), 791 KYBER_QUEUE_DOMAIN_ATTRS(sync_write), 792 KYBER_QUEUE_DOMAIN_ATTRS(other), 793 {"async_depth", 0400, kyber_async_depth_show}, 794 {}, 795 }; 796 #undef KYBER_QUEUE_DOMAIN_ATTRS 797 798 #define KYBER_HCTX_DOMAIN_ATTRS(name) \ 799 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ 800 {#name "_waiting", 0400, kyber_##name##_waiting_show} 801 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { 802 KYBER_HCTX_DOMAIN_ATTRS(read), 803 KYBER_HCTX_DOMAIN_ATTRS(sync_write), 804 KYBER_HCTX_DOMAIN_ATTRS(other), 805 {"cur_domain", 0400, kyber_cur_domain_show}, 806 {"batching", 0400, kyber_batching_show}, 807 {}, 808 }; 809 #undef KYBER_HCTX_DOMAIN_ATTRS 810 #endif 811 812 static struct elevator_type kyber_sched = { 813 .ops.mq = { 814 .init_sched = kyber_init_sched, 815 .exit_sched = kyber_exit_sched, 816 .init_hctx = kyber_init_hctx, 817 .exit_hctx = kyber_exit_hctx, 818 .get_request = kyber_get_request, 819 .put_request = kyber_put_request, 820 .completed_request = kyber_completed_request, 821 .dispatch_request = kyber_dispatch_request, 822 .has_work = kyber_has_work, 823 }, 824 .uses_mq = true, 825 #ifdef CONFIG_BLK_DEBUG_FS 826 .queue_debugfs_attrs = kyber_queue_debugfs_attrs, 827 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, 828 #endif 829 .elevator_attrs = kyber_sched_attrs, 830 .elevator_name = "kyber", 831 .elevator_owner = THIS_MODULE, 832 }; 833 834 static int __init kyber_init(void) 835 { 836 return elv_register(&kyber_sched); 837 } 838 839 static void __exit kyber_exit(void) 840 { 841 elv_unregister(&kyber_sched); 842 } 843 844 module_init(kyber_init); 845 module_exit(kyber_exit); 846 847 MODULE_AUTHOR("Omar Sandoval"); 848 MODULE_LICENSE("GPL"); 849 MODULE_DESCRIPTION("Kyber I/O scheduler"); 850