xref: /openbmc/linux/block/genhd.c (revision feac8c8b)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (q->mq_ops)
51 		return;
52 
53 	atomic_inc(&part->in_flight[rw]);
54 	if (part->partno)
55 		atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57 
58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (q->mq_ops)
61 		return;
62 
63 	atomic_dec(&part->in_flight[rw]);
64 	if (part->partno)
65 		atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67 
68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 		    unsigned int inflight[2])
70 {
71 	if (q->mq_ops) {
72 		blk_mq_in_flight(q, part, inflight);
73 		return;
74 	}
75 
76 	inflight[0] = atomic_read(&part->in_flight[0]) +
77 			atomic_read(&part->in_flight[1]);
78 	if (part->partno) {
79 		part = &part_to_disk(part)->part0;
80 		inflight[1] = atomic_read(&part->in_flight[0]) +
81 				atomic_read(&part->in_flight[1]);
82 	}
83 }
84 
85 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
86 {
87 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
88 
89 	if (unlikely(partno < 0 || partno >= ptbl->len))
90 		return NULL;
91 	return rcu_dereference(ptbl->part[partno]);
92 }
93 
94 /**
95  * disk_get_part - get partition
96  * @disk: disk to look partition from
97  * @partno: partition number
98  *
99  * Look for partition @partno from @disk.  If found, increment
100  * reference count and return it.
101  *
102  * CONTEXT:
103  * Don't care.
104  *
105  * RETURNS:
106  * Pointer to the found partition on success, NULL if not found.
107  */
108 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
109 {
110 	struct hd_struct *part;
111 
112 	rcu_read_lock();
113 	part = __disk_get_part(disk, partno);
114 	if (part)
115 		get_device(part_to_dev(part));
116 	rcu_read_unlock();
117 
118 	return part;
119 }
120 EXPORT_SYMBOL_GPL(disk_get_part);
121 
122 /**
123  * disk_part_iter_init - initialize partition iterator
124  * @piter: iterator to initialize
125  * @disk: disk to iterate over
126  * @flags: DISK_PITER_* flags
127  *
128  * Initialize @piter so that it iterates over partitions of @disk.
129  *
130  * CONTEXT:
131  * Don't care.
132  */
133 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
134 			  unsigned int flags)
135 {
136 	struct disk_part_tbl *ptbl;
137 
138 	rcu_read_lock();
139 	ptbl = rcu_dereference(disk->part_tbl);
140 
141 	piter->disk = disk;
142 	piter->part = NULL;
143 
144 	if (flags & DISK_PITER_REVERSE)
145 		piter->idx = ptbl->len - 1;
146 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
147 		piter->idx = 0;
148 	else
149 		piter->idx = 1;
150 
151 	piter->flags = flags;
152 
153 	rcu_read_unlock();
154 }
155 EXPORT_SYMBOL_GPL(disk_part_iter_init);
156 
157 /**
158  * disk_part_iter_next - proceed iterator to the next partition and return it
159  * @piter: iterator of interest
160  *
161  * Proceed @piter to the next partition and return it.
162  *
163  * CONTEXT:
164  * Don't care.
165  */
166 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
167 {
168 	struct disk_part_tbl *ptbl;
169 	int inc, end;
170 
171 	/* put the last partition */
172 	disk_put_part(piter->part);
173 	piter->part = NULL;
174 
175 	/* get part_tbl */
176 	rcu_read_lock();
177 	ptbl = rcu_dereference(piter->disk->part_tbl);
178 
179 	/* determine iteration parameters */
180 	if (piter->flags & DISK_PITER_REVERSE) {
181 		inc = -1;
182 		if (piter->flags & (DISK_PITER_INCL_PART0 |
183 				    DISK_PITER_INCL_EMPTY_PART0))
184 			end = -1;
185 		else
186 			end = 0;
187 	} else {
188 		inc = 1;
189 		end = ptbl->len;
190 	}
191 
192 	/* iterate to the next partition */
193 	for (; piter->idx != end; piter->idx += inc) {
194 		struct hd_struct *part;
195 
196 		part = rcu_dereference(ptbl->part[piter->idx]);
197 		if (!part)
198 			continue;
199 		if (!part_nr_sects_read(part) &&
200 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
201 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
202 		      piter->idx == 0))
203 			continue;
204 
205 		get_device(part_to_dev(part));
206 		piter->part = part;
207 		piter->idx += inc;
208 		break;
209 	}
210 
211 	rcu_read_unlock();
212 
213 	return piter->part;
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_next);
216 
217 /**
218  * disk_part_iter_exit - finish up partition iteration
219  * @piter: iter of interest
220  *
221  * Called when iteration is over.  Cleans up @piter.
222  *
223  * CONTEXT:
224  * Don't care.
225  */
226 void disk_part_iter_exit(struct disk_part_iter *piter)
227 {
228 	disk_put_part(piter->part);
229 	piter->part = NULL;
230 }
231 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
232 
233 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
234 {
235 	return part->start_sect <= sector &&
236 		sector < part->start_sect + part_nr_sects_read(part);
237 }
238 
239 /**
240  * disk_map_sector_rcu - map sector to partition
241  * @disk: gendisk of interest
242  * @sector: sector to map
243  *
244  * Find out which partition @sector maps to on @disk.  This is
245  * primarily used for stats accounting.
246  *
247  * CONTEXT:
248  * RCU read locked.  The returned partition pointer is valid only
249  * while preemption is disabled.
250  *
251  * RETURNS:
252  * Found partition on success, part0 is returned if no partition matches
253  */
254 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
255 {
256 	struct disk_part_tbl *ptbl;
257 	struct hd_struct *part;
258 	int i;
259 
260 	ptbl = rcu_dereference(disk->part_tbl);
261 
262 	part = rcu_dereference(ptbl->last_lookup);
263 	if (part && sector_in_part(part, sector))
264 		return part;
265 
266 	for (i = 1; i < ptbl->len; i++) {
267 		part = rcu_dereference(ptbl->part[i]);
268 
269 		if (part && sector_in_part(part, sector)) {
270 			rcu_assign_pointer(ptbl->last_lookup, part);
271 			return part;
272 		}
273 	}
274 	return &disk->part0;
275 }
276 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
277 
278 /*
279  * Can be deleted altogether. Later.
280  *
281  */
282 #define BLKDEV_MAJOR_HASH_SIZE 255
283 static struct blk_major_name {
284 	struct blk_major_name *next;
285 	int major;
286 	char name[16];
287 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
288 
289 /* index in the above - for now: assume no multimajor ranges */
290 static inline int major_to_index(unsigned major)
291 {
292 	return major % BLKDEV_MAJOR_HASH_SIZE;
293 }
294 
295 #ifdef CONFIG_PROC_FS
296 void blkdev_show(struct seq_file *seqf, off_t offset)
297 {
298 	struct blk_major_name *dp;
299 
300 	mutex_lock(&block_class_lock);
301 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
302 		if (dp->major == offset)
303 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
304 	mutex_unlock(&block_class_lock);
305 }
306 #endif /* CONFIG_PROC_FS */
307 
308 /**
309  * register_blkdev - register a new block device
310  *
311  * @major: the requested major device number [1..255]. If @major = 0, try to
312  *         allocate any unused major number.
313  * @name: the name of the new block device as a zero terminated string
314  *
315  * The @name must be unique within the system.
316  *
317  * The return value depends on the @major input parameter:
318  *
319  *  - if a major device number was requested in range [1..255] then the
320  *    function returns zero on success, or a negative error code
321  *  - if any unused major number was requested with @major = 0 parameter
322  *    then the return value is the allocated major number in range
323  *    [1..255] or a negative error code otherwise
324  */
325 int register_blkdev(unsigned int major, const char *name)
326 {
327 	struct blk_major_name **n, *p;
328 	int index, ret = 0;
329 
330 	mutex_lock(&block_class_lock);
331 
332 	/* temporary */
333 	if (major == 0) {
334 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
335 			if (major_names[index] == NULL)
336 				break;
337 		}
338 
339 		if (index == 0) {
340 			printk("register_blkdev: failed to get major for %s\n",
341 			       name);
342 			ret = -EBUSY;
343 			goto out;
344 		}
345 		major = index;
346 		ret = major;
347 	}
348 
349 	if (major >= BLKDEV_MAJOR_MAX) {
350 		pr_err("register_blkdev: major requested (%d) is greater than the maximum (%d) for %s\n",
351 		       major, BLKDEV_MAJOR_MAX, name);
352 
353 		ret = -EINVAL;
354 		goto out;
355 	}
356 
357 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
358 	if (p == NULL) {
359 		ret = -ENOMEM;
360 		goto out;
361 	}
362 
363 	p->major = major;
364 	strlcpy(p->name, name, sizeof(p->name));
365 	p->next = NULL;
366 	index = major_to_index(major);
367 
368 	for (n = &major_names[index]; *n; n = &(*n)->next) {
369 		if ((*n)->major == major)
370 			break;
371 	}
372 	if (!*n)
373 		*n = p;
374 	else
375 		ret = -EBUSY;
376 
377 	if (ret < 0) {
378 		printk("register_blkdev: cannot get major %d for %s\n",
379 		       major, name);
380 		kfree(p);
381 	}
382 out:
383 	mutex_unlock(&block_class_lock);
384 	return ret;
385 }
386 
387 EXPORT_SYMBOL(register_blkdev);
388 
389 void unregister_blkdev(unsigned int major, const char *name)
390 {
391 	struct blk_major_name **n;
392 	struct blk_major_name *p = NULL;
393 	int index = major_to_index(major);
394 
395 	mutex_lock(&block_class_lock);
396 	for (n = &major_names[index]; *n; n = &(*n)->next)
397 		if ((*n)->major == major)
398 			break;
399 	if (!*n || strcmp((*n)->name, name)) {
400 		WARN_ON(1);
401 	} else {
402 		p = *n;
403 		*n = p->next;
404 	}
405 	mutex_unlock(&block_class_lock);
406 	kfree(p);
407 }
408 
409 EXPORT_SYMBOL(unregister_blkdev);
410 
411 static struct kobj_map *bdev_map;
412 
413 /**
414  * blk_mangle_minor - scatter minor numbers apart
415  * @minor: minor number to mangle
416  *
417  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
418  * is enabled.  Mangling twice gives the original value.
419  *
420  * RETURNS:
421  * Mangled value.
422  *
423  * CONTEXT:
424  * Don't care.
425  */
426 static int blk_mangle_minor(int minor)
427 {
428 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
429 	int i;
430 
431 	for (i = 0; i < MINORBITS / 2; i++) {
432 		int low = minor & (1 << i);
433 		int high = minor & (1 << (MINORBITS - 1 - i));
434 		int distance = MINORBITS - 1 - 2 * i;
435 
436 		minor ^= low | high;	/* clear both bits */
437 		low <<= distance;	/* swap the positions */
438 		high >>= distance;
439 		minor |= low | high;	/* and set */
440 	}
441 #endif
442 	return minor;
443 }
444 
445 /**
446  * blk_alloc_devt - allocate a dev_t for a partition
447  * @part: partition to allocate dev_t for
448  * @devt: out parameter for resulting dev_t
449  *
450  * Allocate a dev_t for block device.
451  *
452  * RETURNS:
453  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
454  * failure.
455  *
456  * CONTEXT:
457  * Might sleep.
458  */
459 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
460 {
461 	struct gendisk *disk = part_to_disk(part);
462 	int idx;
463 
464 	/* in consecutive minor range? */
465 	if (part->partno < disk->minors) {
466 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
467 		return 0;
468 	}
469 
470 	/* allocate ext devt */
471 	idr_preload(GFP_KERNEL);
472 
473 	spin_lock_bh(&ext_devt_lock);
474 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
475 	spin_unlock_bh(&ext_devt_lock);
476 
477 	idr_preload_end();
478 	if (idx < 0)
479 		return idx == -ENOSPC ? -EBUSY : idx;
480 
481 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
482 	return 0;
483 }
484 
485 /**
486  * blk_free_devt - free a dev_t
487  * @devt: dev_t to free
488  *
489  * Free @devt which was allocated using blk_alloc_devt().
490  *
491  * CONTEXT:
492  * Might sleep.
493  */
494 void blk_free_devt(dev_t devt)
495 {
496 	if (devt == MKDEV(0, 0))
497 		return;
498 
499 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
500 		spin_lock_bh(&ext_devt_lock);
501 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
502 		spin_unlock_bh(&ext_devt_lock);
503 	}
504 }
505 
506 static char *bdevt_str(dev_t devt, char *buf)
507 {
508 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
509 		char tbuf[BDEVT_SIZE];
510 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
511 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
512 	} else
513 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
514 
515 	return buf;
516 }
517 
518 /*
519  * Register device numbers dev..(dev+range-1)
520  * range must be nonzero
521  * The hash chain is sorted on range, so that subranges can override.
522  */
523 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
524 			 struct kobject *(*probe)(dev_t, int *, void *),
525 			 int (*lock)(dev_t, void *), void *data)
526 {
527 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
528 }
529 
530 EXPORT_SYMBOL(blk_register_region);
531 
532 void blk_unregister_region(dev_t devt, unsigned long range)
533 {
534 	kobj_unmap(bdev_map, devt, range);
535 }
536 
537 EXPORT_SYMBOL(blk_unregister_region);
538 
539 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
540 {
541 	struct gendisk *p = data;
542 
543 	return &disk_to_dev(p)->kobj;
544 }
545 
546 static int exact_lock(dev_t devt, void *data)
547 {
548 	struct gendisk *p = data;
549 
550 	if (!get_disk_and_module(p))
551 		return -1;
552 	return 0;
553 }
554 
555 static void register_disk(struct device *parent, struct gendisk *disk)
556 {
557 	struct device *ddev = disk_to_dev(disk);
558 	struct block_device *bdev;
559 	struct disk_part_iter piter;
560 	struct hd_struct *part;
561 	int err;
562 
563 	ddev->parent = parent;
564 
565 	dev_set_name(ddev, "%s", disk->disk_name);
566 
567 	/* delay uevents, until we scanned partition table */
568 	dev_set_uevent_suppress(ddev, 1);
569 
570 	if (device_add(ddev))
571 		return;
572 	if (!sysfs_deprecated) {
573 		err = sysfs_create_link(block_depr, &ddev->kobj,
574 					kobject_name(&ddev->kobj));
575 		if (err) {
576 			device_del(ddev);
577 			return;
578 		}
579 	}
580 
581 	/*
582 	 * avoid probable deadlock caused by allocating memory with
583 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
584 	 * devices
585 	 */
586 	pm_runtime_set_memalloc_noio(ddev, true);
587 
588 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
589 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
590 
591 	if (disk->flags & GENHD_FL_HIDDEN) {
592 		dev_set_uevent_suppress(ddev, 0);
593 		return;
594 	}
595 
596 	/* No minors to use for partitions */
597 	if (!disk_part_scan_enabled(disk))
598 		goto exit;
599 
600 	/* No such device (e.g., media were just removed) */
601 	if (!get_capacity(disk))
602 		goto exit;
603 
604 	bdev = bdget_disk(disk, 0);
605 	if (!bdev)
606 		goto exit;
607 
608 	bdev->bd_invalidated = 1;
609 	err = blkdev_get(bdev, FMODE_READ, NULL);
610 	if (err < 0)
611 		goto exit;
612 	blkdev_put(bdev, FMODE_READ);
613 
614 exit:
615 	/* announce disk after possible partitions are created */
616 	dev_set_uevent_suppress(ddev, 0);
617 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
618 
619 	/* announce possible partitions */
620 	disk_part_iter_init(&piter, disk, 0);
621 	while ((part = disk_part_iter_next(&piter)))
622 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
623 	disk_part_iter_exit(&piter);
624 
625 	err = sysfs_create_link(&ddev->kobj,
626 				&disk->queue->backing_dev_info->dev->kobj,
627 				"bdi");
628 	WARN_ON(err);
629 }
630 
631 /**
632  * __device_add_disk - add disk information to kernel list
633  * @parent: parent device for the disk
634  * @disk: per-device partitioning information
635  * @register_queue: register the queue if set to true
636  *
637  * This function registers the partitioning information in @disk
638  * with the kernel.
639  *
640  * FIXME: error handling
641  */
642 static void __device_add_disk(struct device *parent, struct gendisk *disk,
643 			      bool register_queue)
644 {
645 	dev_t devt;
646 	int retval;
647 
648 	/* minors == 0 indicates to use ext devt from part0 and should
649 	 * be accompanied with EXT_DEVT flag.  Make sure all
650 	 * parameters make sense.
651 	 */
652 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
653 	WARN_ON(!disk->minors &&
654 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
655 
656 	disk->flags |= GENHD_FL_UP;
657 
658 	retval = blk_alloc_devt(&disk->part0, &devt);
659 	if (retval) {
660 		WARN_ON(1);
661 		return;
662 	}
663 	disk->major = MAJOR(devt);
664 	disk->first_minor = MINOR(devt);
665 
666 	disk_alloc_events(disk);
667 
668 	if (disk->flags & GENHD_FL_HIDDEN) {
669 		/*
670 		 * Don't let hidden disks show up in /proc/partitions,
671 		 * and don't bother scanning for partitions either.
672 		 */
673 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
674 		disk->flags |= GENHD_FL_NO_PART_SCAN;
675 	} else {
676 		int ret;
677 
678 		/* Register BDI before referencing it from bdev */
679 		disk_to_dev(disk)->devt = devt;
680 		ret = bdi_register_owner(disk->queue->backing_dev_info,
681 						disk_to_dev(disk));
682 		WARN_ON(ret);
683 		blk_register_region(disk_devt(disk), disk->minors, NULL,
684 				    exact_match, exact_lock, disk);
685 	}
686 	register_disk(parent, disk);
687 	if (register_queue)
688 		blk_register_queue(disk);
689 
690 	/*
691 	 * Take an extra ref on queue which will be put on disk_release()
692 	 * so that it sticks around as long as @disk is there.
693 	 */
694 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
695 
696 	disk_add_events(disk);
697 	blk_integrity_add(disk);
698 }
699 
700 void device_add_disk(struct device *parent, struct gendisk *disk)
701 {
702 	__device_add_disk(parent, disk, true);
703 }
704 EXPORT_SYMBOL(device_add_disk);
705 
706 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
707 {
708 	__device_add_disk(parent, disk, false);
709 }
710 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
711 
712 void del_gendisk(struct gendisk *disk)
713 {
714 	struct disk_part_iter piter;
715 	struct hd_struct *part;
716 
717 	blk_integrity_del(disk);
718 	disk_del_events(disk);
719 
720 	/*
721 	 * Block lookups of the disk until all bdevs are unhashed and the
722 	 * disk is marked as dead (GENHD_FL_UP cleared).
723 	 */
724 	down_write(&disk->lookup_sem);
725 	/* invalidate stuff */
726 	disk_part_iter_init(&piter, disk,
727 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
728 	while ((part = disk_part_iter_next(&piter))) {
729 		invalidate_partition(disk, part->partno);
730 		bdev_unhash_inode(part_devt(part));
731 		delete_partition(disk, part->partno);
732 	}
733 	disk_part_iter_exit(&piter);
734 
735 	invalidate_partition(disk, 0);
736 	bdev_unhash_inode(disk_devt(disk));
737 	set_capacity(disk, 0);
738 	disk->flags &= ~GENHD_FL_UP;
739 	up_write(&disk->lookup_sem);
740 
741 	if (!(disk->flags & GENHD_FL_HIDDEN))
742 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
743 	if (disk->queue) {
744 		/*
745 		 * Unregister bdi before releasing device numbers (as they can
746 		 * get reused and we'd get clashes in sysfs).
747 		 */
748 		if (!(disk->flags & GENHD_FL_HIDDEN))
749 			bdi_unregister(disk->queue->backing_dev_info);
750 		blk_unregister_queue(disk);
751 	} else {
752 		WARN_ON(1);
753 	}
754 
755 	if (!(disk->flags & GENHD_FL_HIDDEN))
756 		blk_unregister_region(disk_devt(disk), disk->minors);
757 
758 	kobject_put(disk->part0.holder_dir);
759 	kobject_put(disk->slave_dir);
760 
761 	part_stat_set_all(&disk->part0, 0);
762 	disk->part0.stamp = 0;
763 	if (!sysfs_deprecated)
764 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
765 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
766 	device_del(disk_to_dev(disk));
767 }
768 EXPORT_SYMBOL(del_gendisk);
769 
770 /* sysfs access to bad-blocks list. */
771 static ssize_t disk_badblocks_show(struct device *dev,
772 					struct device_attribute *attr,
773 					char *page)
774 {
775 	struct gendisk *disk = dev_to_disk(dev);
776 
777 	if (!disk->bb)
778 		return sprintf(page, "\n");
779 
780 	return badblocks_show(disk->bb, page, 0);
781 }
782 
783 static ssize_t disk_badblocks_store(struct device *dev,
784 					struct device_attribute *attr,
785 					const char *page, size_t len)
786 {
787 	struct gendisk *disk = dev_to_disk(dev);
788 
789 	if (!disk->bb)
790 		return -ENXIO;
791 
792 	return badblocks_store(disk->bb, page, len, 0);
793 }
794 
795 /**
796  * get_gendisk - get partitioning information for a given device
797  * @devt: device to get partitioning information for
798  * @partno: returned partition index
799  *
800  * This function gets the structure containing partitioning
801  * information for the given device @devt.
802  */
803 struct gendisk *get_gendisk(dev_t devt, int *partno)
804 {
805 	struct gendisk *disk = NULL;
806 
807 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
808 		struct kobject *kobj;
809 
810 		kobj = kobj_lookup(bdev_map, devt, partno);
811 		if (kobj)
812 			disk = dev_to_disk(kobj_to_dev(kobj));
813 	} else {
814 		struct hd_struct *part;
815 
816 		spin_lock_bh(&ext_devt_lock);
817 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
818 		if (part && get_disk_and_module(part_to_disk(part))) {
819 			*partno = part->partno;
820 			disk = part_to_disk(part);
821 		}
822 		spin_unlock_bh(&ext_devt_lock);
823 	}
824 
825 	if (!disk)
826 		return NULL;
827 
828 	/*
829 	 * Synchronize with del_gendisk() to not return disk that is being
830 	 * destroyed.
831 	 */
832 	down_read(&disk->lookup_sem);
833 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
834 		     !(disk->flags & GENHD_FL_UP))) {
835 		up_read(&disk->lookup_sem);
836 		put_disk_and_module(disk);
837 		disk = NULL;
838 	} else {
839 		up_read(&disk->lookup_sem);
840 	}
841 	return disk;
842 }
843 EXPORT_SYMBOL(get_gendisk);
844 
845 /**
846  * bdget_disk - do bdget() by gendisk and partition number
847  * @disk: gendisk of interest
848  * @partno: partition number
849  *
850  * Find partition @partno from @disk, do bdget() on it.
851  *
852  * CONTEXT:
853  * Don't care.
854  *
855  * RETURNS:
856  * Resulting block_device on success, NULL on failure.
857  */
858 struct block_device *bdget_disk(struct gendisk *disk, int partno)
859 {
860 	struct hd_struct *part;
861 	struct block_device *bdev = NULL;
862 
863 	part = disk_get_part(disk, partno);
864 	if (part)
865 		bdev = bdget(part_devt(part));
866 	disk_put_part(part);
867 
868 	return bdev;
869 }
870 EXPORT_SYMBOL(bdget_disk);
871 
872 /*
873  * print a full list of all partitions - intended for places where the root
874  * filesystem can't be mounted and thus to give the victim some idea of what
875  * went wrong
876  */
877 void __init printk_all_partitions(void)
878 {
879 	struct class_dev_iter iter;
880 	struct device *dev;
881 
882 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
883 	while ((dev = class_dev_iter_next(&iter))) {
884 		struct gendisk *disk = dev_to_disk(dev);
885 		struct disk_part_iter piter;
886 		struct hd_struct *part;
887 		char name_buf[BDEVNAME_SIZE];
888 		char devt_buf[BDEVT_SIZE];
889 
890 		/*
891 		 * Don't show empty devices or things that have been
892 		 * suppressed
893 		 */
894 		if (get_capacity(disk) == 0 ||
895 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
896 			continue;
897 
898 		/*
899 		 * Note, unlike /proc/partitions, I am showing the
900 		 * numbers in hex - the same format as the root=
901 		 * option takes.
902 		 */
903 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
904 		while ((part = disk_part_iter_next(&piter))) {
905 			bool is_part0 = part == &disk->part0;
906 
907 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
908 			       bdevt_str(part_devt(part), devt_buf),
909 			       (unsigned long long)part_nr_sects_read(part) >> 1
910 			       , disk_name(disk, part->partno, name_buf),
911 			       part->info ? part->info->uuid : "");
912 			if (is_part0) {
913 				if (dev->parent && dev->parent->driver)
914 					printk(" driver: %s\n",
915 					      dev->parent->driver->name);
916 				else
917 					printk(" (driver?)\n");
918 			} else
919 				printk("\n");
920 		}
921 		disk_part_iter_exit(&piter);
922 	}
923 	class_dev_iter_exit(&iter);
924 }
925 
926 #ifdef CONFIG_PROC_FS
927 /* iterator */
928 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
929 {
930 	loff_t skip = *pos;
931 	struct class_dev_iter *iter;
932 	struct device *dev;
933 
934 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
935 	if (!iter)
936 		return ERR_PTR(-ENOMEM);
937 
938 	seqf->private = iter;
939 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
940 	do {
941 		dev = class_dev_iter_next(iter);
942 		if (!dev)
943 			return NULL;
944 	} while (skip--);
945 
946 	return dev_to_disk(dev);
947 }
948 
949 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
950 {
951 	struct device *dev;
952 
953 	(*pos)++;
954 	dev = class_dev_iter_next(seqf->private);
955 	if (dev)
956 		return dev_to_disk(dev);
957 
958 	return NULL;
959 }
960 
961 static void disk_seqf_stop(struct seq_file *seqf, void *v)
962 {
963 	struct class_dev_iter *iter = seqf->private;
964 
965 	/* stop is called even after start failed :-( */
966 	if (iter) {
967 		class_dev_iter_exit(iter);
968 		kfree(iter);
969 		seqf->private = NULL;
970 	}
971 }
972 
973 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
974 {
975 	void *p;
976 
977 	p = disk_seqf_start(seqf, pos);
978 	if (!IS_ERR_OR_NULL(p) && !*pos)
979 		seq_puts(seqf, "major minor  #blocks  name\n\n");
980 	return p;
981 }
982 
983 static int show_partition(struct seq_file *seqf, void *v)
984 {
985 	struct gendisk *sgp = v;
986 	struct disk_part_iter piter;
987 	struct hd_struct *part;
988 	char buf[BDEVNAME_SIZE];
989 
990 	/* Don't show non-partitionable removeable devices or empty devices */
991 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
992 				   (sgp->flags & GENHD_FL_REMOVABLE)))
993 		return 0;
994 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
995 		return 0;
996 
997 	/* show the full disk and all non-0 size partitions of it */
998 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
999 	while ((part = disk_part_iter_next(&piter)))
1000 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1001 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1002 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1003 			   disk_name(sgp, part->partno, buf));
1004 	disk_part_iter_exit(&piter);
1005 
1006 	return 0;
1007 }
1008 
1009 static const struct seq_operations partitions_op = {
1010 	.start	= show_partition_start,
1011 	.next	= disk_seqf_next,
1012 	.stop	= disk_seqf_stop,
1013 	.show	= show_partition
1014 };
1015 
1016 static int partitions_open(struct inode *inode, struct file *file)
1017 {
1018 	return seq_open(file, &partitions_op);
1019 }
1020 
1021 static const struct file_operations proc_partitions_operations = {
1022 	.open		= partitions_open,
1023 	.read		= seq_read,
1024 	.llseek		= seq_lseek,
1025 	.release	= seq_release,
1026 };
1027 #endif
1028 
1029 
1030 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1031 {
1032 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1033 		/* Make old-style 2.4 aliases work */
1034 		request_module("block-major-%d", MAJOR(devt));
1035 	return NULL;
1036 }
1037 
1038 static int __init genhd_device_init(void)
1039 {
1040 	int error;
1041 
1042 	block_class.dev_kobj = sysfs_dev_block_kobj;
1043 	error = class_register(&block_class);
1044 	if (unlikely(error))
1045 		return error;
1046 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1047 	blk_dev_init();
1048 
1049 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1050 
1051 	/* create top-level block dir */
1052 	if (!sysfs_deprecated)
1053 		block_depr = kobject_create_and_add("block", NULL);
1054 	return 0;
1055 }
1056 
1057 subsys_initcall(genhd_device_init);
1058 
1059 static ssize_t disk_range_show(struct device *dev,
1060 			       struct device_attribute *attr, char *buf)
1061 {
1062 	struct gendisk *disk = dev_to_disk(dev);
1063 
1064 	return sprintf(buf, "%d\n", disk->minors);
1065 }
1066 
1067 static ssize_t disk_ext_range_show(struct device *dev,
1068 				   struct device_attribute *attr, char *buf)
1069 {
1070 	struct gendisk *disk = dev_to_disk(dev);
1071 
1072 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1073 }
1074 
1075 static ssize_t disk_removable_show(struct device *dev,
1076 				   struct device_attribute *attr, char *buf)
1077 {
1078 	struct gendisk *disk = dev_to_disk(dev);
1079 
1080 	return sprintf(buf, "%d\n",
1081 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1082 }
1083 
1084 static ssize_t disk_hidden_show(struct device *dev,
1085 				   struct device_attribute *attr, char *buf)
1086 {
1087 	struct gendisk *disk = dev_to_disk(dev);
1088 
1089 	return sprintf(buf, "%d\n",
1090 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1091 }
1092 
1093 static ssize_t disk_ro_show(struct device *dev,
1094 				   struct device_attribute *attr, char *buf)
1095 {
1096 	struct gendisk *disk = dev_to_disk(dev);
1097 
1098 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1099 }
1100 
1101 static ssize_t disk_capability_show(struct device *dev,
1102 				    struct device_attribute *attr, char *buf)
1103 {
1104 	struct gendisk *disk = dev_to_disk(dev);
1105 
1106 	return sprintf(buf, "%x\n", disk->flags);
1107 }
1108 
1109 static ssize_t disk_alignment_offset_show(struct device *dev,
1110 					  struct device_attribute *attr,
1111 					  char *buf)
1112 {
1113 	struct gendisk *disk = dev_to_disk(dev);
1114 
1115 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1116 }
1117 
1118 static ssize_t disk_discard_alignment_show(struct device *dev,
1119 					   struct device_attribute *attr,
1120 					   char *buf)
1121 {
1122 	struct gendisk *disk = dev_to_disk(dev);
1123 
1124 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1125 }
1126 
1127 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1128 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1129 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1130 static DEVICE_ATTR(hidden, S_IRUGO, disk_hidden_show, NULL);
1131 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1132 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1133 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1134 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1135 		   NULL);
1136 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1137 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1138 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1139 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1140 		disk_badblocks_store);
1141 #ifdef CONFIG_FAIL_MAKE_REQUEST
1142 static struct device_attribute dev_attr_fail =
1143 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1144 #endif
1145 #ifdef CONFIG_FAIL_IO_TIMEOUT
1146 static struct device_attribute dev_attr_fail_timeout =
1147 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1148 		part_timeout_store);
1149 #endif
1150 
1151 static struct attribute *disk_attrs[] = {
1152 	&dev_attr_range.attr,
1153 	&dev_attr_ext_range.attr,
1154 	&dev_attr_removable.attr,
1155 	&dev_attr_hidden.attr,
1156 	&dev_attr_ro.attr,
1157 	&dev_attr_size.attr,
1158 	&dev_attr_alignment_offset.attr,
1159 	&dev_attr_discard_alignment.attr,
1160 	&dev_attr_capability.attr,
1161 	&dev_attr_stat.attr,
1162 	&dev_attr_inflight.attr,
1163 	&dev_attr_badblocks.attr,
1164 #ifdef CONFIG_FAIL_MAKE_REQUEST
1165 	&dev_attr_fail.attr,
1166 #endif
1167 #ifdef CONFIG_FAIL_IO_TIMEOUT
1168 	&dev_attr_fail_timeout.attr,
1169 #endif
1170 	NULL
1171 };
1172 
1173 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1174 {
1175 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1176 	struct gendisk *disk = dev_to_disk(dev);
1177 
1178 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1179 		return 0;
1180 	return a->mode;
1181 }
1182 
1183 static struct attribute_group disk_attr_group = {
1184 	.attrs = disk_attrs,
1185 	.is_visible = disk_visible,
1186 };
1187 
1188 static const struct attribute_group *disk_attr_groups[] = {
1189 	&disk_attr_group,
1190 	NULL
1191 };
1192 
1193 /**
1194  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1195  * @disk: disk to replace part_tbl for
1196  * @new_ptbl: new part_tbl to install
1197  *
1198  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1199  * original ptbl is freed using RCU callback.
1200  *
1201  * LOCKING:
1202  * Matching bd_mutex locked or the caller is the only user of @disk.
1203  */
1204 static void disk_replace_part_tbl(struct gendisk *disk,
1205 				  struct disk_part_tbl *new_ptbl)
1206 {
1207 	struct disk_part_tbl *old_ptbl =
1208 		rcu_dereference_protected(disk->part_tbl, 1);
1209 
1210 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1211 
1212 	if (old_ptbl) {
1213 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1214 		kfree_rcu(old_ptbl, rcu_head);
1215 	}
1216 }
1217 
1218 /**
1219  * disk_expand_part_tbl - expand disk->part_tbl
1220  * @disk: disk to expand part_tbl for
1221  * @partno: expand such that this partno can fit in
1222  *
1223  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1224  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1225  *
1226  * LOCKING:
1227  * Matching bd_mutex locked or the caller is the only user of @disk.
1228  * Might sleep.
1229  *
1230  * RETURNS:
1231  * 0 on success, -errno on failure.
1232  */
1233 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1234 {
1235 	struct disk_part_tbl *old_ptbl =
1236 		rcu_dereference_protected(disk->part_tbl, 1);
1237 	struct disk_part_tbl *new_ptbl;
1238 	int len = old_ptbl ? old_ptbl->len : 0;
1239 	int i, target;
1240 	size_t size;
1241 
1242 	/*
1243 	 * check for int overflow, since we can get here from blkpg_ioctl()
1244 	 * with a user passed 'partno'.
1245 	 */
1246 	target = partno + 1;
1247 	if (target < 0)
1248 		return -EINVAL;
1249 
1250 	/* disk_max_parts() is zero during initialization, ignore if so */
1251 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1252 		return -EINVAL;
1253 
1254 	if (target <= len)
1255 		return 0;
1256 
1257 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1258 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1259 	if (!new_ptbl)
1260 		return -ENOMEM;
1261 
1262 	new_ptbl->len = target;
1263 
1264 	for (i = 0; i < len; i++)
1265 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1266 
1267 	disk_replace_part_tbl(disk, new_ptbl);
1268 	return 0;
1269 }
1270 
1271 static void disk_release(struct device *dev)
1272 {
1273 	struct gendisk *disk = dev_to_disk(dev);
1274 
1275 	blk_free_devt(dev->devt);
1276 	disk_release_events(disk);
1277 	kfree(disk->random);
1278 	disk_replace_part_tbl(disk, NULL);
1279 	hd_free_part(&disk->part0);
1280 	if (disk->queue)
1281 		blk_put_queue(disk->queue);
1282 	kfree(disk);
1283 }
1284 struct class block_class = {
1285 	.name		= "block",
1286 };
1287 
1288 static char *block_devnode(struct device *dev, umode_t *mode,
1289 			   kuid_t *uid, kgid_t *gid)
1290 {
1291 	struct gendisk *disk = dev_to_disk(dev);
1292 
1293 	if (disk->devnode)
1294 		return disk->devnode(disk, mode);
1295 	return NULL;
1296 }
1297 
1298 static const struct device_type disk_type = {
1299 	.name		= "disk",
1300 	.groups		= disk_attr_groups,
1301 	.release	= disk_release,
1302 	.devnode	= block_devnode,
1303 };
1304 
1305 #ifdef CONFIG_PROC_FS
1306 /*
1307  * aggregate disk stat collector.  Uses the same stats that the sysfs
1308  * entries do, above, but makes them available through one seq_file.
1309  *
1310  * The output looks suspiciously like /proc/partitions with a bunch of
1311  * extra fields.
1312  */
1313 static int diskstats_show(struct seq_file *seqf, void *v)
1314 {
1315 	struct gendisk *gp = v;
1316 	struct disk_part_iter piter;
1317 	struct hd_struct *hd;
1318 	char buf[BDEVNAME_SIZE];
1319 	unsigned int inflight[2];
1320 	int cpu;
1321 
1322 	/*
1323 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1324 		seq_puts(seqf,	"major minor name"
1325 				"     rio rmerge rsect ruse wio wmerge "
1326 				"wsect wuse running use aveq"
1327 				"\n\n");
1328 	*/
1329 
1330 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1331 	while ((hd = disk_part_iter_next(&piter))) {
1332 		cpu = part_stat_lock();
1333 		part_round_stats(gp->queue, cpu, hd);
1334 		part_stat_unlock();
1335 		part_in_flight(gp->queue, hd, inflight);
1336 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1337 			   "%u %lu %lu %lu %u %u %u %u\n",
1338 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1339 			   disk_name(gp, hd->partno, buf),
1340 			   part_stat_read(hd, ios[READ]),
1341 			   part_stat_read(hd, merges[READ]),
1342 			   part_stat_read(hd, sectors[READ]),
1343 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1344 			   part_stat_read(hd, ios[WRITE]),
1345 			   part_stat_read(hd, merges[WRITE]),
1346 			   part_stat_read(hd, sectors[WRITE]),
1347 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1348 			   inflight[0],
1349 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1350 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1351 			);
1352 	}
1353 	disk_part_iter_exit(&piter);
1354 
1355 	return 0;
1356 }
1357 
1358 static const struct seq_operations diskstats_op = {
1359 	.start	= disk_seqf_start,
1360 	.next	= disk_seqf_next,
1361 	.stop	= disk_seqf_stop,
1362 	.show	= diskstats_show
1363 };
1364 
1365 static int diskstats_open(struct inode *inode, struct file *file)
1366 {
1367 	return seq_open(file, &diskstats_op);
1368 }
1369 
1370 static const struct file_operations proc_diskstats_operations = {
1371 	.open		= diskstats_open,
1372 	.read		= seq_read,
1373 	.llseek		= seq_lseek,
1374 	.release	= seq_release,
1375 };
1376 
1377 static int __init proc_genhd_init(void)
1378 {
1379 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1380 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1381 	return 0;
1382 }
1383 module_init(proc_genhd_init);
1384 #endif /* CONFIG_PROC_FS */
1385 
1386 dev_t blk_lookup_devt(const char *name, int partno)
1387 {
1388 	dev_t devt = MKDEV(0, 0);
1389 	struct class_dev_iter iter;
1390 	struct device *dev;
1391 
1392 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1393 	while ((dev = class_dev_iter_next(&iter))) {
1394 		struct gendisk *disk = dev_to_disk(dev);
1395 		struct hd_struct *part;
1396 
1397 		if (strcmp(dev_name(dev), name))
1398 			continue;
1399 
1400 		if (partno < disk->minors) {
1401 			/* We need to return the right devno, even
1402 			 * if the partition doesn't exist yet.
1403 			 */
1404 			devt = MKDEV(MAJOR(dev->devt),
1405 				     MINOR(dev->devt) + partno);
1406 			break;
1407 		}
1408 		part = disk_get_part(disk, partno);
1409 		if (part) {
1410 			devt = part_devt(part);
1411 			disk_put_part(part);
1412 			break;
1413 		}
1414 		disk_put_part(part);
1415 	}
1416 	class_dev_iter_exit(&iter);
1417 	return devt;
1418 }
1419 EXPORT_SYMBOL(blk_lookup_devt);
1420 
1421 struct gendisk *__alloc_disk_node(int minors, int node_id)
1422 {
1423 	struct gendisk *disk;
1424 	struct disk_part_tbl *ptbl;
1425 
1426 	if (minors > DISK_MAX_PARTS) {
1427 		printk(KERN_ERR
1428 			"block: can't allocate more than %d partitions\n",
1429 			DISK_MAX_PARTS);
1430 		minors = DISK_MAX_PARTS;
1431 	}
1432 
1433 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1434 	if (disk) {
1435 		if (!init_part_stats(&disk->part0)) {
1436 			kfree(disk);
1437 			return NULL;
1438 		}
1439 		init_rwsem(&disk->lookup_sem);
1440 		disk->node_id = node_id;
1441 		if (disk_expand_part_tbl(disk, 0)) {
1442 			free_part_stats(&disk->part0);
1443 			kfree(disk);
1444 			return NULL;
1445 		}
1446 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1447 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1448 
1449 		/*
1450 		 * set_capacity() and get_capacity() currently don't use
1451 		 * seqcounter to read/update the part0->nr_sects. Still init
1452 		 * the counter as we can read the sectors in IO submission
1453 		 * patch using seqence counters.
1454 		 *
1455 		 * TODO: Ideally set_capacity() and get_capacity() should be
1456 		 * converted to make use of bd_mutex and sequence counters.
1457 		 */
1458 		seqcount_init(&disk->part0.nr_sects_seq);
1459 		if (hd_ref_init(&disk->part0)) {
1460 			hd_free_part(&disk->part0);
1461 			kfree(disk);
1462 			return NULL;
1463 		}
1464 
1465 		disk->minors = minors;
1466 		rand_initialize_disk(disk);
1467 		disk_to_dev(disk)->class = &block_class;
1468 		disk_to_dev(disk)->type = &disk_type;
1469 		device_initialize(disk_to_dev(disk));
1470 	}
1471 	return disk;
1472 }
1473 EXPORT_SYMBOL(__alloc_disk_node);
1474 
1475 struct kobject *get_disk_and_module(struct gendisk *disk)
1476 {
1477 	struct module *owner;
1478 	struct kobject *kobj;
1479 
1480 	if (!disk->fops)
1481 		return NULL;
1482 	owner = disk->fops->owner;
1483 	if (owner && !try_module_get(owner))
1484 		return NULL;
1485 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1486 	if (kobj == NULL) {
1487 		module_put(owner);
1488 		return NULL;
1489 	}
1490 	return kobj;
1491 
1492 }
1493 EXPORT_SYMBOL(get_disk_and_module);
1494 
1495 void put_disk(struct gendisk *disk)
1496 {
1497 	if (disk)
1498 		kobject_put(&disk_to_dev(disk)->kobj);
1499 }
1500 EXPORT_SYMBOL(put_disk);
1501 
1502 /*
1503  * This is a counterpart of get_disk_and_module() and thus also of
1504  * get_gendisk().
1505  */
1506 void put_disk_and_module(struct gendisk *disk)
1507 {
1508 	if (disk) {
1509 		struct module *owner = disk->fops->owner;
1510 
1511 		put_disk(disk);
1512 		module_put(owner);
1513 	}
1514 }
1515 EXPORT_SYMBOL(put_disk_and_module);
1516 
1517 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1518 {
1519 	char event[] = "DISK_RO=1";
1520 	char *envp[] = { event, NULL };
1521 
1522 	if (!ro)
1523 		event[8] = '0';
1524 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1525 }
1526 
1527 void set_device_ro(struct block_device *bdev, int flag)
1528 {
1529 	bdev->bd_part->policy = flag;
1530 }
1531 
1532 EXPORT_SYMBOL(set_device_ro);
1533 
1534 void set_disk_ro(struct gendisk *disk, int flag)
1535 {
1536 	struct disk_part_iter piter;
1537 	struct hd_struct *part;
1538 
1539 	if (disk->part0.policy != flag) {
1540 		set_disk_ro_uevent(disk, flag);
1541 		disk->part0.policy = flag;
1542 	}
1543 
1544 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1545 	while ((part = disk_part_iter_next(&piter)))
1546 		part->policy = flag;
1547 	disk_part_iter_exit(&piter);
1548 }
1549 
1550 EXPORT_SYMBOL(set_disk_ro);
1551 
1552 int bdev_read_only(struct block_device *bdev)
1553 {
1554 	if (!bdev)
1555 		return 0;
1556 	return bdev->bd_part->policy;
1557 }
1558 
1559 EXPORT_SYMBOL(bdev_read_only);
1560 
1561 int invalidate_partition(struct gendisk *disk, int partno)
1562 {
1563 	int res = 0;
1564 	struct block_device *bdev = bdget_disk(disk, partno);
1565 	if (bdev) {
1566 		fsync_bdev(bdev);
1567 		res = __invalidate_device(bdev, true);
1568 		bdput(bdev);
1569 	}
1570 	return res;
1571 }
1572 
1573 EXPORT_SYMBOL(invalidate_partition);
1574 
1575 /*
1576  * Disk events - monitor disk events like media change and eject request.
1577  */
1578 struct disk_events {
1579 	struct list_head	node;		/* all disk_event's */
1580 	struct gendisk		*disk;		/* the associated disk */
1581 	spinlock_t		lock;
1582 
1583 	struct mutex		block_mutex;	/* protects blocking */
1584 	int			block;		/* event blocking depth */
1585 	unsigned int		pending;	/* events already sent out */
1586 	unsigned int		clearing;	/* events being cleared */
1587 
1588 	long			poll_msecs;	/* interval, -1 for default */
1589 	struct delayed_work	dwork;
1590 };
1591 
1592 static const char *disk_events_strs[] = {
1593 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1594 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1595 };
1596 
1597 static char *disk_uevents[] = {
1598 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1599 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1600 };
1601 
1602 /* list of all disk_events */
1603 static DEFINE_MUTEX(disk_events_mutex);
1604 static LIST_HEAD(disk_events);
1605 
1606 /* disable in-kernel polling by default */
1607 static unsigned long disk_events_dfl_poll_msecs;
1608 
1609 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1610 {
1611 	struct disk_events *ev = disk->ev;
1612 	long intv_msecs = 0;
1613 
1614 	/*
1615 	 * If device-specific poll interval is set, always use it.  If
1616 	 * the default is being used, poll iff there are events which
1617 	 * can't be monitored asynchronously.
1618 	 */
1619 	if (ev->poll_msecs >= 0)
1620 		intv_msecs = ev->poll_msecs;
1621 	else if (disk->events & ~disk->async_events)
1622 		intv_msecs = disk_events_dfl_poll_msecs;
1623 
1624 	return msecs_to_jiffies(intv_msecs);
1625 }
1626 
1627 /**
1628  * disk_block_events - block and flush disk event checking
1629  * @disk: disk to block events for
1630  *
1631  * On return from this function, it is guaranteed that event checking
1632  * isn't in progress and won't happen until unblocked by
1633  * disk_unblock_events().  Events blocking is counted and the actual
1634  * unblocking happens after the matching number of unblocks are done.
1635  *
1636  * Note that this intentionally does not block event checking from
1637  * disk_clear_events().
1638  *
1639  * CONTEXT:
1640  * Might sleep.
1641  */
1642 void disk_block_events(struct gendisk *disk)
1643 {
1644 	struct disk_events *ev = disk->ev;
1645 	unsigned long flags;
1646 	bool cancel;
1647 
1648 	if (!ev)
1649 		return;
1650 
1651 	/*
1652 	 * Outer mutex ensures that the first blocker completes canceling
1653 	 * the event work before further blockers are allowed to finish.
1654 	 */
1655 	mutex_lock(&ev->block_mutex);
1656 
1657 	spin_lock_irqsave(&ev->lock, flags);
1658 	cancel = !ev->block++;
1659 	spin_unlock_irqrestore(&ev->lock, flags);
1660 
1661 	if (cancel)
1662 		cancel_delayed_work_sync(&disk->ev->dwork);
1663 
1664 	mutex_unlock(&ev->block_mutex);
1665 }
1666 
1667 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1668 {
1669 	struct disk_events *ev = disk->ev;
1670 	unsigned long intv;
1671 	unsigned long flags;
1672 
1673 	spin_lock_irqsave(&ev->lock, flags);
1674 
1675 	if (WARN_ON_ONCE(ev->block <= 0))
1676 		goto out_unlock;
1677 
1678 	if (--ev->block)
1679 		goto out_unlock;
1680 
1681 	intv = disk_events_poll_jiffies(disk);
1682 	if (check_now)
1683 		queue_delayed_work(system_freezable_power_efficient_wq,
1684 				&ev->dwork, 0);
1685 	else if (intv)
1686 		queue_delayed_work(system_freezable_power_efficient_wq,
1687 				&ev->dwork, intv);
1688 out_unlock:
1689 	spin_unlock_irqrestore(&ev->lock, flags);
1690 }
1691 
1692 /**
1693  * disk_unblock_events - unblock disk event checking
1694  * @disk: disk to unblock events for
1695  *
1696  * Undo disk_block_events().  When the block count reaches zero, it
1697  * starts events polling if configured.
1698  *
1699  * CONTEXT:
1700  * Don't care.  Safe to call from irq context.
1701  */
1702 void disk_unblock_events(struct gendisk *disk)
1703 {
1704 	if (disk->ev)
1705 		__disk_unblock_events(disk, false);
1706 }
1707 
1708 /**
1709  * disk_flush_events - schedule immediate event checking and flushing
1710  * @disk: disk to check and flush events for
1711  * @mask: events to flush
1712  *
1713  * Schedule immediate event checking on @disk if not blocked.  Events in
1714  * @mask are scheduled to be cleared from the driver.  Note that this
1715  * doesn't clear the events from @disk->ev.
1716  *
1717  * CONTEXT:
1718  * If @mask is non-zero must be called with bdev->bd_mutex held.
1719  */
1720 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1721 {
1722 	struct disk_events *ev = disk->ev;
1723 
1724 	if (!ev)
1725 		return;
1726 
1727 	spin_lock_irq(&ev->lock);
1728 	ev->clearing |= mask;
1729 	if (!ev->block)
1730 		mod_delayed_work(system_freezable_power_efficient_wq,
1731 				&ev->dwork, 0);
1732 	spin_unlock_irq(&ev->lock);
1733 }
1734 
1735 /**
1736  * disk_clear_events - synchronously check, clear and return pending events
1737  * @disk: disk to fetch and clear events from
1738  * @mask: mask of events to be fetched and cleared
1739  *
1740  * Disk events are synchronously checked and pending events in @mask
1741  * are cleared and returned.  This ignores the block count.
1742  *
1743  * CONTEXT:
1744  * Might sleep.
1745  */
1746 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1747 {
1748 	const struct block_device_operations *bdops = disk->fops;
1749 	struct disk_events *ev = disk->ev;
1750 	unsigned int pending;
1751 	unsigned int clearing = mask;
1752 
1753 	if (!ev) {
1754 		/* for drivers still using the old ->media_changed method */
1755 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1756 		    bdops->media_changed && bdops->media_changed(disk))
1757 			return DISK_EVENT_MEDIA_CHANGE;
1758 		return 0;
1759 	}
1760 
1761 	disk_block_events(disk);
1762 
1763 	/*
1764 	 * store the union of mask and ev->clearing on the stack so that the
1765 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1766 	 * can still be modified even if events are blocked).
1767 	 */
1768 	spin_lock_irq(&ev->lock);
1769 	clearing |= ev->clearing;
1770 	ev->clearing = 0;
1771 	spin_unlock_irq(&ev->lock);
1772 
1773 	disk_check_events(ev, &clearing);
1774 	/*
1775 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1776 	 * middle of this function, so we want to run the workfn without delay.
1777 	 */
1778 	__disk_unblock_events(disk, ev->clearing ? true : false);
1779 
1780 	/* then, fetch and clear pending events */
1781 	spin_lock_irq(&ev->lock);
1782 	pending = ev->pending & mask;
1783 	ev->pending &= ~mask;
1784 	spin_unlock_irq(&ev->lock);
1785 	WARN_ON_ONCE(clearing & mask);
1786 
1787 	return pending;
1788 }
1789 
1790 /*
1791  * Separate this part out so that a different pointer for clearing_ptr can be
1792  * passed in for disk_clear_events.
1793  */
1794 static void disk_events_workfn(struct work_struct *work)
1795 {
1796 	struct delayed_work *dwork = to_delayed_work(work);
1797 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1798 
1799 	disk_check_events(ev, &ev->clearing);
1800 }
1801 
1802 static void disk_check_events(struct disk_events *ev,
1803 			      unsigned int *clearing_ptr)
1804 {
1805 	struct gendisk *disk = ev->disk;
1806 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1807 	unsigned int clearing = *clearing_ptr;
1808 	unsigned int events;
1809 	unsigned long intv;
1810 	int nr_events = 0, i;
1811 
1812 	/* check events */
1813 	events = disk->fops->check_events(disk, clearing);
1814 
1815 	/* accumulate pending events and schedule next poll if necessary */
1816 	spin_lock_irq(&ev->lock);
1817 
1818 	events &= ~ev->pending;
1819 	ev->pending |= events;
1820 	*clearing_ptr &= ~clearing;
1821 
1822 	intv = disk_events_poll_jiffies(disk);
1823 	if (!ev->block && intv)
1824 		queue_delayed_work(system_freezable_power_efficient_wq,
1825 				&ev->dwork, intv);
1826 
1827 	spin_unlock_irq(&ev->lock);
1828 
1829 	/*
1830 	 * Tell userland about new events.  Only the events listed in
1831 	 * @disk->events are reported.  Unlisted events are processed the
1832 	 * same internally but never get reported to userland.
1833 	 */
1834 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1835 		if (events & disk->events & (1 << i))
1836 			envp[nr_events++] = disk_uevents[i];
1837 
1838 	if (nr_events)
1839 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1840 }
1841 
1842 /*
1843  * A disk events enabled device has the following sysfs nodes under
1844  * its /sys/block/X/ directory.
1845  *
1846  * events		: list of all supported events
1847  * events_async		: list of events which can be detected w/o polling
1848  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1849  */
1850 static ssize_t __disk_events_show(unsigned int events, char *buf)
1851 {
1852 	const char *delim = "";
1853 	ssize_t pos = 0;
1854 	int i;
1855 
1856 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1857 		if (events & (1 << i)) {
1858 			pos += sprintf(buf + pos, "%s%s",
1859 				       delim, disk_events_strs[i]);
1860 			delim = " ";
1861 		}
1862 	if (pos)
1863 		pos += sprintf(buf + pos, "\n");
1864 	return pos;
1865 }
1866 
1867 static ssize_t disk_events_show(struct device *dev,
1868 				struct device_attribute *attr, char *buf)
1869 {
1870 	struct gendisk *disk = dev_to_disk(dev);
1871 
1872 	return __disk_events_show(disk->events, buf);
1873 }
1874 
1875 static ssize_t disk_events_async_show(struct device *dev,
1876 				      struct device_attribute *attr, char *buf)
1877 {
1878 	struct gendisk *disk = dev_to_disk(dev);
1879 
1880 	return __disk_events_show(disk->async_events, buf);
1881 }
1882 
1883 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1884 					   struct device_attribute *attr,
1885 					   char *buf)
1886 {
1887 	struct gendisk *disk = dev_to_disk(dev);
1888 
1889 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1890 }
1891 
1892 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1893 					    struct device_attribute *attr,
1894 					    const char *buf, size_t count)
1895 {
1896 	struct gendisk *disk = dev_to_disk(dev);
1897 	long intv;
1898 
1899 	if (!count || !sscanf(buf, "%ld", &intv))
1900 		return -EINVAL;
1901 
1902 	if (intv < 0 && intv != -1)
1903 		return -EINVAL;
1904 
1905 	disk_block_events(disk);
1906 	disk->ev->poll_msecs = intv;
1907 	__disk_unblock_events(disk, true);
1908 
1909 	return count;
1910 }
1911 
1912 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1913 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1914 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1915 			 disk_events_poll_msecs_show,
1916 			 disk_events_poll_msecs_store);
1917 
1918 static const struct attribute *disk_events_attrs[] = {
1919 	&dev_attr_events.attr,
1920 	&dev_attr_events_async.attr,
1921 	&dev_attr_events_poll_msecs.attr,
1922 	NULL,
1923 };
1924 
1925 /*
1926  * The default polling interval can be specified by the kernel
1927  * parameter block.events_dfl_poll_msecs which defaults to 0
1928  * (disable).  This can also be modified runtime by writing to
1929  * /sys/module/block/events_dfl_poll_msecs.
1930  */
1931 static int disk_events_set_dfl_poll_msecs(const char *val,
1932 					  const struct kernel_param *kp)
1933 {
1934 	struct disk_events *ev;
1935 	int ret;
1936 
1937 	ret = param_set_ulong(val, kp);
1938 	if (ret < 0)
1939 		return ret;
1940 
1941 	mutex_lock(&disk_events_mutex);
1942 
1943 	list_for_each_entry(ev, &disk_events, node)
1944 		disk_flush_events(ev->disk, 0);
1945 
1946 	mutex_unlock(&disk_events_mutex);
1947 
1948 	return 0;
1949 }
1950 
1951 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1952 	.set	= disk_events_set_dfl_poll_msecs,
1953 	.get	= param_get_ulong,
1954 };
1955 
1956 #undef MODULE_PARAM_PREFIX
1957 #define MODULE_PARAM_PREFIX	"block."
1958 
1959 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1960 		&disk_events_dfl_poll_msecs, 0644);
1961 
1962 /*
1963  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1964  */
1965 static void disk_alloc_events(struct gendisk *disk)
1966 {
1967 	struct disk_events *ev;
1968 
1969 	if (!disk->fops->check_events)
1970 		return;
1971 
1972 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1973 	if (!ev) {
1974 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1975 		return;
1976 	}
1977 
1978 	INIT_LIST_HEAD(&ev->node);
1979 	ev->disk = disk;
1980 	spin_lock_init(&ev->lock);
1981 	mutex_init(&ev->block_mutex);
1982 	ev->block = 1;
1983 	ev->poll_msecs = -1;
1984 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1985 
1986 	disk->ev = ev;
1987 }
1988 
1989 static void disk_add_events(struct gendisk *disk)
1990 {
1991 	if (!disk->ev)
1992 		return;
1993 
1994 	/* FIXME: error handling */
1995 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1996 		pr_warn("%s: failed to create sysfs files for events\n",
1997 			disk->disk_name);
1998 
1999 	mutex_lock(&disk_events_mutex);
2000 	list_add_tail(&disk->ev->node, &disk_events);
2001 	mutex_unlock(&disk_events_mutex);
2002 
2003 	/*
2004 	 * Block count is initialized to 1 and the following initial
2005 	 * unblock kicks it into action.
2006 	 */
2007 	__disk_unblock_events(disk, true);
2008 }
2009 
2010 static void disk_del_events(struct gendisk *disk)
2011 {
2012 	if (!disk->ev)
2013 		return;
2014 
2015 	disk_block_events(disk);
2016 
2017 	mutex_lock(&disk_events_mutex);
2018 	list_del_init(&disk->ev->node);
2019 	mutex_unlock(&disk_events_mutex);
2020 
2021 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2022 }
2023 
2024 static void disk_release_events(struct gendisk *disk)
2025 {
2026 	/* the block count should be 1 from disk_del_events() */
2027 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2028 	kfree(disk->ev);
2029 }
2030