xref: /openbmc/linux/block/genhd.c (revision f220d3eb)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (q->mq_ops)
51 		return;
52 
53 	atomic_inc(&part->in_flight[rw]);
54 	if (part->partno)
55 		atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57 
58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (q->mq_ops)
61 		return;
62 
63 	atomic_dec(&part->in_flight[rw]);
64 	if (part->partno)
65 		atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67 
68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 		    unsigned int inflight[2])
70 {
71 	if (q->mq_ops) {
72 		blk_mq_in_flight(q, part, inflight);
73 		return;
74 	}
75 
76 	inflight[0] = atomic_read(&part->in_flight[0]) +
77 			atomic_read(&part->in_flight[1]);
78 	if (part->partno) {
79 		part = &part_to_disk(part)->part0;
80 		inflight[1] = atomic_read(&part->in_flight[0]) +
81 				atomic_read(&part->in_flight[1]);
82 	}
83 }
84 
85 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
86 		       unsigned int inflight[2])
87 {
88 	if (q->mq_ops) {
89 		blk_mq_in_flight_rw(q, part, inflight);
90 		return;
91 	}
92 
93 	inflight[0] = atomic_read(&part->in_flight[0]);
94 	inflight[1] = atomic_read(&part->in_flight[1]);
95 }
96 
97 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
98 {
99 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
100 
101 	if (unlikely(partno < 0 || partno >= ptbl->len))
102 		return NULL;
103 	return rcu_dereference(ptbl->part[partno]);
104 }
105 
106 /**
107  * disk_get_part - get partition
108  * @disk: disk to look partition from
109  * @partno: partition number
110  *
111  * Look for partition @partno from @disk.  If found, increment
112  * reference count and return it.
113  *
114  * CONTEXT:
115  * Don't care.
116  *
117  * RETURNS:
118  * Pointer to the found partition on success, NULL if not found.
119  */
120 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
121 {
122 	struct hd_struct *part;
123 
124 	rcu_read_lock();
125 	part = __disk_get_part(disk, partno);
126 	if (part)
127 		get_device(part_to_dev(part));
128 	rcu_read_unlock();
129 
130 	return part;
131 }
132 EXPORT_SYMBOL_GPL(disk_get_part);
133 
134 /**
135  * disk_part_iter_init - initialize partition iterator
136  * @piter: iterator to initialize
137  * @disk: disk to iterate over
138  * @flags: DISK_PITER_* flags
139  *
140  * Initialize @piter so that it iterates over partitions of @disk.
141  *
142  * CONTEXT:
143  * Don't care.
144  */
145 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
146 			  unsigned int flags)
147 {
148 	struct disk_part_tbl *ptbl;
149 
150 	rcu_read_lock();
151 	ptbl = rcu_dereference(disk->part_tbl);
152 
153 	piter->disk = disk;
154 	piter->part = NULL;
155 
156 	if (flags & DISK_PITER_REVERSE)
157 		piter->idx = ptbl->len - 1;
158 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
159 		piter->idx = 0;
160 	else
161 		piter->idx = 1;
162 
163 	piter->flags = flags;
164 
165 	rcu_read_unlock();
166 }
167 EXPORT_SYMBOL_GPL(disk_part_iter_init);
168 
169 /**
170  * disk_part_iter_next - proceed iterator to the next partition and return it
171  * @piter: iterator of interest
172  *
173  * Proceed @piter to the next partition and return it.
174  *
175  * CONTEXT:
176  * Don't care.
177  */
178 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
179 {
180 	struct disk_part_tbl *ptbl;
181 	int inc, end;
182 
183 	/* put the last partition */
184 	disk_put_part(piter->part);
185 	piter->part = NULL;
186 
187 	/* get part_tbl */
188 	rcu_read_lock();
189 	ptbl = rcu_dereference(piter->disk->part_tbl);
190 
191 	/* determine iteration parameters */
192 	if (piter->flags & DISK_PITER_REVERSE) {
193 		inc = -1;
194 		if (piter->flags & (DISK_PITER_INCL_PART0 |
195 				    DISK_PITER_INCL_EMPTY_PART0))
196 			end = -1;
197 		else
198 			end = 0;
199 	} else {
200 		inc = 1;
201 		end = ptbl->len;
202 	}
203 
204 	/* iterate to the next partition */
205 	for (; piter->idx != end; piter->idx += inc) {
206 		struct hd_struct *part;
207 
208 		part = rcu_dereference(ptbl->part[piter->idx]);
209 		if (!part)
210 			continue;
211 		if (!part_nr_sects_read(part) &&
212 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
213 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
214 		      piter->idx == 0))
215 			continue;
216 
217 		get_device(part_to_dev(part));
218 		piter->part = part;
219 		piter->idx += inc;
220 		break;
221 	}
222 
223 	rcu_read_unlock();
224 
225 	return piter->part;
226 }
227 EXPORT_SYMBOL_GPL(disk_part_iter_next);
228 
229 /**
230  * disk_part_iter_exit - finish up partition iteration
231  * @piter: iter of interest
232  *
233  * Called when iteration is over.  Cleans up @piter.
234  *
235  * CONTEXT:
236  * Don't care.
237  */
238 void disk_part_iter_exit(struct disk_part_iter *piter)
239 {
240 	disk_put_part(piter->part);
241 	piter->part = NULL;
242 }
243 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
244 
245 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
246 {
247 	return part->start_sect <= sector &&
248 		sector < part->start_sect + part_nr_sects_read(part);
249 }
250 
251 /**
252  * disk_map_sector_rcu - map sector to partition
253  * @disk: gendisk of interest
254  * @sector: sector to map
255  *
256  * Find out which partition @sector maps to on @disk.  This is
257  * primarily used for stats accounting.
258  *
259  * CONTEXT:
260  * RCU read locked.  The returned partition pointer is valid only
261  * while preemption is disabled.
262  *
263  * RETURNS:
264  * Found partition on success, part0 is returned if no partition matches
265  */
266 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
267 {
268 	struct disk_part_tbl *ptbl;
269 	struct hd_struct *part;
270 	int i;
271 
272 	ptbl = rcu_dereference(disk->part_tbl);
273 
274 	part = rcu_dereference(ptbl->last_lookup);
275 	if (part && sector_in_part(part, sector))
276 		return part;
277 
278 	for (i = 1; i < ptbl->len; i++) {
279 		part = rcu_dereference(ptbl->part[i]);
280 
281 		if (part && sector_in_part(part, sector)) {
282 			rcu_assign_pointer(ptbl->last_lookup, part);
283 			return part;
284 		}
285 	}
286 	return &disk->part0;
287 }
288 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
289 
290 /*
291  * Can be deleted altogether. Later.
292  *
293  */
294 #define BLKDEV_MAJOR_HASH_SIZE 255
295 static struct blk_major_name {
296 	struct blk_major_name *next;
297 	int major;
298 	char name[16];
299 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
300 
301 /* index in the above - for now: assume no multimajor ranges */
302 static inline int major_to_index(unsigned major)
303 {
304 	return major % BLKDEV_MAJOR_HASH_SIZE;
305 }
306 
307 #ifdef CONFIG_PROC_FS
308 void blkdev_show(struct seq_file *seqf, off_t offset)
309 {
310 	struct blk_major_name *dp;
311 
312 	mutex_lock(&block_class_lock);
313 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
314 		if (dp->major == offset)
315 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
316 	mutex_unlock(&block_class_lock);
317 }
318 #endif /* CONFIG_PROC_FS */
319 
320 /**
321  * register_blkdev - register a new block device
322  *
323  * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
324  *         @major = 0, try to allocate any unused major number.
325  * @name: the name of the new block device as a zero terminated string
326  *
327  * The @name must be unique within the system.
328  *
329  * The return value depends on the @major input parameter:
330  *
331  *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
332  *    then the function returns zero on success, or a negative error code
333  *  - if any unused major number was requested with @major = 0 parameter
334  *    then the return value is the allocated major number in range
335  *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
336  *
337  * See Documentation/admin-guide/devices.txt for the list of allocated
338  * major numbers.
339  */
340 int register_blkdev(unsigned int major, const char *name)
341 {
342 	struct blk_major_name **n, *p;
343 	int index, ret = 0;
344 
345 	mutex_lock(&block_class_lock);
346 
347 	/* temporary */
348 	if (major == 0) {
349 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
350 			if (major_names[index] == NULL)
351 				break;
352 		}
353 
354 		if (index == 0) {
355 			printk("register_blkdev: failed to get major for %s\n",
356 			       name);
357 			ret = -EBUSY;
358 			goto out;
359 		}
360 		major = index;
361 		ret = major;
362 	}
363 
364 	if (major >= BLKDEV_MAJOR_MAX) {
365 		pr_err("register_blkdev: major requested (%u) is greater than the maximum (%u) for %s\n",
366 		       major, BLKDEV_MAJOR_MAX-1, name);
367 
368 		ret = -EINVAL;
369 		goto out;
370 	}
371 
372 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
373 	if (p == NULL) {
374 		ret = -ENOMEM;
375 		goto out;
376 	}
377 
378 	p->major = major;
379 	strlcpy(p->name, name, sizeof(p->name));
380 	p->next = NULL;
381 	index = major_to_index(major);
382 
383 	for (n = &major_names[index]; *n; n = &(*n)->next) {
384 		if ((*n)->major == major)
385 			break;
386 	}
387 	if (!*n)
388 		*n = p;
389 	else
390 		ret = -EBUSY;
391 
392 	if (ret < 0) {
393 		printk("register_blkdev: cannot get major %u for %s\n",
394 		       major, name);
395 		kfree(p);
396 	}
397 out:
398 	mutex_unlock(&block_class_lock);
399 	return ret;
400 }
401 
402 EXPORT_SYMBOL(register_blkdev);
403 
404 void unregister_blkdev(unsigned int major, const char *name)
405 {
406 	struct blk_major_name **n;
407 	struct blk_major_name *p = NULL;
408 	int index = major_to_index(major);
409 
410 	mutex_lock(&block_class_lock);
411 	for (n = &major_names[index]; *n; n = &(*n)->next)
412 		if ((*n)->major == major)
413 			break;
414 	if (!*n || strcmp((*n)->name, name)) {
415 		WARN_ON(1);
416 	} else {
417 		p = *n;
418 		*n = p->next;
419 	}
420 	mutex_unlock(&block_class_lock);
421 	kfree(p);
422 }
423 
424 EXPORT_SYMBOL(unregister_blkdev);
425 
426 static struct kobj_map *bdev_map;
427 
428 /**
429  * blk_mangle_minor - scatter minor numbers apart
430  * @minor: minor number to mangle
431  *
432  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
433  * is enabled.  Mangling twice gives the original value.
434  *
435  * RETURNS:
436  * Mangled value.
437  *
438  * CONTEXT:
439  * Don't care.
440  */
441 static int blk_mangle_minor(int minor)
442 {
443 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
444 	int i;
445 
446 	for (i = 0; i < MINORBITS / 2; i++) {
447 		int low = minor & (1 << i);
448 		int high = minor & (1 << (MINORBITS - 1 - i));
449 		int distance = MINORBITS - 1 - 2 * i;
450 
451 		minor ^= low | high;	/* clear both bits */
452 		low <<= distance;	/* swap the positions */
453 		high >>= distance;
454 		minor |= low | high;	/* and set */
455 	}
456 #endif
457 	return minor;
458 }
459 
460 /**
461  * blk_alloc_devt - allocate a dev_t for a partition
462  * @part: partition to allocate dev_t for
463  * @devt: out parameter for resulting dev_t
464  *
465  * Allocate a dev_t for block device.
466  *
467  * RETURNS:
468  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
469  * failure.
470  *
471  * CONTEXT:
472  * Might sleep.
473  */
474 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
475 {
476 	struct gendisk *disk = part_to_disk(part);
477 	int idx;
478 
479 	/* in consecutive minor range? */
480 	if (part->partno < disk->minors) {
481 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
482 		return 0;
483 	}
484 
485 	/* allocate ext devt */
486 	idr_preload(GFP_KERNEL);
487 
488 	spin_lock_bh(&ext_devt_lock);
489 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
490 	spin_unlock_bh(&ext_devt_lock);
491 
492 	idr_preload_end();
493 	if (idx < 0)
494 		return idx == -ENOSPC ? -EBUSY : idx;
495 
496 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
497 	return 0;
498 }
499 
500 /**
501  * blk_free_devt - free a dev_t
502  * @devt: dev_t to free
503  *
504  * Free @devt which was allocated using blk_alloc_devt().
505  *
506  * CONTEXT:
507  * Might sleep.
508  */
509 void blk_free_devt(dev_t devt)
510 {
511 	if (devt == MKDEV(0, 0))
512 		return;
513 
514 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
515 		spin_lock_bh(&ext_devt_lock);
516 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
517 		spin_unlock_bh(&ext_devt_lock);
518 	}
519 }
520 
521 static char *bdevt_str(dev_t devt, char *buf)
522 {
523 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
524 		char tbuf[BDEVT_SIZE];
525 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
526 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
527 	} else
528 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
529 
530 	return buf;
531 }
532 
533 /*
534  * Register device numbers dev..(dev+range-1)
535  * range must be nonzero
536  * The hash chain is sorted on range, so that subranges can override.
537  */
538 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
539 			 struct kobject *(*probe)(dev_t, int *, void *),
540 			 int (*lock)(dev_t, void *), void *data)
541 {
542 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
543 }
544 
545 EXPORT_SYMBOL(blk_register_region);
546 
547 void blk_unregister_region(dev_t devt, unsigned long range)
548 {
549 	kobj_unmap(bdev_map, devt, range);
550 }
551 
552 EXPORT_SYMBOL(blk_unregister_region);
553 
554 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
555 {
556 	struct gendisk *p = data;
557 
558 	return &disk_to_dev(p)->kobj;
559 }
560 
561 static int exact_lock(dev_t devt, void *data)
562 {
563 	struct gendisk *p = data;
564 
565 	if (!get_disk_and_module(p))
566 		return -1;
567 	return 0;
568 }
569 
570 static void register_disk(struct device *parent, struct gendisk *disk)
571 {
572 	struct device *ddev = disk_to_dev(disk);
573 	struct block_device *bdev;
574 	struct disk_part_iter piter;
575 	struct hd_struct *part;
576 	int err;
577 
578 	ddev->parent = parent;
579 
580 	dev_set_name(ddev, "%s", disk->disk_name);
581 
582 	/* delay uevents, until we scanned partition table */
583 	dev_set_uevent_suppress(ddev, 1);
584 
585 	if (device_add(ddev))
586 		return;
587 	if (!sysfs_deprecated) {
588 		err = sysfs_create_link(block_depr, &ddev->kobj,
589 					kobject_name(&ddev->kobj));
590 		if (err) {
591 			device_del(ddev);
592 			return;
593 		}
594 	}
595 
596 	/*
597 	 * avoid probable deadlock caused by allocating memory with
598 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
599 	 * devices
600 	 */
601 	pm_runtime_set_memalloc_noio(ddev, true);
602 
603 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
604 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
605 
606 	if (disk->flags & GENHD_FL_HIDDEN) {
607 		dev_set_uevent_suppress(ddev, 0);
608 		return;
609 	}
610 
611 	/* No minors to use for partitions */
612 	if (!disk_part_scan_enabled(disk))
613 		goto exit;
614 
615 	/* No such device (e.g., media were just removed) */
616 	if (!get_capacity(disk))
617 		goto exit;
618 
619 	bdev = bdget_disk(disk, 0);
620 	if (!bdev)
621 		goto exit;
622 
623 	bdev->bd_invalidated = 1;
624 	err = blkdev_get(bdev, FMODE_READ, NULL);
625 	if (err < 0)
626 		goto exit;
627 	blkdev_put(bdev, FMODE_READ);
628 
629 exit:
630 	/* announce disk after possible partitions are created */
631 	dev_set_uevent_suppress(ddev, 0);
632 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
633 
634 	/* announce possible partitions */
635 	disk_part_iter_init(&piter, disk, 0);
636 	while ((part = disk_part_iter_next(&piter)))
637 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
638 	disk_part_iter_exit(&piter);
639 
640 	err = sysfs_create_link(&ddev->kobj,
641 				&disk->queue->backing_dev_info->dev->kobj,
642 				"bdi");
643 	WARN_ON(err);
644 }
645 
646 /**
647  * __device_add_disk - add disk information to kernel list
648  * @parent: parent device for the disk
649  * @disk: per-device partitioning information
650  * @register_queue: register the queue if set to true
651  *
652  * This function registers the partitioning information in @disk
653  * with the kernel.
654  *
655  * FIXME: error handling
656  */
657 static void __device_add_disk(struct device *parent, struct gendisk *disk,
658 			      bool register_queue)
659 {
660 	dev_t devt;
661 	int retval;
662 
663 	/* minors == 0 indicates to use ext devt from part0 and should
664 	 * be accompanied with EXT_DEVT flag.  Make sure all
665 	 * parameters make sense.
666 	 */
667 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
668 	WARN_ON(!disk->minors &&
669 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
670 
671 	disk->flags |= GENHD_FL_UP;
672 
673 	retval = blk_alloc_devt(&disk->part0, &devt);
674 	if (retval) {
675 		WARN_ON(1);
676 		return;
677 	}
678 	disk->major = MAJOR(devt);
679 	disk->first_minor = MINOR(devt);
680 
681 	disk_alloc_events(disk);
682 
683 	if (disk->flags & GENHD_FL_HIDDEN) {
684 		/*
685 		 * Don't let hidden disks show up in /proc/partitions,
686 		 * and don't bother scanning for partitions either.
687 		 */
688 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
689 		disk->flags |= GENHD_FL_NO_PART_SCAN;
690 	} else {
691 		int ret;
692 
693 		/* Register BDI before referencing it from bdev */
694 		disk_to_dev(disk)->devt = devt;
695 		ret = bdi_register_owner(disk->queue->backing_dev_info,
696 						disk_to_dev(disk));
697 		WARN_ON(ret);
698 		blk_register_region(disk_devt(disk), disk->minors, NULL,
699 				    exact_match, exact_lock, disk);
700 	}
701 	register_disk(parent, disk);
702 	if (register_queue)
703 		blk_register_queue(disk);
704 
705 	/*
706 	 * Take an extra ref on queue which will be put on disk_release()
707 	 * so that it sticks around as long as @disk is there.
708 	 */
709 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
710 
711 	disk_add_events(disk);
712 	blk_integrity_add(disk);
713 }
714 
715 void device_add_disk(struct device *parent, struct gendisk *disk)
716 {
717 	__device_add_disk(parent, disk, true);
718 }
719 EXPORT_SYMBOL(device_add_disk);
720 
721 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
722 {
723 	__device_add_disk(parent, disk, false);
724 }
725 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
726 
727 void del_gendisk(struct gendisk *disk)
728 {
729 	struct disk_part_iter piter;
730 	struct hd_struct *part;
731 
732 	blk_integrity_del(disk);
733 	disk_del_events(disk);
734 
735 	/*
736 	 * Block lookups of the disk until all bdevs are unhashed and the
737 	 * disk is marked as dead (GENHD_FL_UP cleared).
738 	 */
739 	down_write(&disk->lookup_sem);
740 	/* invalidate stuff */
741 	disk_part_iter_init(&piter, disk,
742 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
743 	while ((part = disk_part_iter_next(&piter))) {
744 		invalidate_partition(disk, part->partno);
745 		bdev_unhash_inode(part_devt(part));
746 		delete_partition(disk, part->partno);
747 	}
748 	disk_part_iter_exit(&piter);
749 
750 	invalidate_partition(disk, 0);
751 	bdev_unhash_inode(disk_devt(disk));
752 	set_capacity(disk, 0);
753 	disk->flags &= ~GENHD_FL_UP;
754 	up_write(&disk->lookup_sem);
755 
756 	if (!(disk->flags & GENHD_FL_HIDDEN))
757 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
758 	if (disk->queue) {
759 		/*
760 		 * Unregister bdi before releasing device numbers (as they can
761 		 * get reused and we'd get clashes in sysfs).
762 		 */
763 		if (!(disk->flags & GENHD_FL_HIDDEN))
764 			bdi_unregister(disk->queue->backing_dev_info);
765 		blk_unregister_queue(disk);
766 	} else {
767 		WARN_ON(1);
768 	}
769 
770 	if (!(disk->flags & GENHD_FL_HIDDEN))
771 		blk_unregister_region(disk_devt(disk), disk->minors);
772 
773 	kobject_put(disk->part0.holder_dir);
774 	kobject_put(disk->slave_dir);
775 
776 	part_stat_set_all(&disk->part0, 0);
777 	disk->part0.stamp = 0;
778 	if (!sysfs_deprecated)
779 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
780 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
781 	device_del(disk_to_dev(disk));
782 }
783 EXPORT_SYMBOL(del_gendisk);
784 
785 /* sysfs access to bad-blocks list. */
786 static ssize_t disk_badblocks_show(struct device *dev,
787 					struct device_attribute *attr,
788 					char *page)
789 {
790 	struct gendisk *disk = dev_to_disk(dev);
791 
792 	if (!disk->bb)
793 		return sprintf(page, "\n");
794 
795 	return badblocks_show(disk->bb, page, 0);
796 }
797 
798 static ssize_t disk_badblocks_store(struct device *dev,
799 					struct device_attribute *attr,
800 					const char *page, size_t len)
801 {
802 	struct gendisk *disk = dev_to_disk(dev);
803 
804 	if (!disk->bb)
805 		return -ENXIO;
806 
807 	return badblocks_store(disk->bb, page, len, 0);
808 }
809 
810 /**
811  * get_gendisk - get partitioning information for a given device
812  * @devt: device to get partitioning information for
813  * @partno: returned partition index
814  *
815  * This function gets the structure containing partitioning
816  * information for the given device @devt.
817  */
818 struct gendisk *get_gendisk(dev_t devt, int *partno)
819 {
820 	struct gendisk *disk = NULL;
821 
822 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
823 		struct kobject *kobj;
824 
825 		kobj = kobj_lookup(bdev_map, devt, partno);
826 		if (kobj)
827 			disk = dev_to_disk(kobj_to_dev(kobj));
828 	} else {
829 		struct hd_struct *part;
830 
831 		spin_lock_bh(&ext_devt_lock);
832 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
833 		if (part && get_disk_and_module(part_to_disk(part))) {
834 			*partno = part->partno;
835 			disk = part_to_disk(part);
836 		}
837 		spin_unlock_bh(&ext_devt_lock);
838 	}
839 
840 	if (!disk)
841 		return NULL;
842 
843 	/*
844 	 * Synchronize with del_gendisk() to not return disk that is being
845 	 * destroyed.
846 	 */
847 	down_read(&disk->lookup_sem);
848 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
849 		     !(disk->flags & GENHD_FL_UP))) {
850 		up_read(&disk->lookup_sem);
851 		put_disk_and_module(disk);
852 		disk = NULL;
853 	} else {
854 		up_read(&disk->lookup_sem);
855 	}
856 	return disk;
857 }
858 EXPORT_SYMBOL(get_gendisk);
859 
860 /**
861  * bdget_disk - do bdget() by gendisk and partition number
862  * @disk: gendisk of interest
863  * @partno: partition number
864  *
865  * Find partition @partno from @disk, do bdget() on it.
866  *
867  * CONTEXT:
868  * Don't care.
869  *
870  * RETURNS:
871  * Resulting block_device on success, NULL on failure.
872  */
873 struct block_device *bdget_disk(struct gendisk *disk, int partno)
874 {
875 	struct hd_struct *part;
876 	struct block_device *bdev = NULL;
877 
878 	part = disk_get_part(disk, partno);
879 	if (part)
880 		bdev = bdget(part_devt(part));
881 	disk_put_part(part);
882 
883 	return bdev;
884 }
885 EXPORT_SYMBOL(bdget_disk);
886 
887 /*
888  * print a full list of all partitions - intended for places where the root
889  * filesystem can't be mounted and thus to give the victim some idea of what
890  * went wrong
891  */
892 void __init printk_all_partitions(void)
893 {
894 	struct class_dev_iter iter;
895 	struct device *dev;
896 
897 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
898 	while ((dev = class_dev_iter_next(&iter))) {
899 		struct gendisk *disk = dev_to_disk(dev);
900 		struct disk_part_iter piter;
901 		struct hd_struct *part;
902 		char name_buf[BDEVNAME_SIZE];
903 		char devt_buf[BDEVT_SIZE];
904 
905 		/*
906 		 * Don't show empty devices or things that have been
907 		 * suppressed
908 		 */
909 		if (get_capacity(disk) == 0 ||
910 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
911 			continue;
912 
913 		/*
914 		 * Note, unlike /proc/partitions, I am showing the
915 		 * numbers in hex - the same format as the root=
916 		 * option takes.
917 		 */
918 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
919 		while ((part = disk_part_iter_next(&piter))) {
920 			bool is_part0 = part == &disk->part0;
921 
922 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
923 			       bdevt_str(part_devt(part), devt_buf),
924 			       (unsigned long long)part_nr_sects_read(part) >> 1
925 			       , disk_name(disk, part->partno, name_buf),
926 			       part->info ? part->info->uuid : "");
927 			if (is_part0) {
928 				if (dev->parent && dev->parent->driver)
929 					printk(" driver: %s\n",
930 					      dev->parent->driver->name);
931 				else
932 					printk(" (driver?)\n");
933 			} else
934 				printk("\n");
935 		}
936 		disk_part_iter_exit(&piter);
937 	}
938 	class_dev_iter_exit(&iter);
939 }
940 
941 #ifdef CONFIG_PROC_FS
942 /* iterator */
943 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
944 {
945 	loff_t skip = *pos;
946 	struct class_dev_iter *iter;
947 	struct device *dev;
948 
949 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
950 	if (!iter)
951 		return ERR_PTR(-ENOMEM);
952 
953 	seqf->private = iter;
954 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
955 	do {
956 		dev = class_dev_iter_next(iter);
957 		if (!dev)
958 			return NULL;
959 	} while (skip--);
960 
961 	return dev_to_disk(dev);
962 }
963 
964 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
965 {
966 	struct device *dev;
967 
968 	(*pos)++;
969 	dev = class_dev_iter_next(seqf->private);
970 	if (dev)
971 		return dev_to_disk(dev);
972 
973 	return NULL;
974 }
975 
976 static void disk_seqf_stop(struct seq_file *seqf, void *v)
977 {
978 	struct class_dev_iter *iter = seqf->private;
979 
980 	/* stop is called even after start failed :-( */
981 	if (iter) {
982 		class_dev_iter_exit(iter);
983 		kfree(iter);
984 		seqf->private = NULL;
985 	}
986 }
987 
988 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
989 {
990 	void *p;
991 
992 	p = disk_seqf_start(seqf, pos);
993 	if (!IS_ERR_OR_NULL(p) && !*pos)
994 		seq_puts(seqf, "major minor  #blocks  name\n\n");
995 	return p;
996 }
997 
998 static int show_partition(struct seq_file *seqf, void *v)
999 {
1000 	struct gendisk *sgp = v;
1001 	struct disk_part_iter piter;
1002 	struct hd_struct *part;
1003 	char buf[BDEVNAME_SIZE];
1004 
1005 	/* Don't show non-partitionable removeable devices or empty devices */
1006 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1007 				   (sgp->flags & GENHD_FL_REMOVABLE)))
1008 		return 0;
1009 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1010 		return 0;
1011 
1012 	/* show the full disk and all non-0 size partitions of it */
1013 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1014 	while ((part = disk_part_iter_next(&piter)))
1015 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1016 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1017 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1018 			   disk_name(sgp, part->partno, buf));
1019 	disk_part_iter_exit(&piter);
1020 
1021 	return 0;
1022 }
1023 
1024 static const struct seq_operations partitions_op = {
1025 	.start	= show_partition_start,
1026 	.next	= disk_seqf_next,
1027 	.stop	= disk_seqf_stop,
1028 	.show	= show_partition
1029 };
1030 #endif
1031 
1032 
1033 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1034 {
1035 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1036 		/* Make old-style 2.4 aliases work */
1037 		request_module("block-major-%d", MAJOR(devt));
1038 	return NULL;
1039 }
1040 
1041 static int __init genhd_device_init(void)
1042 {
1043 	int error;
1044 
1045 	block_class.dev_kobj = sysfs_dev_block_kobj;
1046 	error = class_register(&block_class);
1047 	if (unlikely(error))
1048 		return error;
1049 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1050 	blk_dev_init();
1051 
1052 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1053 
1054 	/* create top-level block dir */
1055 	if (!sysfs_deprecated)
1056 		block_depr = kobject_create_and_add("block", NULL);
1057 	return 0;
1058 }
1059 
1060 subsys_initcall(genhd_device_init);
1061 
1062 static ssize_t disk_range_show(struct device *dev,
1063 			       struct device_attribute *attr, char *buf)
1064 {
1065 	struct gendisk *disk = dev_to_disk(dev);
1066 
1067 	return sprintf(buf, "%d\n", disk->minors);
1068 }
1069 
1070 static ssize_t disk_ext_range_show(struct device *dev,
1071 				   struct device_attribute *attr, char *buf)
1072 {
1073 	struct gendisk *disk = dev_to_disk(dev);
1074 
1075 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1076 }
1077 
1078 static ssize_t disk_removable_show(struct device *dev,
1079 				   struct device_attribute *attr, char *buf)
1080 {
1081 	struct gendisk *disk = dev_to_disk(dev);
1082 
1083 	return sprintf(buf, "%d\n",
1084 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1085 }
1086 
1087 static ssize_t disk_hidden_show(struct device *dev,
1088 				   struct device_attribute *attr, char *buf)
1089 {
1090 	struct gendisk *disk = dev_to_disk(dev);
1091 
1092 	return sprintf(buf, "%d\n",
1093 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1094 }
1095 
1096 static ssize_t disk_ro_show(struct device *dev,
1097 				   struct device_attribute *attr, char *buf)
1098 {
1099 	struct gendisk *disk = dev_to_disk(dev);
1100 
1101 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1102 }
1103 
1104 static ssize_t disk_capability_show(struct device *dev,
1105 				    struct device_attribute *attr, char *buf)
1106 {
1107 	struct gendisk *disk = dev_to_disk(dev);
1108 
1109 	return sprintf(buf, "%x\n", disk->flags);
1110 }
1111 
1112 static ssize_t disk_alignment_offset_show(struct device *dev,
1113 					  struct device_attribute *attr,
1114 					  char *buf)
1115 {
1116 	struct gendisk *disk = dev_to_disk(dev);
1117 
1118 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1119 }
1120 
1121 static ssize_t disk_discard_alignment_show(struct device *dev,
1122 					   struct device_attribute *attr,
1123 					   char *buf)
1124 {
1125 	struct gendisk *disk = dev_to_disk(dev);
1126 
1127 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1128 }
1129 
1130 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1131 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1132 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1133 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1134 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1135 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1136 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1137 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1138 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1139 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1140 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1141 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1142 #ifdef CONFIG_FAIL_MAKE_REQUEST
1143 static struct device_attribute dev_attr_fail =
1144 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1145 #endif
1146 #ifdef CONFIG_FAIL_IO_TIMEOUT
1147 static struct device_attribute dev_attr_fail_timeout =
1148 	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1149 #endif
1150 
1151 static struct attribute *disk_attrs[] = {
1152 	&dev_attr_range.attr,
1153 	&dev_attr_ext_range.attr,
1154 	&dev_attr_removable.attr,
1155 	&dev_attr_hidden.attr,
1156 	&dev_attr_ro.attr,
1157 	&dev_attr_size.attr,
1158 	&dev_attr_alignment_offset.attr,
1159 	&dev_attr_discard_alignment.attr,
1160 	&dev_attr_capability.attr,
1161 	&dev_attr_stat.attr,
1162 	&dev_attr_inflight.attr,
1163 	&dev_attr_badblocks.attr,
1164 #ifdef CONFIG_FAIL_MAKE_REQUEST
1165 	&dev_attr_fail.attr,
1166 #endif
1167 #ifdef CONFIG_FAIL_IO_TIMEOUT
1168 	&dev_attr_fail_timeout.attr,
1169 #endif
1170 	NULL
1171 };
1172 
1173 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1174 {
1175 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1176 	struct gendisk *disk = dev_to_disk(dev);
1177 
1178 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1179 		return 0;
1180 	return a->mode;
1181 }
1182 
1183 static struct attribute_group disk_attr_group = {
1184 	.attrs = disk_attrs,
1185 	.is_visible = disk_visible,
1186 };
1187 
1188 static const struct attribute_group *disk_attr_groups[] = {
1189 	&disk_attr_group,
1190 	NULL
1191 };
1192 
1193 /**
1194  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1195  * @disk: disk to replace part_tbl for
1196  * @new_ptbl: new part_tbl to install
1197  *
1198  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1199  * original ptbl is freed using RCU callback.
1200  *
1201  * LOCKING:
1202  * Matching bd_mutex locked or the caller is the only user of @disk.
1203  */
1204 static void disk_replace_part_tbl(struct gendisk *disk,
1205 				  struct disk_part_tbl *new_ptbl)
1206 {
1207 	struct disk_part_tbl *old_ptbl =
1208 		rcu_dereference_protected(disk->part_tbl, 1);
1209 
1210 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1211 
1212 	if (old_ptbl) {
1213 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1214 		kfree_rcu(old_ptbl, rcu_head);
1215 	}
1216 }
1217 
1218 /**
1219  * disk_expand_part_tbl - expand disk->part_tbl
1220  * @disk: disk to expand part_tbl for
1221  * @partno: expand such that this partno can fit in
1222  *
1223  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1224  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1225  *
1226  * LOCKING:
1227  * Matching bd_mutex locked or the caller is the only user of @disk.
1228  * Might sleep.
1229  *
1230  * RETURNS:
1231  * 0 on success, -errno on failure.
1232  */
1233 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1234 {
1235 	struct disk_part_tbl *old_ptbl =
1236 		rcu_dereference_protected(disk->part_tbl, 1);
1237 	struct disk_part_tbl *new_ptbl;
1238 	int len = old_ptbl ? old_ptbl->len : 0;
1239 	int i, target;
1240 	size_t size;
1241 
1242 	/*
1243 	 * check for int overflow, since we can get here from blkpg_ioctl()
1244 	 * with a user passed 'partno'.
1245 	 */
1246 	target = partno + 1;
1247 	if (target < 0)
1248 		return -EINVAL;
1249 
1250 	/* disk_max_parts() is zero during initialization, ignore if so */
1251 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1252 		return -EINVAL;
1253 
1254 	if (target <= len)
1255 		return 0;
1256 
1257 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1258 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1259 	if (!new_ptbl)
1260 		return -ENOMEM;
1261 
1262 	new_ptbl->len = target;
1263 
1264 	for (i = 0; i < len; i++)
1265 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1266 
1267 	disk_replace_part_tbl(disk, new_ptbl);
1268 	return 0;
1269 }
1270 
1271 static void disk_release(struct device *dev)
1272 {
1273 	struct gendisk *disk = dev_to_disk(dev);
1274 
1275 	blk_free_devt(dev->devt);
1276 	disk_release_events(disk);
1277 	kfree(disk->random);
1278 	disk_replace_part_tbl(disk, NULL);
1279 	hd_free_part(&disk->part0);
1280 	if (disk->queue)
1281 		blk_put_queue(disk->queue);
1282 	kfree(disk);
1283 }
1284 struct class block_class = {
1285 	.name		= "block",
1286 };
1287 
1288 static char *block_devnode(struct device *dev, umode_t *mode,
1289 			   kuid_t *uid, kgid_t *gid)
1290 {
1291 	struct gendisk *disk = dev_to_disk(dev);
1292 
1293 	if (disk->devnode)
1294 		return disk->devnode(disk, mode);
1295 	return NULL;
1296 }
1297 
1298 static const struct device_type disk_type = {
1299 	.name		= "disk",
1300 	.groups		= disk_attr_groups,
1301 	.release	= disk_release,
1302 	.devnode	= block_devnode,
1303 };
1304 
1305 #ifdef CONFIG_PROC_FS
1306 /*
1307  * aggregate disk stat collector.  Uses the same stats that the sysfs
1308  * entries do, above, but makes them available through one seq_file.
1309  *
1310  * The output looks suspiciously like /proc/partitions with a bunch of
1311  * extra fields.
1312  */
1313 static int diskstats_show(struct seq_file *seqf, void *v)
1314 {
1315 	struct gendisk *gp = v;
1316 	struct disk_part_iter piter;
1317 	struct hd_struct *hd;
1318 	char buf[BDEVNAME_SIZE];
1319 	unsigned int inflight[2];
1320 	int cpu;
1321 
1322 	/*
1323 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1324 		seq_puts(seqf,	"major minor name"
1325 				"     rio rmerge rsect ruse wio wmerge "
1326 				"wsect wuse running use aveq"
1327 				"\n\n");
1328 	*/
1329 
1330 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1331 	while ((hd = disk_part_iter_next(&piter))) {
1332 		cpu = part_stat_lock();
1333 		part_round_stats(gp->queue, cpu, hd);
1334 		part_stat_unlock();
1335 		part_in_flight(gp->queue, hd, inflight);
1336 		seq_printf(seqf, "%4d %7d %s "
1337 			   "%lu %lu %lu %u "
1338 			   "%lu %lu %lu %u "
1339 			   "%u %u %u "
1340 			   "%lu %lu %lu %u\n",
1341 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1342 			   disk_name(gp, hd->partno, buf),
1343 			   part_stat_read(hd, ios[STAT_READ]),
1344 			   part_stat_read(hd, merges[STAT_READ]),
1345 			   part_stat_read(hd, sectors[STAT_READ]),
1346 			   jiffies_to_msecs(part_stat_read(hd, ticks[STAT_READ])),
1347 			   part_stat_read(hd, ios[STAT_WRITE]),
1348 			   part_stat_read(hd, merges[STAT_WRITE]),
1349 			   part_stat_read(hd, sectors[STAT_WRITE]),
1350 			   jiffies_to_msecs(part_stat_read(hd, ticks[STAT_WRITE])),
1351 			   inflight[0],
1352 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1353 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue)),
1354 			   part_stat_read(hd, ios[STAT_DISCARD]),
1355 			   part_stat_read(hd, merges[STAT_DISCARD]),
1356 			   part_stat_read(hd, sectors[STAT_DISCARD]),
1357 			   jiffies_to_msecs(part_stat_read(hd, ticks[STAT_DISCARD]))
1358 			);
1359 	}
1360 	disk_part_iter_exit(&piter);
1361 
1362 	return 0;
1363 }
1364 
1365 static const struct seq_operations diskstats_op = {
1366 	.start	= disk_seqf_start,
1367 	.next	= disk_seqf_next,
1368 	.stop	= disk_seqf_stop,
1369 	.show	= diskstats_show
1370 };
1371 
1372 static int __init proc_genhd_init(void)
1373 {
1374 	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1375 	proc_create_seq("partitions", 0, NULL, &partitions_op);
1376 	return 0;
1377 }
1378 module_init(proc_genhd_init);
1379 #endif /* CONFIG_PROC_FS */
1380 
1381 dev_t blk_lookup_devt(const char *name, int partno)
1382 {
1383 	dev_t devt = MKDEV(0, 0);
1384 	struct class_dev_iter iter;
1385 	struct device *dev;
1386 
1387 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1388 	while ((dev = class_dev_iter_next(&iter))) {
1389 		struct gendisk *disk = dev_to_disk(dev);
1390 		struct hd_struct *part;
1391 
1392 		if (strcmp(dev_name(dev), name))
1393 			continue;
1394 
1395 		if (partno < disk->minors) {
1396 			/* We need to return the right devno, even
1397 			 * if the partition doesn't exist yet.
1398 			 */
1399 			devt = MKDEV(MAJOR(dev->devt),
1400 				     MINOR(dev->devt) + partno);
1401 			break;
1402 		}
1403 		part = disk_get_part(disk, partno);
1404 		if (part) {
1405 			devt = part_devt(part);
1406 			disk_put_part(part);
1407 			break;
1408 		}
1409 		disk_put_part(part);
1410 	}
1411 	class_dev_iter_exit(&iter);
1412 	return devt;
1413 }
1414 EXPORT_SYMBOL(blk_lookup_devt);
1415 
1416 struct gendisk *__alloc_disk_node(int minors, int node_id)
1417 {
1418 	struct gendisk *disk;
1419 	struct disk_part_tbl *ptbl;
1420 
1421 	if (minors > DISK_MAX_PARTS) {
1422 		printk(KERN_ERR
1423 			"block: can't allocate more than %d partitions\n",
1424 			DISK_MAX_PARTS);
1425 		minors = DISK_MAX_PARTS;
1426 	}
1427 
1428 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1429 	if (disk) {
1430 		if (!init_part_stats(&disk->part0)) {
1431 			kfree(disk);
1432 			return NULL;
1433 		}
1434 		init_rwsem(&disk->lookup_sem);
1435 		disk->node_id = node_id;
1436 		if (disk_expand_part_tbl(disk, 0)) {
1437 			free_part_stats(&disk->part0);
1438 			kfree(disk);
1439 			return NULL;
1440 		}
1441 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1442 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1443 
1444 		/*
1445 		 * set_capacity() and get_capacity() currently don't use
1446 		 * seqcounter to read/update the part0->nr_sects. Still init
1447 		 * the counter as we can read the sectors in IO submission
1448 		 * patch using seqence counters.
1449 		 *
1450 		 * TODO: Ideally set_capacity() and get_capacity() should be
1451 		 * converted to make use of bd_mutex and sequence counters.
1452 		 */
1453 		seqcount_init(&disk->part0.nr_sects_seq);
1454 		if (hd_ref_init(&disk->part0)) {
1455 			hd_free_part(&disk->part0);
1456 			kfree(disk);
1457 			return NULL;
1458 		}
1459 
1460 		disk->minors = minors;
1461 		rand_initialize_disk(disk);
1462 		disk_to_dev(disk)->class = &block_class;
1463 		disk_to_dev(disk)->type = &disk_type;
1464 		device_initialize(disk_to_dev(disk));
1465 	}
1466 	return disk;
1467 }
1468 EXPORT_SYMBOL(__alloc_disk_node);
1469 
1470 struct kobject *get_disk_and_module(struct gendisk *disk)
1471 {
1472 	struct module *owner;
1473 	struct kobject *kobj;
1474 
1475 	if (!disk->fops)
1476 		return NULL;
1477 	owner = disk->fops->owner;
1478 	if (owner && !try_module_get(owner))
1479 		return NULL;
1480 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1481 	if (kobj == NULL) {
1482 		module_put(owner);
1483 		return NULL;
1484 	}
1485 	return kobj;
1486 
1487 }
1488 EXPORT_SYMBOL(get_disk_and_module);
1489 
1490 void put_disk(struct gendisk *disk)
1491 {
1492 	if (disk)
1493 		kobject_put(&disk_to_dev(disk)->kobj);
1494 }
1495 EXPORT_SYMBOL(put_disk);
1496 
1497 /*
1498  * This is a counterpart of get_disk_and_module() and thus also of
1499  * get_gendisk().
1500  */
1501 void put_disk_and_module(struct gendisk *disk)
1502 {
1503 	if (disk) {
1504 		struct module *owner = disk->fops->owner;
1505 
1506 		put_disk(disk);
1507 		module_put(owner);
1508 	}
1509 }
1510 EXPORT_SYMBOL(put_disk_and_module);
1511 
1512 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1513 {
1514 	char event[] = "DISK_RO=1";
1515 	char *envp[] = { event, NULL };
1516 
1517 	if (!ro)
1518 		event[8] = '0';
1519 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1520 }
1521 
1522 void set_device_ro(struct block_device *bdev, int flag)
1523 {
1524 	bdev->bd_part->policy = flag;
1525 }
1526 
1527 EXPORT_SYMBOL(set_device_ro);
1528 
1529 void set_disk_ro(struct gendisk *disk, int flag)
1530 {
1531 	struct disk_part_iter piter;
1532 	struct hd_struct *part;
1533 
1534 	if (disk->part0.policy != flag) {
1535 		set_disk_ro_uevent(disk, flag);
1536 		disk->part0.policy = flag;
1537 	}
1538 
1539 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1540 	while ((part = disk_part_iter_next(&piter)))
1541 		part->policy = flag;
1542 	disk_part_iter_exit(&piter);
1543 }
1544 
1545 EXPORT_SYMBOL(set_disk_ro);
1546 
1547 int bdev_read_only(struct block_device *bdev)
1548 {
1549 	if (!bdev)
1550 		return 0;
1551 	return bdev->bd_part->policy;
1552 }
1553 
1554 EXPORT_SYMBOL(bdev_read_only);
1555 
1556 int invalidate_partition(struct gendisk *disk, int partno)
1557 {
1558 	int res = 0;
1559 	struct block_device *bdev = bdget_disk(disk, partno);
1560 	if (bdev) {
1561 		fsync_bdev(bdev);
1562 		res = __invalidate_device(bdev, true);
1563 		bdput(bdev);
1564 	}
1565 	return res;
1566 }
1567 
1568 EXPORT_SYMBOL(invalidate_partition);
1569 
1570 /*
1571  * Disk events - monitor disk events like media change and eject request.
1572  */
1573 struct disk_events {
1574 	struct list_head	node;		/* all disk_event's */
1575 	struct gendisk		*disk;		/* the associated disk */
1576 	spinlock_t		lock;
1577 
1578 	struct mutex		block_mutex;	/* protects blocking */
1579 	int			block;		/* event blocking depth */
1580 	unsigned int		pending;	/* events already sent out */
1581 	unsigned int		clearing;	/* events being cleared */
1582 
1583 	long			poll_msecs;	/* interval, -1 for default */
1584 	struct delayed_work	dwork;
1585 };
1586 
1587 static const char *disk_events_strs[] = {
1588 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1589 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1590 };
1591 
1592 static char *disk_uevents[] = {
1593 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1594 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1595 };
1596 
1597 /* list of all disk_events */
1598 static DEFINE_MUTEX(disk_events_mutex);
1599 static LIST_HEAD(disk_events);
1600 
1601 /* disable in-kernel polling by default */
1602 static unsigned long disk_events_dfl_poll_msecs;
1603 
1604 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1605 {
1606 	struct disk_events *ev = disk->ev;
1607 	long intv_msecs = 0;
1608 
1609 	/*
1610 	 * If device-specific poll interval is set, always use it.  If
1611 	 * the default is being used, poll iff there are events which
1612 	 * can't be monitored asynchronously.
1613 	 */
1614 	if (ev->poll_msecs >= 0)
1615 		intv_msecs = ev->poll_msecs;
1616 	else if (disk->events & ~disk->async_events)
1617 		intv_msecs = disk_events_dfl_poll_msecs;
1618 
1619 	return msecs_to_jiffies(intv_msecs);
1620 }
1621 
1622 /**
1623  * disk_block_events - block and flush disk event checking
1624  * @disk: disk to block events for
1625  *
1626  * On return from this function, it is guaranteed that event checking
1627  * isn't in progress and won't happen until unblocked by
1628  * disk_unblock_events().  Events blocking is counted and the actual
1629  * unblocking happens after the matching number of unblocks are done.
1630  *
1631  * Note that this intentionally does not block event checking from
1632  * disk_clear_events().
1633  *
1634  * CONTEXT:
1635  * Might sleep.
1636  */
1637 void disk_block_events(struct gendisk *disk)
1638 {
1639 	struct disk_events *ev = disk->ev;
1640 	unsigned long flags;
1641 	bool cancel;
1642 
1643 	if (!ev)
1644 		return;
1645 
1646 	/*
1647 	 * Outer mutex ensures that the first blocker completes canceling
1648 	 * the event work before further blockers are allowed to finish.
1649 	 */
1650 	mutex_lock(&ev->block_mutex);
1651 
1652 	spin_lock_irqsave(&ev->lock, flags);
1653 	cancel = !ev->block++;
1654 	spin_unlock_irqrestore(&ev->lock, flags);
1655 
1656 	if (cancel)
1657 		cancel_delayed_work_sync(&disk->ev->dwork);
1658 
1659 	mutex_unlock(&ev->block_mutex);
1660 }
1661 
1662 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1663 {
1664 	struct disk_events *ev = disk->ev;
1665 	unsigned long intv;
1666 	unsigned long flags;
1667 
1668 	spin_lock_irqsave(&ev->lock, flags);
1669 
1670 	if (WARN_ON_ONCE(ev->block <= 0))
1671 		goto out_unlock;
1672 
1673 	if (--ev->block)
1674 		goto out_unlock;
1675 
1676 	intv = disk_events_poll_jiffies(disk);
1677 	if (check_now)
1678 		queue_delayed_work(system_freezable_power_efficient_wq,
1679 				&ev->dwork, 0);
1680 	else if (intv)
1681 		queue_delayed_work(system_freezable_power_efficient_wq,
1682 				&ev->dwork, intv);
1683 out_unlock:
1684 	spin_unlock_irqrestore(&ev->lock, flags);
1685 }
1686 
1687 /**
1688  * disk_unblock_events - unblock disk event checking
1689  * @disk: disk to unblock events for
1690  *
1691  * Undo disk_block_events().  When the block count reaches zero, it
1692  * starts events polling if configured.
1693  *
1694  * CONTEXT:
1695  * Don't care.  Safe to call from irq context.
1696  */
1697 void disk_unblock_events(struct gendisk *disk)
1698 {
1699 	if (disk->ev)
1700 		__disk_unblock_events(disk, false);
1701 }
1702 
1703 /**
1704  * disk_flush_events - schedule immediate event checking and flushing
1705  * @disk: disk to check and flush events for
1706  * @mask: events to flush
1707  *
1708  * Schedule immediate event checking on @disk if not blocked.  Events in
1709  * @mask are scheduled to be cleared from the driver.  Note that this
1710  * doesn't clear the events from @disk->ev.
1711  *
1712  * CONTEXT:
1713  * If @mask is non-zero must be called with bdev->bd_mutex held.
1714  */
1715 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1716 {
1717 	struct disk_events *ev = disk->ev;
1718 
1719 	if (!ev)
1720 		return;
1721 
1722 	spin_lock_irq(&ev->lock);
1723 	ev->clearing |= mask;
1724 	if (!ev->block)
1725 		mod_delayed_work(system_freezable_power_efficient_wq,
1726 				&ev->dwork, 0);
1727 	spin_unlock_irq(&ev->lock);
1728 }
1729 
1730 /**
1731  * disk_clear_events - synchronously check, clear and return pending events
1732  * @disk: disk to fetch and clear events from
1733  * @mask: mask of events to be fetched and cleared
1734  *
1735  * Disk events are synchronously checked and pending events in @mask
1736  * are cleared and returned.  This ignores the block count.
1737  *
1738  * CONTEXT:
1739  * Might sleep.
1740  */
1741 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1742 {
1743 	const struct block_device_operations *bdops = disk->fops;
1744 	struct disk_events *ev = disk->ev;
1745 	unsigned int pending;
1746 	unsigned int clearing = mask;
1747 
1748 	if (!ev) {
1749 		/* for drivers still using the old ->media_changed method */
1750 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1751 		    bdops->media_changed && bdops->media_changed(disk))
1752 			return DISK_EVENT_MEDIA_CHANGE;
1753 		return 0;
1754 	}
1755 
1756 	disk_block_events(disk);
1757 
1758 	/*
1759 	 * store the union of mask and ev->clearing on the stack so that the
1760 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1761 	 * can still be modified even if events are blocked).
1762 	 */
1763 	spin_lock_irq(&ev->lock);
1764 	clearing |= ev->clearing;
1765 	ev->clearing = 0;
1766 	spin_unlock_irq(&ev->lock);
1767 
1768 	disk_check_events(ev, &clearing);
1769 	/*
1770 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1771 	 * middle of this function, so we want to run the workfn without delay.
1772 	 */
1773 	__disk_unblock_events(disk, ev->clearing ? true : false);
1774 
1775 	/* then, fetch and clear pending events */
1776 	spin_lock_irq(&ev->lock);
1777 	pending = ev->pending & mask;
1778 	ev->pending &= ~mask;
1779 	spin_unlock_irq(&ev->lock);
1780 	WARN_ON_ONCE(clearing & mask);
1781 
1782 	return pending;
1783 }
1784 
1785 /*
1786  * Separate this part out so that a different pointer for clearing_ptr can be
1787  * passed in for disk_clear_events.
1788  */
1789 static void disk_events_workfn(struct work_struct *work)
1790 {
1791 	struct delayed_work *dwork = to_delayed_work(work);
1792 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1793 
1794 	disk_check_events(ev, &ev->clearing);
1795 }
1796 
1797 static void disk_check_events(struct disk_events *ev,
1798 			      unsigned int *clearing_ptr)
1799 {
1800 	struct gendisk *disk = ev->disk;
1801 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1802 	unsigned int clearing = *clearing_ptr;
1803 	unsigned int events;
1804 	unsigned long intv;
1805 	int nr_events = 0, i;
1806 
1807 	/* check events */
1808 	events = disk->fops->check_events(disk, clearing);
1809 
1810 	/* accumulate pending events and schedule next poll if necessary */
1811 	spin_lock_irq(&ev->lock);
1812 
1813 	events &= ~ev->pending;
1814 	ev->pending |= events;
1815 	*clearing_ptr &= ~clearing;
1816 
1817 	intv = disk_events_poll_jiffies(disk);
1818 	if (!ev->block && intv)
1819 		queue_delayed_work(system_freezable_power_efficient_wq,
1820 				&ev->dwork, intv);
1821 
1822 	spin_unlock_irq(&ev->lock);
1823 
1824 	/*
1825 	 * Tell userland about new events.  Only the events listed in
1826 	 * @disk->events are reported.  Unlisted events are processed the
1827 	 * same internally but never get reported to userland.
1828 	 */
1829 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1830 		if (events & disk->events & (1 << i))
1831 			envp[nr_events++] = disk_uevents[i];
1832 
1833 	if (nr_events)
1834 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1835 }
1836 
1837 /*
1838  * A disk events enabled device has the following sysfs nodes under
1839  * its /sys/block/X/ directory.
1840  *
1841  * events		: list of all supported events
1842  * events_async		: list of events which can be detected w/o polling
1843  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1844  */
1845 static ssize_t __disk_events_show(unsigned int events, char *buf)
1846 {
1847 	const char *delim = "";
1848 	ssize_t pos = 0;
1849 	int i;
1850 
1851 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1852 		if (events & (1 << i)) {
1853 			pos += sprintf(buf + pos, "%s%s",
1854 				       delim, disk_events_strs[i]);
1855 			delim = " ";
1856 		}
1857 	if (pos)
1858 		pos += sprintf(buf + pos, "\n");
1859 	return pos;
1860 }
1861 
1862 static ssize_t disk_events_show(struct device *dev,
1863 				struct device_attribute *attr, char *buf)
1864 {
1865 	struct gendisk *disk = dev_to_disk(dev);
1866 
1867 	return __disk_events_show(disk->events, buf);
1868 }
1869 
1870 static ssize_t disk_events_async_show(struct device *dev,
1871 				      struct device_attribute *attr, char *buf)
1872 {
1873 	struct gendisk *disk = dev_to_disk(dev);
1874 
1875 	return __disk_events_show(disk->async_events, buf);
1876 }
1877 
1878 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1879 					   struct device_attribute *attr,
1880 					   char *buf)
1881 {
1882 	struct gendisk *disk = dev_to_disk(dev);
1883 
1884 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1885 }
1886 
1887 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1888 					    struct device_attribute *attr,
1889 					    const char *buf, size_t count)
1890 {
1891 	struct gendisk *disk = dev_to_disk(dev);
1892 	long intv;
1893 
1894 	if (!count || !sscanf(buf, "%ld", &intv))
1895 		return -EINVAL;
1896 
1897 	if (intv < 0 && intv != -1)
1898 		return -EINVAL;
1899 
1900 	disk_block_events(disk);
1901 	disk->ev->poll_msecs = intv;
1902 	__disk_unblock_events(disk, true);
1903 
1904 	return count;
1905 }
1906 
1907 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
1908 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
1909 static const DEVICE_ATTR(events_poll_msecs, 0644,
1910 			 disk_events_poll_msecs_show,
1911 			 disk_events_poll_msecs_store);
1912 
1913 static const struct attribute *disk_events_attrs[] = {
1914 	&dev_attr_events.attr,
1915 	&dev_attr_events_async.attr,
1916 	&dev_attr_events_poll_msecs.attr,
1917 	NULL,
1918 };
1919 
1920 /*
1921  * The default polling interval can be specified by the kernel
1922  * parameter block.events_dfl_poll_msecs which defaults to 0
1923  * (disable).  This can also be modified runtime by writing to
1924  * /sys/module/block/events_dfl_poll_msecs.
1925  */
1926 static int disk_events_set_dfl_poll_msecs(const char *val,
1927 					  const struct kernel_param *kp)
1928 {
1929 	struct disk_events *ev;
1930 	int ret;
1931 
1932 	ret = param_set_ulong(val, kp);
1933 	if (ret < 0)
1934 		return ret;
1935 
1936 	mutex_lock(&disk_events_mutex);
1937 
1938 	list_for_each_entry(ev, &disk_events, node)
1939 		disk_flush_events(ev->disk, 0);
1940 
1941 	mutex_unlock(&disk_events_mutex);
1942 
1943 	return 0;
1944 }
1945 
1946 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1947 	.set	= disk_events_set_dfl_poll_msecs,
1948 	.get	= param_get_ulong,
1949 };
1950 
1951 #undef MODULE_PARAM_PREFIX
1952 #define MODULE_PARAM_PREFIX	"block."
1953 
1954 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1955 		&disk_events_dfl_poll_msecs, 0644);
1956 
1957 /*
1958  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1959  */
1960 static void disk_alloc_events(struct gendisk *disk)
1961 {
1962 	struct disk_events *ev;
1963 
1964 	if (!disk->fops->check_events)
1965 		return;
1966 
1967 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1968 	if (!ev) {
1969 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1970 		return;
1971 	}
1972 
1973 	INIT_LIST_HEAD(&ev->node);
1974 	ev->disk = disk;
1975 	spin_lock_init(&ev->lock);
1976 	mutex_init(&ev->block_mutex);
1977 	ev->block = 1;
1978 	ev->poll_msecs = -1;
1979 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1980 
1981 	disk->ev = ev;
1982 }
1983 
1984 static void disk_add_events(struct gendisk *disk)
1985 {
1986 	if (!disk->ev)
1987 		return;
1988 
1989 	/* FIXME: error handling */
1990 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1991 		pr_warn("%s: failed to create sysfs files for events\n",
1992 			disk->disk_name);
1993 
1994 	mutex_lock(&disk_events_mutex);
1995 	list_add_tail(&disk->ev->node, &disk_events);
1996 	mutex_unlock(&disk_events_mutex);
1997 
1998 	/*
1999 	 * Block count is initialized to 1 and the following initial
2000 	 * unblock kicks it into action.
2001 	 */
2002 	__disk_unblock_events(disk, true);
2003 }
2004 
2005 static void disk_del_events(struct gendisk *disk)
2006 {
2007 	if (!disk->ev)
2008 		return;
2009 
2010 	disk_block_events(disk);
2011 
2012 	mutex_lock(&disk_events_mutex);
2013 	list_del_init(&disk->ev->node);
2014 	mutex_unlock(&disk_events_mutex);
2015 
2016 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2017 }
2018 
2019 static void disk_release_events(struct gendisk *disk)
2020 {
2021 	/* the block count should be 1 from disk_del_events() */
2022 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2023 	kfree(disk->ev);
2024 }
2025