1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/backing-dev.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include <linux/slab.h> 17 #include <linux/kmod.h> 18 #include <linux/kobj_map.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/badblocks.h> 24 25 #include "blk.h" 26 27 static DEFINE_MUTEX(block_class_lock); 28 struct kobject *block_depr; 29 30 /* for extended dynamic devt allocation, currently only one major is used */ 31 #define NR_EXT_DEVT (1 << MINORBITS) 32 33 /* For extended devt allocation. ext_devt_lock prevents look up 34 * results from going away underneath its user. 35 */ 36 static DEFINE_SPINLOCK(ext_devt_lock); 37 static DEFINE_IDR(ext_devt_idr); 38 39 static const struct device_type disk_type; 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 49 { 50 if (queue_is_mq(q)) 51 return; 52 53 part_stat_local_inc(part, in_flight[rw]); 54 if (part->partno) 55 part_stat_local_inc(&part_to_disk(part)->part0, in_flight[rw]); 56 } 57 58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 59 { 60 if (queue_is_mq(q)) 61 return; 62 63 part_stat_local_dec(part, in_flight[rw]); 64 if (part->partno) 65 part_stat_local_dec(&part_to_disk(part)->part0, in_flight[rw]); 66 } 67 68 unsigned int part_in_flight(struct request_queue *q, struct hd_struct *part) 69 { 70 int cpu; 71 unsigned int inflight; 72 73 if (queue_is_mq(q)) { 74 return blk_mq_in_flight(q, part); 75 } 76 77 inflight = 0; 78 for_each_possible_cpu(cpu) { 79 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) + 80 part_stat_local_read_cpu(part, in_flight[1], cpu); 81 } 82 if ((int)inflight < 0) 83 inflight = 0; 84 85 return inflight; 86 } 87 88 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part, 89 unsigned int inflight[2]) 90 { 91 int cpu; 92 93 if (queue_is_mq(q)) { 94 blk_mq_in_flight_rw(q, part, inflight); 95 return; 96 } 97 98 inflight[0] = 0; 99 inflight[1] = 0; 100 for_each_possible_cpu(cpu) { 101 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu); 102 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu); 103 } 104 if ((int)inflight[0] < 0) 105 inflight[0] = 0; 106 if ((int)inflight[1] < 0) 107 inflight[1] = 0; 108 } 109 110 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno) 111 { 112 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl); 113 114 if (unlikely(partno < 0 || partno >= ptbl->len)) 115 return NULL; 116 return rcu_dereference(ptbl->part[partno]); 117 } 118 119 /** 120 * disk_get_part - get partition 121 * @disk: disk to look partition from 122 * @partno: partition number 123 * 124 * Look for partition @partno from @disk. If found, increment 125 * reference count and return it. 126 * 127 * CONTEXT: 128 * Don't care. 129 * 130 * RETURNS: 131 * Pointer to the found partition on success, NULL if not found. 132 */ 133 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 134 { 135 struct hd_struct *part; 136 137 rcu_read_lock(); 138 part = __disk_get_part(disk, partno); 139 if (part) 140 get_device(part_to_dev(part)); 141 rcu_read_unlock(); 142 143 return part; 144 } 145 EXPORT_SYMBOL_GPL(disk_get_part); 146 147 /** 148 * disk_part_iter_init - initialize partition iterator 149 * @piter: iterator to initialize 150 * @disk: disk to iterate over 151 * @flags: DISK_PITER_* flags 152 * 153 * Initialize @piter so that it iterates over partitions of @disk. 154 * 155 * CONTEXT: 156 * Don't care. 157 */ 158 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 159 unsigned int flags) 160 { 161 struct disk_part_tbl *ptbl; 162 163 rcu_read_lock(); 164 ptbl = rcu_dereference(disk->part_tbl); 165 166 piter->disk = disk; 167 piter->part = NULL; 168 169 if (flags & DISK_PITER_REVERSE) 170 piter->idx = ptbl->len - 1; 171 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 172 piter->idx = 0; 173 else 174 piter->idx = 1; 175 176 piter->flags = flags; 177 178 rcu_read_unlock(); 179 } 180 EXPORT_SYMBOL_GPL(disk_part_iter_init); 181 182 /** 183 * disk_part_iter_next - proceed iterator to the next partition and return it 184 * @piter: iterator of interest 185 * 186 * Proceed @piter to the next partition and return it. 187 * 188 * CONTEXT: 189 * Don't care. 190 */ 191 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 192 { 193 struct disk_part_tbl *ptbl; 194 int inc, end; 195 196 /* put the last partition */ 197 disk_put_part(piter->part); 198 piter->part = NULL; 199 200 /* get part_tbl */ 201 rcu_read_lock(); 202 ptbl = rcu_dereference(piter->disk->part_tbl); 203 204 /* determine iteration parameters */ 205 if (piter->flags & DISK_PITER_REVERSE) { 206 inc = -1; 207 if (piter->flags & (DISK_PITER_INCL_PART0 | 208 DISK_PITER_INCL_EMPTY_PART0)) 209 end = -1; 210 else 211 end = 0; 212 } else { 213 inc = 1; 214 end = ptbl->len; 215 } 216 217 /* iterate to the next partition */ 218 for (; piter->idx != end; piter->idx += inc) { 219 struct hd_struct *part; 220 221 part = rcu_dereference(ptbl->part[piter->idx]); 222 if (!part) 223 continue; 224 if (!part_nr_sects_read(part) && 225 !(piter->flags & DISK_PITER_INCL_EMPTY) && 226 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 227 piter->idx == 0)) 228 continue; 229 230 get_device(part_to_dev(part)); 231 piter->part = part; 232 piter->idx += inc; 233 break; 234 } 235 236 rcu_read_unlock(); 237 238 return piter->part; 239 } 240 EXPORT_SYMBOL_GPL(disk_part_iter_next); 241 242 /** 243 * disk_part_iter_exit - finish up partition iteration 244 * @piter: iter of interest 245 * 246 * Called when iteration is over. Cleans up @piter. 247 * 248 * CONTEXT: 249 * Don't care. 250 */ 251 void disk_part_iter_exit(struct disk_part_iter *piter) 252 { 253 disk_put_part(piter->part); 254 piter->part = NULL; 255 } 256 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 257 258 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 259 { 260 return part->start_sect <= sector && 261 sector < part->start_sect + part_nr_sects_read(part); 262 } 263 264 /** 265 * disk_map_sector_rcu - map sector to partition 266 * @disk: gendisk of interest 267 * @sector: sector to map 268 * 269 * Find out which partition @sector maps to on @disk. This is 270 * primarily used for stats accounting. 271 * 272 * CONTEXT: 273 * RCU read locked. The returned partition pointer is valid only 274 * while preemption is disabled. 275 * 276 * RETURNS: 277 * Found partition on success, part0 is returned if no partition matches 278 */ 279 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 280 { 281 struct disk_part_tbl *ptbl; 282 struct hd_struct *part; 283 int i; 284 285 ptbl = rcu_dereference(disk->part_tbl); 286 287 part = rcu_dereference(ptbl->last_lookup); 288 if (part && sector_in_part(part, sector)) 289 return part; 290 291 for (i = 1; i < ptbl->len; i++) { 292 part = rcu_dereference(ptbl->part[i]); 293 294 if (part && sector_in_part(part, sector)) { 295 rcu_assign_pointer(ptbl->last_lookup, part); 296 return part; 297 } 298 } 299 return &disk->part0; 300 } 301 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 302 303 /* 304 * Can be deleted altogether. Later. 305 * 306 */ 307 #define BLKDEV_MAJOR_HASH_SIZE 255 308 static struct blk_major_name { 309 struct blk_major_name *next; 310 int major; 311 char name[16]; 312 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 313 314 /* index in the above - for now: assume no multimajor ranges */ 315 static inline int major_to_index(unsigned major) 316 { 317 return major % BLKDEV_MAJOR_HASH_SIZE; 318 } 319 320 #ifdef CONFIG_PROC_FS 321 void blkdev_show(struct seq_file *seqf, off_t offset) 322 { 323 struct blk_major_name *dp; 324 325 mutex_lock(&block_class_lock); 326 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) 327 if (dp->major == offset) 328 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 329 mutex_unlock(&block_class_lock); 330 } 331 #endif /* CONFIG_PROC_FS */ 332 333 /** 334 * register_blkdev - register a new block device 335 * 336 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If 337 * @major = 0, try to allocate any unused major number. 338 * @name: the name of the new block device as a zero terminated string 339 * 340 * The @name must be unique within the system. 341 * 342 * The return value depends on the @major input parameter: 343 * 344 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] 345 * then the function returns zero on success, or a negative error code 346 * - if any unused major number was requested with @major = 0 parameter 347 * then the return value is the allocated major number in range 348 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise 349 * 350 * See Documentation/admin-guide/devices.txt for the list of allocated 351 * major numbers. 352 */ 353 int register_blkdev(unsigned int major, const char *name) 354 { 355 struct blk_major_name **n, *p; 356 int index, ret = 0; 357 358 mutex_lock(&block_class_lock); 359 360 /* temporary */ 361 if (major == 0) { 362 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 363 if (major_names[index] == NULL) 364 break; 365 } 366 367 if (index == 0) { 368 printk("register_blkdev: failed to get major for %s\n", 369 name); 370 ret = -EBUSY; 371 goto out; 372 } 373 major = index; 374 ret = major; 375 } 376 377 if (major >= BLKDEV_MAJOR_MAX) { 378 pr_err("register_blkdev: major requested (%u) is greater than the maximum (%u) for %s\n", 379 major, BLKDEV_MAJOR_MAX-1, name); 380 381 ret = -EINVAL; 382 goto out; 383 } 384 385 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 386 if (p == NULL) { 387 ret = -ENOMEM; 388 goto out; 389 } 390 391 p->major = major; 392 strlcpy(p->name, name, sizeof(p->name)); 393 p->next = NULL; 394 index = major_to_index(major); 395 396 for (n = &major_names[index]; *n; n = &(*n)->next) { 397 if ((*n)->major == major) 398 break; 399 } 400 if (!*n) 401 *n = p; 402 else 403 ret = -EBUSY; 404 405 if (ret < 0) { 406 printk("register_blkdev: cannot get major %u for %s\n", 407 major, name); 408 kfree(p); 409 } 410 out: 411 mutex_unlock(&block_class_lock); 412 return ret; 413 } 414 415 EXPORT_SYMBOL(register_blkdev); 416 417 void unregister_blkdev(unsigned int major, const char *name) 418 { 419 struct blk_major_name **n; 420 struct blk_major_name *p = NULL; 421 int index = major_to_index(major); 422 423 mutex_lock(&block_class_lock); 424 for (n = &major_names[index]; *n; n = &(*n)->next) 425 if ((*n)->major == major) 426 break; 427 if (!*n || strcmp((*n)->name, name)) { 428 WARN_ON(1); 429 } else { 430 p = *n; 431 *n = p->next; 432 } 433 mutex_unlock(&block_class_lock); 434 kfree(p); 435 } 436 437 EXPORT_SYMBOL(unregister_blkdev); 438 439 static struct kobj_map *bdev_map; 440 441 /** 442 * blk_mangle_minor - scatter minor numbers apart 443 * @minor: minor number to mangle 444 * 445 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 446 * is enabled. Mangling twice gives the original value. 447 * 448 * RETURNS: 449 * Mangled value. 450 * 451 * CONTEXT: 452 * Don't care. 453 */ 454 static int blk_mangle_minor(int minor) 455 { 456 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 457 int i; 458 459 for (i = 0; i < MINORBITS / 2; i++) { 460 int low = minor & (1 << i); 461 int high = minor & (1 << (MINORBITS - 1 - i)); 462 int distance = MINORBITS - 1 - 2 * i; 463 464 minor ^= low | high; /* clear both bits */ 465 low <<= distance; /* swap the positions */ 466 high >>= distance; 467 minor |= low | high; /* and set */ 468 } 469 #endif 470 return minor; 471 } 472 473 /** 474 * blk_alloc_devt - allocate a dev_t for a partition 475 * @part: partition to allocate dev_t for 476 * @devt: out parameter for resulting dev_t 477 * 478 * Allocate a dev_t for block device. 479 * 480 * RETURNS: 481 * 0 on success, allocated dev_t is returned in *@devt. -errno on 482 * failure. 483 * 484 * CONTEXT: 485 * Might sleep. 486 */ 487 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 488 { 489 struct gendisk *disk = part_to_disk(part); 490 int idx; 491 492 /* in consecutive minor range? */ 493 if (part->partno < disk->minors) { 494 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 495 return 0; 496 } 497 498 /* allocate ext devt */ 499 idr_preload(GFP_KERNEL); 500 501 spin_lock_bh(&ext_devt_lock); 502 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 503 spin_unlock_bh(&ext_devt_lock); 504 505 idr_preload_end(); 506 if (idx < 0) 507 return idx == -ENOSPC ? -EBUSY : idx; 508 509 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 510 return 0; 511 } 512 513 /** 514 * blk_free_devt - free a dev_t 515 * @devt: dev_t to free 516 * 517 * Free @devt which was allocated using blk_alloc_devt(). 518 * 519 * CONTEXT: 520 * Might sleep. 521 */ 522 void blk_free_devt(dev_t devt) 523 { 524 if (devt == MKDEV(0, 0)) 525 return; 526 527 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 528 spin_lock_bh(&ext_devt_lock); 529 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 530 spin_unlock_bh(&ext_devt_lock); 531 } 532 } 533 534 static char *bdevt_str(dev_t devt, char *buf) 535 { 536 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 537 char tbuf[BDEVT_SIZE]; 538 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 539 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 540 } else 541 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 542 543 return buf; 544 } 545 546 /* 547 * Register device numbers dev..(dev+range-1) 548 * range must be nonzero 549 * The hash chain is sorted on range, so that subranges can override. 550 */ 551 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 552 struct kobject *(*probe)(dev_t, int *, void *), 553 int (*lock)(dev_t, void *), void *data) 554 { 555 kobj_map(bdev_map, devt, range, module, probe, lock, data); 556 } 557 558 EXPORT_SYMBOL(blk_register_region); 559 560 void blk_unregister_region(dev_t devt, unsigned long range) 561 { 562 kobj_unmap(bdev_map, devt, range); 563 } 564 565 EXPORT_SYMBOL(blk_unregister_region); 566 567 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 568 { 569 struct gendisk *p = data; 570 571 return &disk_to_dev(p)->kobj; 572 } 573 574 static int exact_lock(dev_t devt, void *data) 575 { 576 struct gendisk *p = data; 577 578 if (!get_disk_and_module(p)) 579 return -1; 580 return 0; 581 } 582 583 static void register_disk(struct device *parent, struct gendisk *disk, 584 const struct attribute_group **groups) 585 { 586 struct device *ddev = disk_to_dev(disk); 587 struct block_device *bdev; 588 struct disk_part_iter piter; 589 struct hd_struct *part; 590 int err; 591 592 ddev->parent = parent; 593 594 dev_set_name(ddev, "%s", disk->disk_name); 595 596 /* delay uevents, until we scanned partition table */ 597 dev_set_uevent_suppress(ddev, 1); 598 599 if (groups) { 600 WARN_ON(ddev->groups); 601 ddev->groups = groups; 602 } 603 if (device_add(ddev)) 604 return; 605 if (!sysfs_deprecated) { 606 err = sysfs_create_link(block_depr, &ddev->kobj, 607 kobject_name(&ddev->kobj)); 608 if (err) { 609 device_del(ddev); 610 return; 611 } 612 } 613 614 /* 615 * avoid probable deadlock caused by allocating memory with 616 * GFP_KERNEL in runtime_resume callback of its all ancestor 617 * devices 618 */ 619 pm_runtime_set_memalloc_noio(ddev, true); 620 621 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 622 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 623 624 if (disk->flags & GENHD_FL_HIDDEN) { 625 dev_set_uevent_suppress(ddev, 0); 626 return; 627 } 628 629 /* No minors to use for partitions */ 630 if (!disk_part_scan_enabled(disk)) 631 goto exit; 632 633 /* No such device (e.g., media were just removed) */ 634 if (!get_capacity(disk)) 635 goto exit; 636 637 bdev = bdget_disk(disk, 0); 638 if (!bdev) 639 goto exit; 640 641 bdev->bd_invalidated = 1; 642 err = blkdev_get(bdev, FMODE_READ, NULL); 643 if (err < 0) 644 goto exit; 645 blkdev_put(bdev, FMODE_READ); 646 647 exit: 648 /* announce disk after possible partitions are created */ 649 dev_set_uevent_suppress(ddev, 0); 650 kobject_uevent(&ddev->kobj, KOBJ_ADD); 651 652 /* announce possible partitions */ 653 disk_part_iter_init(&piter, disk, 0); 654 while ((part = disk_part_iter_next(&piter))) 655 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 656 disk_part_iter_exit(&piter); 657 658 err = sysfs_create_link(&ddev->kobj, 659 &disk->queue->backing_dev_info->dev->kobj, 660 "bdi"); 661 WARN_ON(err); 662 } 663 664 /** 665 * __device_add_disk - add disk information to kernel list 666 * @parent: parent device for the disk 667 * @disk: per-device partitioning information 668 * @groups: Additional per-device sysfs groups 669 * @register_queue: register the queue if set to true 670 * 671 * This function registers the partitioning information in @disk 672 * with the kernel. 673 * 674 * FIXME: error handling 675 */ 676 static void __device_add_disk(struct device *parent, struct gendisk *disk, 677 const struct attribute_group **groups, 678 bool register_queue) 679 { 680 dev_t devt; 681 int retval; 682 683 /* minors == 0 indicates to use ext devt from part0 and should 684 * be accompanied with EXT_DEVT flag. Make sure all 685 * parameters make sense. 686 */ 687 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 688 WARN_ON(!disk->minors && 689 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN))); 690 691 disk->flags |= GENHD_FL_UP; 692 693 retval = blk_alloc_devt(&disk->part0, &devt); 694 if (retval) { 695 WARN_ON(1); 696 return; 697 } 698 disk->major = MAJOR(devt); 699 disk->first_minor = MINOR(devt); 700 701 disk_alloc_events(disk); 702 703 if (disk->flags & GENHD_FL_HIDDEN) { 704 /* 705 * Don't let hidden disks show up in /proc/partitions, 706 * and don't bother scanning for partitions either. 707 */ 708 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 709 disk->flags |= GENHD_FL_NO_PART_SCAN; 710 } else { 711 int ret; 712 713 /* Register BDI before referencing it from bdev */ 714 disk_to_dev(disk)->devt = devt; 715 ret = bdi_register_owner(disk->queue->backing_dev_info, 716 disk_to_dev(disk)); 717 WARN_ON(ret); 718 blk_register_region(disk_devt(disk), disk->minors, NULL, 719 exact_match, exact_lock, disk); 720 } 721 register_disk(parent, disk, groups); 722 if (register_queue) 723 blk_register_queue(disk); 724 725 /* 726 * Take an extra ref on queue which will be put on disk_release() 727 * so that it sticks around as long as @disk is there. 728 */ 729 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 730 731 disk_add_events(disk); 732 blk_integrity_add(disk); 733 } 734 735 void device_add_disk(struct device *parent, struct gendisk *disk, 736 const struct attribute_group **groups) 737 738 { 739 __device_add_disk(parent, disk, groups, true); 740 } 741 EXPORT_SYMBOL(device_add_disk); 742 743 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk) 744 { 745 __device_add_disk(parent, disk, NULL, false); 746 } 747 EXPORT_SYMBOL(device_add_disk_no_queue_reg); 748 749 void del_gendisk(struct gendisk *disk) 750 { 751 struct disk_part_iter piter; 752 struct hd_struct *part; 753 754 blk_integrity_del(disk); 755 disk_del_events(disk); 756 757 /* 758 * Block lookups of the disk until all bdevs are unhashed and the 759 * disk is marked as dead (GENHD_FL_UP cleared). 760 */ 761 down_write(&disk->lookup_sem); 762 /* invalidate stuff */ 763 disk_part_iter_init(&piter, disk, 764 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 765 while ((part = disk_part_iter_next(&piter))) { 766 invalidate_partition(disk, part->partno); 767 bdev_unhash_inode(part_devt(part)); 768 delete_partition(disk, part->partno); 769 } 770 disk_part_iter_exit(&piter); 771 772 invalidate_partition(disk, 0); 773 bdev_unhash_inode(disk_devt(disk)); 774 set_capacity(disk, 0); 775 disk->flags &= ~GENHD_FL_UP; 776 up_write(&disk->lookup_sem); 777 778 if (!(disk->flags & GENHD_FL_HIDDEN)) 779 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 780 if (disk->queue) { 781 /* 782 * Unregister bdi before releasing device numbers (as they can 783 * get reused and we'd get clashes in sysfs). 784 */ 785 if (!(disk->flags & GENHD_FL_HIDDEN)) 786 bdi_unregister(disk->queue->backing_dev_info); 787 blk_unregister_queue(disk); 788 } else { 789 WARN_ON(1); 790 } 791 792 if (!(disk->flags & GENHD_FL_HIDDEN)) 793 blk_unregister_region(disk_devt(disk), disk->minors); 794 795 kobject_put(disk->part0.holder_dir); 796 kobject_put(disk->slave_dir); 797 798 part_stat_set_all(&disk->part0, 0); 799 disk->part0.stamp = 0; 800 if (!sysfs_deprecated) 801 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 802 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 803 device_del(disk_to_dev(disk)); 804 } 805 EXPORT_SYMBOL(del_gendisk); 806 807 /* sysfs access to bad-blocks list. */ 808 static ssize_t disk_badblocks_show(struct device *dev, 809 struct device_attribute *attr, 810 char *page) 811 { 812 struct gendisk *disk = dev_to_disk(dev); 813 814 if (!disk->bb) 815 return sprintf(page, "\n"); 816 817 return badblocks_show(disk->bb, page, 0); 818 } 819 820 static ssize_t disk_badblocks_store(struct device *dev, 821 struct device_attribute *attr, 822 const char *page, size_t len) 823 { 824 struct gendisk *disk = dev_to_disk(dev); 825 826 if (!disk->bb) 827 return -ENXIO; 828 829 return badblocks_store(disk->bb, page, len, 0); 830 } 831 832 /** 833 * get_gendisk - get partitioning information for a given device 834 * @devt: device to get partitioning information for 835 * @partno: returned partition index 836 * 837 * This function gets the structure containing partitioning 838 * information for the given device @devt. 839 */ 840 struct gendisk *get_gendisk(dev_t devt, int *partno) 841 { 842 struct gendisk *disk = NULL; 843 844 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 845 struct kobject *kobj; 846 847 kobj = kobj_lookup(bdev_map, devt, partno); 848 if (kobj) 849 disk = dev_to_disk(kobj_to_dev(kobj)); 850 } else { 851 struct hd_struct *part; 852 853 spin_lock_bh(&ext_devt_lock); 854 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 855 if (part && get_disk_and_module(part_to_disk(part))) { 856 *partno = part->partno; 857 disk = part_to_disk(part); 858 } 859 spin_unlock_bh(&ext_devt_lock); 860 } 861 862 if (!disk) 863 return NULL; 864 865 /* 866 * Synchronize with del_gendisk() to not return disk that is being 867 * destroyed. 868 */ 869 down_read(&disk->lookup_sem); 870 if (unlikely((disk->flags & GENHD_FL_HIDDEN) || 871 !(disk->flags & GENHD_FL_UP))) { 872 up_read(&disk->lookup_sem); 873 put_disk_and_module(disk); 874 disk = NULL; 875 } else { 876 up_read(&disk->lookup_sem); 877 } 878 return disk; 879 } 880 EXPORT_SYMBOL(get_gendisk); 881 882 /** 883 * bdget_disk - do bdget() by gendisk and partition number 884 * @disk: gendisk of interest 885 * @partno: partition number 886 * 887 * Find partition @partno from @disk, do bdget() on it. 888 * 889 * CONTEXT: 890 * Don't care. 891 * 892 * RETURNS: 893 * Resulting block_device on success, NULL on failure. 894 */ 895 struct block_device *bdget_disk(struct gendisk *disk, int partno) 896 { 897 struct hd_struct *part; 898 struct block_device *bdev = NULL; 899 900 part = disk_get_part(disk, partno); 901 if (part) 902 bdev = bdget(part_devt(part)); 903 disk_put_part(part); 904 905 return bdev; 906 } 907 EXPORT_SYMBOL(bdget_disk); 908 909 /* 910 * print a full list of all partitions - intended for places where the root 911 * filesystem can't be mounted and thus to give the victim some idea of what 912 * went wrong 913 */ 914 void __init printk_all_partitions(void) 915 { 916 struct class_dev_iter iter; 917 struct device *dev; 918 919 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 920 while ((dev = class_dev_iter_next(&iter))) { 921 struct gendisk *disk = dev_to_disk(dev); 922 struct disk_part_iter piter; 923 struct hd_struct *part; 924 char name_buf[BDEVNAME_SIZE]; 925 char devt_buf[BDEVT_SIZE]; 926 927 /* 928 * Don't show empty devices or things that have been 929 * suppressed 930 */ 931 if (get_capacity(disk) == 0 || 932 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 933 continue; 934 935 /* 936 * Note, unlike /proc/partitions, I am showing the 937 * numbers in hex - the same format as the root= 938 * option takes. 939 */ 940 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 941 while ((part = disk_part_iter_next(&piter))) { 942 bool is_part0 = part == &disk->part0; 943 944 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 945 bdevt_str(part_devt(part), devt_buf), 946 (unsigned long long)part_nr_sects_read(part) >> 1 947 , disk_name(disk, part->partno, name_buf), 948 part->info ? part->info->uuid : ""); 949 if (is_part0) { 950 if (dev->parent && dev->parent->driver) 951 printk(" driver: %s\n", 952 dev->parent->driver->name); 953 else 954 printk(" (driver?)\n"); 955 } else 956 printk("\n"); 957 } 958 disk_part_iter_exit(&piter); 959 } 960 class_dev_iter_exit(&iter); 961 } 962 963 #ifdef CONFIG_PROC_FS 964 /* iterator */ 965 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 966 { 967 loff_t skip = *pos; 968 struct class_dev_iter *iter; 969 struct device *dev; 970 971 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 972 if (!iter) 973 return ERR_PTR(-ENOMEM); 974 975 seqf->private = iter; 976 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 977 do { 978 dev = class_dev_iter_next(iter); 979 if (!dev) 980 return NULL; 981 } while (skip--); 982 983 return dev_to_disk(dev); 984 } 985 986 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 987 { 988 struct device *dev; 989 990 (*pos)++; 991 dev = class_dev_iter_next(seqf->private); 992 if (dev) 993 return dev_to_disk(dev); 994 995 return NULL; 996 } 997 998 static void disk_seqf_stop(struct seq_file *seqf, void *v) 999 { 1000 struct class_dev_iter *iter = seqf->private; 1001 1002 /* stop is called even after start failed :-( */ 1003 if (iter) { 1004 class_dev_iter_exit(iter); 1005 kfree(iter); 1006 seqf->private = NULL; 1007 } 1008 } 1009 1010 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 1011 { 1012 void *p; 1013 1014 p = disk_seqf_start(seqf, pos); 1015 if (!IS_ERR_OR_NULL(p) && !*pos) 1016 seq_puts(seqf, "major minor #blocks name\n\n"); 1017 return p; 1018 } 1019 1020 static int show_partition(struct seq_file *seqf, void *v) 1021 { 1022 struct gendisk *sgp = v; 1023 struct disk_part_iter piter; 1024 struct hd_struct *part; 1025 char buf[BDEVNAME_SIZE]; 1026 1027 /* Don't show non-partitionable removeable devices or empty devices */ 1028 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 1029 (sgp->flags & GENHD_FL_REMOVABLE))) 1030 return 0; 1031 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 1032 return 0; 1033 1034 /* show the full disk and all non-0 size partitions of it */ 1035 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 1036 while ((part = disk_part_iter_next(&piter))) 1037 seq_printf(seqf, "%4d %7d %10llu %s\n", 1038 MAJOR(part_devt(part)), MINOR(part_devt(part)), 1039 (unsigned long long)part_nr_sects_read(part) >> 1, 1040 disk_name(sgp, part->partno, buf)); 1041 disk_part_iter_exit(&piter); 1042 1043 return 0; 1044 } 1045 1046 static const struct seq_operations partitions_op = { 1047 .start = show_partition_start, 1048 .next = disk_seqf_next, 1049 .stop = disk_seqf_stop, 1050 .show = show_partition 1051 }; 1052 #endif 1053 1054 1055 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 1056 { 1057 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 1058 /* Make old-style 2.4 aliases work */ 1059 request_module("block-major-%d", MAJOR(devt)); 1060 return NULL; 1061 } 1062 1063 static int __init genhd_device_init(void) 1064 { 1065 int error; 1066 1067 block_class.dev_kobj = sysfs_dev_block_kobj; 1068 error = class_register(&block_class); 1069 if (unlikely(error)) 1070 return error; 1071 bdev_map = kobj_map_init(base_probe, &block_class_lock); 1072 blk_dev_init(); 1073 1074 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 1075 1076 /* create top-level block dir */ 1077 if (!sysfs_deprecated) 1078 block_depr = kobject_create_and_add("block", NULL); 1079 return 0; 1080 } 1081 1082 subsys_initcall(genhd_device_init); 1083 1084 static ssize_t disk_range_show(struct device *dev, 1085 struct device_attribute *attr, char *buf) 1086 { 1087 struct gendisk *disk = dev_to_disk(dev); 1088 1089 return sprintf(buf, "%d\n", disk->minors); 1090 } 1091 1092 static ssize_t disk_ext_range_show(struct device *dev, 1093 struct device_attribute *attr, char *buf) 1094 { 1095 struct gendisk *disk = dev_to_disk(dev); 1096 1097 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1098 } 1099 1100 static ssize_t disk_removable_show(struct device *dev, 1101 struct device_attribute *attr, char *buf) 1102 { 1103 struct gendisk *disk = dev_to_disk(dev); 1104 1105 return sprintf(buf, "%d\n", 1106 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1107 } 1108 1109 static ssize_t disk_hidden_show(struct device *dev, 1110 struct device_attribute *attr, char *buf) 1111 { 1112 struct gendisk *disk = dev_to_disk(dev); 1113 1114 return sprintf(buf, "%d\n", 1115 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); 1116 } 1117 1118 static ssize_t disk_ro_show(struct device *dev, 1119 struct device_attribute *attr, char *buf) 1120 { 1121 struct gendisk *disk = dev_to_disk(dev); 1122 1123 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1124 } 1125 1126 static ssize_t disk_capability_show(struct device *dev, 1127 struct device_attribute *attr, char *buf) 1128 { 1129 struct gendisk *disk = dev_to_disk(dev); 1130 1131 return sprintf(buf, "%x\n", disk->flags); 1132 } 1133 1134 static ssize_t disk_alignment_offset_show(struct device *dev, 1135 struct device_attribute *attr, 1136 char *buf) 1137 { 1138 struct gendisk *disk = dev_to_disk(dev); 1139 1140 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1141 } 1142 1143 static ssize_t disk_discard_alignment_show(struct device *dev, 1144 struct device_attribute *attr, 1145 char *buf) 1146 { 1147 struct gendisk *disk = dev_to_disk(dev); 1148 1149 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1150 } 1151 1152 static DEVICE_ATTR(range, 0444, disk_range_show, NULL); 1153 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL); 1154 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL); 1155 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL); 1156 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL); 1157 static DEVICE_ATTR(size, 0444, part_size_show, NULL); 1158 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL); 1159 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL); 1160 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL); 1161 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); 1162 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); 1163 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store); 1164 #ifdef CONFIG_FAIL_MAKE_REQUEST 1165 static struct device_attribute dev_attr_fail = 1166 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); 1167 #endif 1168 #ifdef CONFIG_FAIL_IO_TIMEOUT 1169 static struct device_attribute dev_attr_fail_timeout = 1170 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store); 1171 #endif 1172 1173 static struct attribute *disk_attrs[] = { 1174 &dev_attr_range.attr, 1175 &dev_attr_ext_range.attr, 1176 &dev_attr_removable.attr, 1177 &dev_attr_hidden.attr, 1178 &dev_attr_ro.attr, 1179 &dev_attr_size.attr, 1180 &dev_attr_alignment_offset.attr, 1181 &dev_attr_discard_alignment.attr, 1182 &dev_attr_capability.attr, 1183 &dev_attr_stat.attr, 1184 &dev_attr_inflight.attr, 1185 &dev_attr_badblocks.attr, 1186 #ifdef CONFIG_FAIL_MAKE_REQUEST 1187 &dev_attr_fail.attr, 1188 #endif 1189 #ifdef CONFIG_FAIL_IO_TIMEOUT 1190 &dev_attr_fail_timeout.attr, 1191 #endif 1192 NULL 1193 }; 1194 1195 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1196 { 1197 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1198 struct gendisk *disk = dev_to_disk(dev); 1199 1200 if (a == &dev_attr_badblocks.attr && !disk->bb) 1201 return 0; 1202 return a->mode; 1203 } 1204 1205 static struct attribute_group disk_attr_group = { 1206 .attrs = disk_attrs, 1207 .is_visible = disk_visible, 1208 }; 1209 1210 static const struct attribute_group *disk_attr_groups[] = { 1211 &disk_attr_group, 1212 NULL 1213 }; 1214 1215 /** 1216 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1217 * @disk: disk to replace part_tbl for 1218 * @new_ptbl: new part_tbl to install 1219 * 1220 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1221 * original ptbl is freed using RCU callback. 1222 * 1223 * LOCKING: 1224 * Matching bd_mutex locked or the caller is the only user of @disk. 1225 */ 1226 static void disk_replace_part_tbl(struct gendisk *disk, 1227 struct disk_part_tbl *new_ptbl) 1228 { 1229 struct disk_part_tbl *old_ptbl = 1230 rcu_dereference_protected(disk->part_tbl, 1); 1231 1232 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1233 1234 if (old_ptbl) { 1235 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1236 kfree_rcu(old_ptbl, rcu_head); 1237 } 1238 } 1239 1240 /** 1241 * disk_expand_part_tbl - expand disk->part_tbl 1242 * @disk: disk to expand part_tbl for 1243 * @partno: expand such that this partno can fit in 1244 * 1245 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1246 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1247 * 1248 * LOCKING: 1249 * Matching bd_mutex locked or the caller is the only user of @disk. 1250 * Might sleep. 1251 * 1252 * RETURNS: 1253 * 0 on success, -errno on failure. 1254 */ 1255 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1256 { 1257 struct disk_part_tbl *old_ptbl = 1258 rcu_dereference_protected(disk->part_tbl, 1); 1259 struct disk_part_tbl *new_ptbl; 1260 int len = old_ptbl ? old_ptbl->len : 0; 1261 int i, target; 1262 size_t size; 1263 1264 /* 1265 * check for int overflow, since we can get here from blkpg_ioctl() 1266 * with a user passed 'partno'. 1267 */ 1268 target = partno + 1; 1269 if (target < 0) 1270 return -EINVAL; 1271 1272 /* disk_max_parts() is zero during initialization, ignore if so */ 1273 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1274 return -EINVAL; 1275 1276 if (target <= len) 1277 return 0; 1278 1279 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1280 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1281 if (!new_ptbl) 1282 return -ENOMEM; 1283 1284 new_ptbl->len = target; 1285 1286 for (i = 0; i < len; i++) 1287 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1288 1289 disk_replace_part_tbl(disk, new_ptbl); 1290 return 0; 1291 } 1292 1293 static void disk_release(struct device *dev) 1294 { 1295 struct gendisk *disk = dev_to_disk(dev); 1296 1297 blk_free_devt(dev->devt); 1298 disk_release_events(disk); 1299 kfree(disk->random); 1300 disk_replace_part_tbl(disk, NULL); 1301 hd_free_part(&disk->part0); 1302 if (disk->queue) 1303 blk_put_queue(disk->queue); 1304 kfree(disk); 1305 } 1306 struct class block_class = { 1307 .name = "block", 1308 }; 1309 1310 static char *block_devnode(struct device *dev, umode_t *mode, 1311 kuid_t *uid, kgid_t *gid) 1312 { 1313 struct gendisk *disk = dev_to_disk(dev); 1314 1315 if (disk->devnode) 1316 return disk->devnode(disk, mode); 1317 return NULL; 1318 } 1319 1320 static const struct device_type disk_type = { 1321 .name = "disk", 1322 .groups = disk_attr_groups, 1323 .release = disk_release, 1324 .devnode = block_devnode, 1325 }; 1326 1327 #ifdef CONFIG_PROC_FS 1328 /* 1329 * aggregate disk stat collector. Uses the same stats that the sysfs 1330 * entries do, above, but makes them available through one seq_file. 1331 * 1332 * The output looks suspiciously like /proc/partitions with a bunch of 1333 * extra fields. 1334 */ 1335 static int diskstats_show(struct seq_file *seqf, void *v) 1336 { 1337 struct gendisk *gp = v; 1338 struct disk_part_iter piter; 1339 struct hd_struct *hd; 1340 char buf[BDEVNAME_SIZE]; 1341 unsigned int inflight; 1342 1343 /* 1344 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1345 seq_puts(seqf, "major minor name" 1346 " rio rmerge rsect ruse wio wmerge " 1347 "wsect wuse running use aveq" 1348 "\n\n"); 1349 */ 1350 1351 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1352 while ((hd = disk_part_iter_next(&piter))) { 1353 inflight = part_in_flight(gp->queue, hd); 1354 seq_printf(seqf, "%4d %7d %s " 1355 "%lu %lu %lu %u " 1356 "%lu %lu %lu %u " 1357 "%u %u %u " 1358 "%lu %lu %lu %u\n", 1359 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1360 disk_name(gp, hd->partno, buf), 1361 part_stat_read(hd, ios[STAT_READ]), 1362 part_stat_read(hd, merges[STAT_READ]), 1363 part_stat_read(hd, sectors[STAT_READ]), 1364 (unsigned int)part_stat_read_msecs(hd, STAT_READ), 1365 part_stat_read(hd, ios[STAT_WRITE]), 1366 part_stat_read(hd, merges[STAT_WRITE]), 1367 part_stat_read(hd, sectors[STAT_WRITE]), 1368 (unsigned int)part_stat_read_msecs(hd, STAT_WRITE), 1369 inflight, 1370 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1371 jiffies_to_msecs(part_stat_read(hd, time_in_queue)), 1372 part_stat_read(hd, ios[STAT_DISCARD]), 1373 part_stat_read(hd, merges[STAT_DISCARD]), 1374 part_stat_read(hd, sectors[STAT_DISCARD]), 1375 (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD) 1376 ); 1377 } 1378 disk_part_iter_exit(&piter); 1379 1380 return 0; 1381 } 1382 1383 static const struct seq_operations diskstats_op = { 1384 .start = disk_seqf_start, 1385 .next = disk_seqf_next, 1386 .stop = disk_seqf_stop, 1387 .show = diskstats_show 1388 }; 1389 1390 static int __init proc_genhd_init(void) 1391 { 1392 proc_create_seq("diskstats", 0, NULL, &diskstats_op); 1393 proc_create_seq("partitions", 0, NULL, &partitions_op); 1394 return 0; 1395 } 1396 module_init(proc_genhd_init); 1397 #endif /* CONFIG_PROC_FS */ 1398 1399 dev_t blk_lookup_devt(const char *name, int partno) 1400 { 1401 dev_t devt = MKDEV(0, 0); 1402 struct class_dev_iter iter; 1403 struct device *dev; 1404 1405 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1406 while ((dev = class_dev_iter_next(&iter))) { 1407 struct gendisk *disk = dev_to_disk(dev); 1408 struct hd_struct *part; 1409 1410 if (strcmp(dev_name(dev), name)) 1411 continue; 1412 1413 if (partno < disk->minors) { 1414 /* We need to return the right devno, even 1415 * if the partition doesn't exist yet. 1416 */ 1417 devt = MKDEV(MAJOR(dev->devt), 1418 MINOR(dev->devt) + partno); 1419 break; 1420 } 1421 part = disk_get_part(disk, partno); 1422 if (part) { 1423 devt = part_devt(part); 1424 disk_put_part(part); 1425 break; 1426 } 1427 disk_put_part(part); 1428 } 1429 class_dev_iter_exit(&iter); 1430 return devt; 1431 } 1432 EXPORT_SYMBOL(blk_lookup_devt); 1433 1434 struct gendisk *__alloc_disk_node(int minors, int node_id) 1435 { 1436 struct gendisk *disk; 1437 struct disk_part_tbl *ptbl; 1438 1439 if (minors > DISK_MAX_PARTS) { 1440 printk(KERN_ERR 1441 "block: can't allocate more than %d partitions\n", 1442 DISK_MAX_PARTS); 1443 minors = DISK_MAX_PARTS; 1444 } 1445 1446 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1447 if (disk) { 1448 if (!init_part_stats(&disk->part0)) { 1449 kfree(disk); 1450 return NULL; 1451 } 1452 init_rwsem(&disk->lookup_sem); 1453 disk->node_id = node_id; 1454 if (disk_expand_part_tbl(disk, 0)) { 1455 free_part_stats(&disk->part0); 1456 kfree(disk); 1457 return NULL; 1458 } 1459 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 1460 rcu_assign_pointer(ptbl->part[0], &disk->part0); 1461 1462 /* 1463 * set_capacity() and get_capacity() currently don't use 1464 * seqcounter to read/update the part0->nr_sects. Still init 1465 * the counter as we can read the sectors in IO submission 1466 * patch using seqence counters. 1467 * 1468 * TODO: Ideally set_capacity() and get_capacity() should be 1469 * converted to make use of bd_mutex and sequence counters. 1470 */ 1471 seqcount_init(&disk->part0.nr_sects_seq); 1472 if (hd_ref_init(&disk->part0)) { 1473 hd_free_part(&disk->part0); 1474 kfree(disk); 1475 return NULL; 1476 } 1477 1478 disk->minors = minors; 1479 rand_initialize_disk(disk); 1480 disk_to_dev(disk)->class = &block_class; 1481 disk_to_dev(disk)->type = &disk_type; 1482 device_initialize(disk_to_dev(disk)); 1483 } 1484 return disk; 1485 } 1486 EXPORT_SYMBOL(__alloc_disk_node); 1487 1488 struct kobject *get_disk_and_module(struct gendisk *disk) 1489 { 1490 struct module *owner; 1491 struct kobject *kobj; 1492 1493 if (!disk->fops) 1494 return NULL; 1495 owner = disk->fops->owner; 1496 if (owner && !try_module_get(owner)) 1497 return NULL; 1498 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1499 if (kobj == NULL) { 1500 module_put(owner); 1501 return NULL; 1502 } 1503 return kobj; 1504 1505 } 1506 EXPORT_SYMBOL(get_disk_and_module); 1507 1508 void put_disk(struct gendisk *disk) 1509 { 1510 if (disk) 1511 kobject_put(&disk_to_dev(disk)->kobj); 1512 } 1513 EXPORT_SYMBOL(put_disk); 1514 1515 /* 1516 * This is a counterpart of get_disk_and_module() and thus also of 1517 * get_gendisk(). 1518 */ 1519 void put_disk_and_module(struct gendisk *disk) 1520 { 1521 if (disk) { 1522 struct module *owner = disk->fops->owner; 1523 1524 put_disk(disk); 1525 module_put(owner); 1526 } 1527 } 1528 EXPORT_SYMBOL(put_disk_and_module); 1529 1530 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1531 { 1532 char event[] = "DISK_RO=1"; 1533 char *envp[] = { event, NULL }; 1534 1535 if (!ro) 1536 event[8] = '0'; 1537 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1538 } 1539 1540 void set_device_ro(struct block_device *bdev, int flag) 1541 { 1542 bdev->bd_part->policy = flag; 1543 } 1544 1545 EXPORT_SYMBOL(set_device_ro); 1546 1547 void set_disk_ro(struct gendisk *disk, int flag) 1548 { 1549 struct disk_part_iter piter; 1550 struct hd_struct *part; 1551 1552 if (disk->part0.policy != flag) { 1553 set_disk_ro_uevent(disk, flag); 1554 disk->part0.policy = flag; 1555 } 1556 1557 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1558 while ((part = disk_part_iter_next(&piter))) 1559 part->policy = flag; 1560 disk_part_iter_exit(&piter); 1561 } 1562 1563 EXPORT_SYMBOL(set_disk_ro); 1564 1565 int bdev_read_only(struct block_device *bdev) 1566 { 1567 if (!bdev) 1568 return 0; 1569 return bdev->bd_part->policy; 1570 } 1571 1572 EXPORT_SYMBOL(bdev_read_only); 1573 1574 int invalidate_partition(struct gendisk *disk, int partno) 1575 { 1576 int res = 0; 1577 struct block_device *bdev = bdget_disk(disk, partno); 1578 if (bdev) { 1579 fsync_bdev(bdev); 1580 res = __invalidate_device(bdev, true); 1581 bdput(bdev); 1582 } 1583 return res; 1584 } 1585 1586 EXPORT_SYMBOL(invalidate_partition); 1587 1588 /* 1589 * Disk events - monitor disk events like media change and eject request. 1590 */ 1591 struct disk_events { 1592 struct list_head node; /* all disk_event's */ 1593 struct gendisk *disk; /* the associated disk */ 1594 spinlock_t lock; 1595 1596 struct mutex block_mutex; /* protects blocking */ 1597 int block; /* event blocking depth */ 1598 unsigned int pending; /* events already sent out */ 1599 unsigned int clearing; /* events being cleared */ 1600 1601 long poll_msecs; /* interval, -1 for default */ 1602 struct delayed_work dwork; 1603 }; 1604 1605 static const char *disk_events_strs[] = { 1606 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1607 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1608 }; 1609 1610 static char *disk_uevents[] = { 1611 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1612 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1613 }; 1614 1615 /* list of all disk_events */ 1616 static DEFINE_MUTEX(disk_events_mutex); 1617 static LIST_HEAD(disk_events); 1618 1619 /* disable in-kernel polling by default */ 1620 static unsigned long disk_events_dfl_poll_msecs; 1621 1622 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1623 { 1624 struct disk_events *ev = disk->ev; 1625 long intv_msecs = 0; 1626 1627 /* 1628 * If device-specific poll interval is set, always use it. If 1629 * the default is being used, poll iff there are events which 1630 * can't be monitored asynchronously. 1631 */ 1632 if (ev->poll_msecs >= 0) 1633 intv_msecs = ev->poll_msecs; 1634 else if (disk->events & ~disk->async_events) 1635 intv_msecs = disk_events_dfl_poll_msecs; 1636 1637 return msecs_to_jiffies(intv_msecs); 1638 } 1639 1640 /** 1641 * disk_block_events - block and flush disk event checking 1642 * @disk: disk to block events for 1643 * 1644 * On return from this function, it is guaranteed that event checking 1645 * isn't in progress and won't happen until unblocked by 1646 * disk_unblock_events(). Events blocking is counted and the actual 1647 * unblocking happens after the matching number of unblocks are done. 1648 * 1649 * Note that this intentionally does not block event checking from 1650 * disk_clear_events(). 1651 * 1652 * CONTEXT: 1653 * Might sleep. 1654 */ 1655 void disk_block_events(struct gendisk *disk) 1656 { 1657 struct disk_events *ev = disk->ev; 1658 unsigned long flags; 1659 bool cancel; 1660 1661 if (!ev) 1662 return; 1663 1664 /* 1665 * Outer mutex ensures that the first blocker completes canceling 1666 * the event work before further blockers are allowed to finish. 1667 */ 1668 mutex_lock(&ev->block_mutex); 1669 1670 spin_lock_irqsave(&ev->lock, flags); 1671 cancel = !ev->block++; 1672 spin_unlock_irqrestore(&ev->lock, flags); 1673 1674 if (cancel) 1675 cancel_delayed_work_sync(&disk->ev->dwork); 1676 1677 mutex_unlock(&ev->block_mutex); 1678 } 1679 1680 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1681 { 1682 struct disk_events *ev = disk->ev; 1683 unsigned long intv; 1684 unsigned long flags; 1685 1686 spin_lock_irqsave(&ev->lock, flags); 1687 1688 if (WARN_ON_ONCE(ev->block <= 0)) 1689 goto out_unlock; 1690 1691 if (--ev->block) 1692 goto out_unlock; 1693 1694 intv = disk_events_poll_jiffies(disk); 1695 if (check_now) 1696 queue_delayed_work(system_freezable_power_efficient_wq, 1697 &ev->dwork, 0); 1698 else if (intv) 1699 queue_delayed_work(system_freezable_power_efficient_wq, 1700 &ev->dwork, intv); 1701 out_unlock: 1702 spin_unlock_irqrestore(&ev->lock, flags); 1703 } 1704 1705 /** 1706 * disk_unblock_events - unblock disk event checking 1707 * @disk: disk to unblock events for 1708 * 1709 * Undo disk_block_events(). When the block count reaches zero, it 1710 * starts events polling if configured. 1711 * 1712 * CONTEXT: 1713 * Don't care. Safe to call from irq context. 1714 */ 1715 void disk_unblock_events(struct gendisk *disk) 1716 { 1717 if (disk->ev) 1718 __disk_unblock_events(disk, false); 1719 } 1720 1721 /** 1722 * disk_flush_events - schedule immediate event checking and flushing 1723 * @disk: disk to check and flush events for 1724 * @mask: events to flush 1725 * 1726 * Schedule immediate event checking on @disk if not blocked. Events in 1727 * @mask are scheduled to be cleared from the driver. Note that this 1728 * doesn't clear the events from @disk->ev. 1729 * 1730 * CONTEXT: 1731 * If @mask is non-zero must be called with bdev->bd_mutex held. 1732 */ 1733 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1734 { 1735 struct disk_events *ev = disk->ev; 1736 1737 if (!ev) 1738 return; 1739 1740 spin_lock_irq(&ev->lock); 1741 ev->clearing |= mask; 1742 if (!ev->block) 1743 mod_delayed_work(system_freezable_power_efficient_wq, 1744 &ev->dwork, 0); 1745 spin_unlock_irq(&ev->lock); 1746 } 1747 1748 /** 1749 * disk_clear_events - synchronously check, clear and return pending events 1750 * @disk: disk to fetch and clear events from 1751 * @mask: mask of events to be fetched and cleared 1752 * 1753 * Disk events are synchronously checked and pending events in @mask 1754 * are cleared and returned. This ignores the block count. 1755 * 1756 * CONTEXT: 1757 * Might sleep. 1758 */ 1759 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1760 { 1761 const struct block_device_operations *bdops = disk->fops; 1762 struct disk_events *ev = disk->ev; 1763 unsigned int pending; 1764 unsigned int clearing = mask; 1765 1766 if (!ev) { 1767 /* for drivers still using the old ->media_changed method */ 1768 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1769 bdops->media_changed && bdops->media_changed(disk)) 1770 return DISK_EVENT_MEDIA_CHANGE; 1771 return 0; 1772 } 1773 1774 disk_block_events(disk); 1775 1776 /* 1777 * store the union of mask and ev->clearing on the stack so that the 1778 * race with disk_flush_events does not cause ambiguity (ev->clearing 1779 * can still be modified even if events are blocked). 1780 */ 1781 spin_lock_irq(&ev->lock); 1782 clearing |= ev->clearing; 1783 ev->clearing = 0; 1784 spin_unlock_irq(&ev->lock); 1785 1786 disk_check_events(ev, &clearing); 1787 /* 1788 * if ev->clearing is not 0, the disk_flush_events got called in the 1789 * middle of this function, so we want to run the workfn without delay. 1790 */ 1791 __disk_unblock_events(disk, ev->clearing ? true : false); 1792 1793 /* then, fetch and clear pending events */ 1794 spin_lock_irq(&ev->lock); 1795 pending = ev->pending & mask; 1796 ev->pending &= ~mask; 1797 spin_unlock_irq(&ev->lock); 1798 WARN_ON_ONCE(clearing & mask); 1799 1800 return pending; 1801 } 1802 1803 /* 1804 * Separate this part out so that a different pointer for clearing_ptr can be 1805 * passed in for disk_clear_events. 1806 */ 1807 static void disk_events_workfn(struct work_struct *work) 1808 { 1809 struct delayed_work *dwork = to_delayed_work(work); 1810 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1811 1812 disk_check_events(ev, &ev->clearing); 1813 } 1814 1815 static void disk_check_events(struct disk_events *ev, 1816 unsigned int *clearing_ptr) 1817 { 1818 struct gendisk *disk = ev->disk; 1819 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1820 unsigned int clearing = *clearing_ptr; 1821 unsigned int events; 1822 unsigned long intv; 1823 int nr_events = 0, i; 1824 1825 /* check events */ 1826 events = disk->fops->check_events(disk, clearing); 1827 1828 /* accumulate pending events and schedule next poll if necessary */ 1829 spin_lock_irq(&ev->lock); 1830 1831 events &= ~ev->pending; 1832 ev->pending |= events; 1833 *clearing_ptr &= ~clearing; 1834 1835 intv = disk_events_poll_jiffies(disk); 1836 if (!ev->block && intv) 1837 queue_delayed_work(system_freezable_power_efficient_wq, 1838 &ev->dwork, intv); 1839 1840 spin_unlock_irq(&ev->lock); 1841 1842 /* 1843 * Tell userland about new events. Only the events listed in 1844 * @disk->events are reported. Unlisted events are processed the 1845 * same internally but never get reported to userland. 1846 */ 1847 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1848 if (events & disk->events & (1 << i)) 1849 envp[nr_events++] = disk_uevents[i]; 1850 1851 if (nr_events) 1852 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1853 } 1854 1855 /* 1856 * A disk events enabled device has the following sysfs nodes under 1857 * its /sys/block/X/ directory. 1858 * 1859 * events : list of all supported events 1860 * events_async : list of events which can be detected w/o polling 1861 * events_poll_msecs : polling interval, 0: disable, -1: system default 1862 */ 1863 static ssize_t __disk_events_show(unsigned int events, char *buf) 1864 { 1865 const char *delim = ""; 1866 ssize_t pos = 0; 1867 int i; 1868 1869 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1870 if (events & (1 << i)) { 1871 pos += sprintf(buf + pos, "%s%s", 1872 delim, disk_events_strs[i]); 1873 delim = " "; 1874 } 1875 if (pos) 1876 pos += sprintf(buf + pos, "\n"); 1877 return pos; 1878 } 1879 1880 static ssize_t disk_events_show(struct device *dev, 1881 struct device_attribute *attr, char *buf) 1882 { 1883 struct gendisk *disk = dev_to_disk(dev); 1884 1885 return __disk_events_show(disk->events, buf); 1886 } 1887 1888 static ssize_t disk_events_async_show(struct device *dev, 1889 struct device_attribute *attr, char *buf) 1890 { 1891 struct gendisk *disk = dev_to_disk(dev); 1892 1893 return __disk_events_show(disk->async_events, buf); 1894 } 1895 1896 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1897 struct device_attribute *attr, 1898 char *buf) 1899 { 1900 struct gendisk *disk = dev_to_disk(dev); 1901 1902 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1903 } 1904 1905 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1906 struct device_attribute *attr, 1907 const char *buf, size_t count) 1908 { 1909 struct gendisk *disk = dev_to_disk(dev); 1910 long intv; 1911 1912 if (!count || !sscanf(buf, "%ld", &intv)) 1913 return -EINVAL; 1914 1915 if (intv < 0 && intv != -1) 1916 return -EINVAL; 1917 1918 disk_block_events(disk); 1919 disk->ev->poll_msecs = intv; 1920 __disk_unblock_events(disk, true); 1921 1922 return count; 1923 } 1924 1925 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL); 1926 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL); 1927 static const DEVICE_ATTR(events_poll_msecs, 0644, 1928 disk_events_poll_msecs_show, 1929 disk_events_poll_msecs_store); 1930 1931 static const struct attribute *disk_events_attrs[] = { 1932 &dev_attr_events.attr, 1933 &dev_attr_events_async.attr, 1934 &dev_attr_events_poll_msecs.attr, 1935 NULL, 1936 }; 1937 1938 /* 1939 * The default polling interval can be specified by the kernel 1940 * parameter block.events_dfl_poll_msecs which defaults to 0 1941 * (disable). This can also be modified runtime by writing to 1942 * /sys/module/block/events_dfl_poll_msecs. 1943 */ 1944 static int disk_events_set_dfl_poll_msecs(const char *val, 1945 const struct kernel_param *kp) 1946 { 1947 struct disk_events *ev; 1948 int ret; 1949 1950 ret = param_set_ulong(val, kp); 1951 if (ret < 0) 1952 return ret; 1953 1954 mutex_lock(&disk_events_mutex); 1955 1956 list_for_each_entry(ev, &disk_events, node) 1957 disk_flush_events(ev->disk, 0); 1958 1959 mutex_unlock(&disk_events_mutex); 1960 1961 return 0; 1962 } 1963 1964 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1965 .set = disk_events_set_dfl_poll_msecs, 1966 .get = param_get_ulong, 1967 }; 1968 1969 #undef MODULE_PARAM_PREFIX 1970 #define MODULE_PARAM_PREFIX "block." 1971 1972 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1973 &disk_events_dfl_poll_msecs, 0644); 1974 1975 /* 1976 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1977 */ 1978 static void disk_alloc_events(struct gendisk *disk) 1979 { 1980 struct disk_events *ev; 1981 1982 if (!disk->fops->check_events) 1983 return; 1984 1985 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1986 if (!ev) { 1987 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1988 return; 1989 } 1990 1991 INIT_LIST_HEAD(&ev->node); 1992 ev->disk = disk; 1993 spin_lock_init(&ev->lock); 1994 mutex_init(&ev->block_mutex); 1995 ev->block = 1; 1996 ev->poll_msecs = -1; 1997 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1998 1999 disk->ev = ev; 2000 } 2001 2002 static void disk_add_events(struct gendisk *disk) 2003 { 2004 if (!disk->ev) 2005 return; 2006 2007 /* FIXME: error handling */ 2008 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 2009 pr_warn("%s: failed to create sysfs files for events\n", 2010 disk->disk_name); 2011 2012 mutex_lock(&disk_events_mutex); 2013 list_add_tail(&disk->ev->node, &disk_events); 2014 mutex_unlock(&disk_events_mutex); 2015 2016 /* 2017 * Block count is initialized to 1 and the following initial 2018 * unblock kicks it into action. 2019 */ 2020 __disk_unblock_events(disk, true); 2021 } 2022 2023 static void disk_del_events(struct gendisk *disk) 2024 { 2025 if (!disk->ev) 2026 return; 2027 2028 disk_block_events(disk); 2029 2030 mutex_lock(&disk_events_mutex); 2031 list_del_init(&disk->ev->node); 2032 mutex_unlock(&disk_events_mutex); 2033 2034 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 2035 } 2036 2037 static void disk_release_events(struct gendisk *disk) 2038 { 2039 /* the block count should be 1 from disk_del_events() */ 2040 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 2041 kfree(disk->ev); 2042 } 2043