xref: /openbmc/linux/block/genhd.c (revision d8eabc37)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (queue_is_mq(q))
51 		return;
52 
53 	part_stat_local_inc(part, in_flight[rw]);
54 	if (part->partno)
55 		part_stat_local_inc(&part_to_disk(part)->part0, in_flight[rw]);
56 }
57 
58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (queue_is_mq(q))
61 		return;
62 
63 	part_stat_local_dec(part, in_flight[rw]);
64 	if (part->partno)
65 		part_stat_local_dec(&part_to_disk(part)->part0, in_flight[rw]);
66 }
67 
68 unsigned int part_in_flight(struct request_queue *q, struct hd_struct *part)
69 {
70 	int cpu;
71 	unsigned int inflight;
72 
73 	if (queue_is_mq(q)) {
74 		return blk_mq_in_flight(q, part);
75 	}
76 
77 	inflight = 0;
78 	for_each_possible_cpu(cpu) {
79 		inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
80 			    part_stat_local_read_cpu(part, in_flight[1], cpu);
81 	}
82 	if ((int)inflight < 0)
83 		inflight = 0;
84 
85 	return inflight;
86 }
87 
88 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
89 		       unsigned int inflight[2])
90 {
91 	int cpu;
92 
93 	if (queue_is_mq(q)) {
94 		blk_mq_in_flight_rw(q, part, inflight);
95 		return;
96 	}
97 
98 	inflight[0] = 0;
99 	inflight[1] = 0;
100 	for_each_possible_cpu(cpu) {
101 		inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
102 		inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
103 	}
104 	if ((int)inflight[0] < 0)
105 		inflight[0] = 0;
106 	if ((int)inflight[1] < 0)
107 		inflight[1] = 0;
108 }
109 
110 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
111 {
112 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
113 
114 	if (unlikely(partno < 0 || partno >= ptbl->len))
115 		return NULL;
116 	return rcu_dereference(ptbl->part[partno]);
117 }
118 
119 /**
120  * disk_get_part - get partition
121  * @disk: disk to look partition from
122  * @partno: partition number
123  *
124  * Look for partition @partno from @disk.  If found, increment
125  * reference count and return it.
126  *
127  * CONTEXT:
128  * Don't care.
129  *
130  * RETURNS:
131  * Pointer to the found partition on success, NULL if not found.
132  */
133 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
134 {
135 	struct hd_struct *part;
136 
137 	rcu_read_lock();
138 	part = __disk_get_part(disk, partno);
139 	if (part)
140 		get_device(part_to_dev(part));
141 	rcu_read_unlock();
142 
143 	return part;
144 }
145 EXPORT_SYMBOL_GPL(disk_get_part);
146 
147 /**
148  * disk_part_iter_init - initialize partition iterator
149  * @piter: iterator to initialize
150  * @disk: disk to iterate over
151  * @flags: DISK_PITER_* flags
152  *
153  * Initialize @piter so that it iterates over partitions of @disk.
154  *
155  * CONTEXT:
156  * Don't care.
157  */
158 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
159 			  unsigned int flags)
160 {
161 	struct disk_part_tbl *ptbl;
162 
163 	rcu_read_lock();
164 	ptbl = rcu_dereference(disk->part_tbl);
165 
166 	piter->disk = disk;
167 	piter->part = NULL;
168 
169 	if (flags & DISK_PITER_REVERSE)
170 		piter->idx = ptbl->len - 1;
171 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
172 		piter->idx = 0;
173 	else
174 		piter->idx = 1;
175 
176 	piter->flags = flags;
177 
178 	rcu_read_unlock();
179 }
180 EXPORT_SYMBOL_GPL(disk_part_iter_init);
181 
182 /**
183  * disk_part_iter_next - proceed iterator to the next partition and return it
184  * @piter: iterator of interest
185  *
186  * Proceed @piter to the next partition and return it.
187  *
188  * CONTEXT:
189  * Don't care.
190  */
191 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
192 {
193 	struct disk_part_tbl *ptbl;
194 	int inc, end;
195 
196 	/* put the last partition */
197 	disk_put_part(piter->part);
198 	piter->part = NULL;
199 
200 	/* get part_tbl */
201 	rcu_read_lock();
202 	ptbl = rcu_dereference(piter->disk->part_tbl);
203 
204 	/* determine iteration parameters */
205 	if (piter->flags & DISK_PITER_REVERSE) {
206 		inc = -1;
207 		if (piter->flags & (DISK_PITER_INCL_PART0 |
208 				    DISK_PITER_INCL_EMPTY_PART0))
209 			end = -1;
210 		else
211 			end = 0;
212 	} else {
213 		inc = 1;
214 		end = ptbl->len;
215 	}
216 
217 	/* iterate to the next partition */
218 	for (; piter->idx != end; piter->idx += inc) {
219 		struct hd_struct *part;
220 
221 		part = rcu_dereference(ptbl->part[piter->idx]);
222 		if (!part)
223 			continue;
224 		if (!part_nr_sects_read(part) &&
225 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
226 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
227 		      piter->idx == 0))
228 			continue;
229 
230 		get_device(part_to_dev(part));
231 		piter->part = part;
232 		piter->idx += inc;
233 		break;
234 	}
235 
236 	rcu_read_unlock();
237 
238 	return piter->part;
239 }
240 EXPORT_SYMBOL_GPL(disk_part_iter_next);
241 
242 /**
243  * disk_part_iter_exit - finish up partition iteration
244  * @piter: iter of interest
245  *
246  * Called when iteration is over.  Cleans up @piter.
247  *
248  * CONTEXT:
249  * Don't care.
250  */
251 void disk_part_iter_exit(struct disk_part_iter *piter)
252 {
253 	disk_put_part(piter->part);
254 	piter->part = NULL;
255 }
256 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
257 
258 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
259 {
260 	return part->start_sect <= sector &&
261 		sector < part->start_sect + part_nr_sects_read(part);
262 }
263 
264 /**
265  * disk_map_sector_rcu - map sector to partition
266  * @disk: gendisk of interest
267  * @sector: sector to map
268  *
269  * Find out which partition @sector maps to on @disk.  This is
270  * primarily used for stats accounting.
271  *
272  * CONTEXT:
273  * RCU read locked.  The returned partition pointer is valid only
274  * while preemption is disabled.
275  *
276  * RETURNS:
277  * Found partition on success, part0 is returned if no partition matches
278  */
279 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
280 {
281 	struct disk_part_tbl *ptbl;
282 	struct hd_struct *part;
283 	int i;
284 
285 	ptbl = rcu_dereference(disk->part_tbl);
286 
287 	part = rcu_dereference(ptbl->last_lookup);
288 	if (part && sector_in_part(part, sector))
289 		return part;
290 
291 	for (i = 1; i < ptbl->len; i++) {
292 		part = rcu_dereference(ptbl->part[i]);
293 
294 		if (part && sector_in_part(part, sector)) {
295 			rcu_assign_pointer(ptbl->last_lookup, part);
296 			return part;
297 		}
298 	}
299 	return &disk->part0;
300 }
301 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
302 
303 /*
304  * Can be deleted altogether. Later.
305  *
306  */
307 #define BLKDEV_MAJOR_HASH_SIZE 255
308 static struct blk_major_name {
309 	struct blk_major_name *next;
310 	int major;
311 	char name[16];
312 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
313 
314 /* index in the above - for now: assume no multimajor ranges */
315 static inline int major_to_index(unsigned major)
316 {
317 	return major % BLKDEV_MAJOR_HASH_SIZE;
318 }
319 
320 #ifdef CONFIG_PROC_FS
321 void blkdev_show(struct seq_file *seqf, off_t offset)
322 {
323 	struct blk_major_name *dp;
324 
325 	mutex_lock(&block_class_lock);
326 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
327 		if (dp->major == offset)
328 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
329 	mutex_unlock(&block_class_lock);
330 }
331 #endif /* CONFIG_PROC_FS */
332 
333 /**
334  * register_blkdev - register a new block device
335  *
336  * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
337  *         @major = 0, try to allocate any unused major number.
338  * @name: the name of the new block device as a zero terminated string
339  *
340  * The @name must be unique within the system.
341  *
342  * The return value depends on the @major input parameter:
343  *
344  *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
345  *    then the function returns zero on success, or a negative error code
346  *  - if any unused major number was requested with @major = 0 parameter
347  *    then the return value is the allocated major number in range
348  *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
349  *
350  * See Documentation/admin-guide/devices.txt for the list of allocated
351  * major numbers.
352  */
353 int register_blkdev(unsigned int major, const char *name)
354 {
355 	struct blk_major_name **n, *p;
356 	int index, ret = 0;
357 
358 	mutex_lock(&block_class_lock);
359 
360 	/* temporary */
361 	if (major == 0) {
362 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
363 			if (major_names[index] == NULL)
364 				break;
365 		}
366 
367 		if (index == 0) {
368 			printk("register_blkdev: failed to get major for %s\n",
369 			       name);
370 			ret = -EBUSY;
371 			goto out;
372 		}
373 		major = index;
374 		ret = major;
375 	}
376 
377 	if (major >= BLKDEV_MAJOR_MAX) {
378 		pr_err("register_blkdev: major requested (%u) is greater than the maximum (%u) for %s\n",
379 		       major, BLKDEV_MAJOR_MAX-1, name);
380 
381 		ret = -EINVAL;
382 		goto out;
383 	}
384 
385 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
386 	if (p == NULL) {
387 		ret = -ENOMEM;
388 		goto out;
389 	}
390 
391 	p->major = major;
392 	strlcpy(p->name, name, sizeof(p->name));
393 	p->next = NULL;
394 	index = major_to_index(major);
395 
396 	for (n = &major_names[index]; *n; n = &(*n)->next) {
397 		if ((*n)->major == major)
398 			break;
399 	}
400 	if (!*n)
401 		*n = p;
402 	else
403 		ret = -EBUSY;
404 
405 	if (ret < 0) {
406 		printk("register_blkdev: cannot get major %u for %s\n",
407 		       major, name);
408 		kfree(p);
409 	}
410 out:
411 	mutex_unlock(&block_class_lock);
412 	return ret;
413 }
414 
415 EXPORT_SYMBOL(register_blkdev);
416 
417 void unregister_blkdev(unsigned int major, const char *name)
418 {
419 	struct blk_major_name **n;
420 	struct blk_major_name *p = NULL;
421 	int index = major_to_index(major);
422 
423 	mutex_lock(&block_class_lock);
424 	for (n = &major_names[index]; *n; n = &(*n)->next)
425 		if ((*n)->major == major)
426 			break;
427 	if (!*n || strcmp((*n)->name, name)) {
428 		WARN_ON(1);
429 	} else {
430 		p = *n;
431 		*n = p->next;
432 	}
433 	mutex_unlock(&block_class_lock);
434 	kfree(p);
435 }
436 
437 EXPORT_SYMBOL(unregister_blkdev);
438 
439 static struct kobj_map *bdev_map;
440 
441 /**
442  * blk_mangle_minor - scatter minor numbers apart
443  * @minor: minor number to mangle
444  *
445  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
446  * is enabled.  Mangling twice gives the original value.
447  *
448  * RETURNS:
449  * Mangled value.
450  *
451  * CONTEXT:
452  * Don't care.
453  */
454 static int blk_mangle_minor(int minor)
455 {
456 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
457 	int i;
458 
459 	for (i = 0; i < MINORBITS / 2; i++) {
460 		int low = minor & (1 << i);
461 		int high = minor & (1 << (MINORBITS - 1 - i));
462 		int distance = MINORBITS - 1 - 2 * i;
463 
464 		minor ^= low | high;	/* clear both bits */
465 		low <<= distance;	/* swap the positions */
466 		high >>= distance;
467 		minor |= low | high;	/* and set */
468 	}
469 #endif
470 	return minor;
471 }
472 
473 /**
474  * blk_alloc_devt - allocate a dev_t for a partition
475  * @part: partition to allocate dev_t for
476  * @devt: out parameter for resulting dev_t
477  *
478  * Allocate a dev_t for block device.
479  *
480  * RETURNS:
481  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
482  * failure.
483  *
484  * CONTEXT:
485  * Might sleep.
486  */
487 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
488 {
489 	struct gendisk *disk = part_to_disk(part);
490 	int idx;
491 
492 	/* in consecutive minor range? */
493 	if (part->partno < disk->minors) {
494 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
495 		return 0;
496 	}
497 
498 	/* allocate ext devt */
499 	idr_preload(GFP_KERNEL);
500 
501 	spin_lock_bh(&ext_devt_lock);
502 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
503 	spin_unlock_bh(&ext_devt_lock);
504 
505 	idr_preload_end();
506 	if (idx < 0)
507 		return idx == -ENOSPC ? -EBUSY : idx;
508 
509 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
510 	return 0;
511 }
512 
513 /**
514  * blk_free_devt - free a dev_t
515  * @devt: dev_t to free
516  *
517  * Free @devt which was allocated using blk_alloc_devt().
518  *
519  * CONTEXT:
520  * Might sleep.
521  */
522 void blk_free_devt(dev_t devt)
523 {
524 	if (devt == MKDEV(0, 0))
525 		return;
526 
527 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
528 		spin_lock_bh(&ext_devt_lock);
529 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
530 		spin_unlock_bh(&ext_devt_lock);
531 	}
532 }
533 
534 static char *bdevt_str(dev_t devt, char *buf)
535 {
536 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
537 		char tbuf[BDEVT_SIZE];
538 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
539 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
540 	} else
541 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
542 
543 	return buf;
544 }
545 
546 /*
547  * Register device numbers dev..(dev+range-1)
548  * range must be nonzero
549  * The hash chain is sorted on range, so that subranges can override.
550  */
551 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
552 			 struct kobject *(*probe)(dev_t, int *, void *),
553 			 int (*lock)(dev_t, void *), void *data)
554 {
555 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
556 }
557 
558 EXPORT_SYMBOL(blk_register_region);
559 
560 void blk_unregister_region(dev_t devt, unsigned long range)
561 {
562 	kobj_unmap(bdev_map, devt, range);
563 }
564 
565 EXPORT_SYMBOL(blk_unregister_region);
566 
567 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
568 {
569 	struct gendisk *p = data;
570 
571 	return &disk_to_dev(p)->kobj;
572 }
573 
574 static int exact_lock(dev_t devt, void *data)
575 {
576 	struct gendisk *p = data;
577 
578 	if (!get_disk_and_module(p))
579 		return -1;
580 	return 0;
581 }
582 
583 static void register_disk(struct device *parent, struct gendisk *disk,
584 			  const struct attribute_group **groups)
585 {
586 	struct device *ddev = disk_to_dev(disk);
587 	struct block_device *bdev;
588 	struct disk_part_iter piter;
589 	struct hd_struct *part;
590 	int err;
591 
592 	ddev->parent = parent;
593 
594 	dev_set_name(ddev, "%s", disk->disk_name);
595 
596 	/* delay uevents, until we scanned partition table */
597 	dev_set_uevent_suppress(ddev, 1);
598 
599 	if (groups) {
600 		WARN_ON(ddev->groups);
601 		ddev->groups = groups;
602 	}
603 	if (device_add(ddev))
604 		return;
605 	if (!sysfs_deprecated) {
606 		err = sysfs_create_link(block_depr, &ddev->kobj,
607 					kobject_name(&ddev->kobj));
608 		if (err) {
609 			device_del(ddev);
610 			return;
611 		}
612 	}
613 
614 	/*
615 	 * avoid probable deadlock caused by allocating memory with
616 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
617 	 * devices
618 	 */
619 	pm_runtime_set_memalloc_noio(ddev, true);
620 
621 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
622 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
623 
624 	if (disk->flags & GENHD_FL_HIDDEN) {
625 		dev_set_uevent_suppress(ddev, 0);
626 		return;
627 	}
628 
629 	/* No minors to use for partitions */
630 	if (!disk_part_scan_enabled(disk))
631 		goto exit;
632 
633 	/* No such device (e.g., media were just removed) */
634 	if (!get_capacity(disk))
635 		goto exit;
636 
637 	bdev = bdget_disk(disk, 0);
638 	if (!bdev)
639 		goto exit;
640 
641 	bdev->bd_invalidated = 1;
642 	err = blkdev_get(bdev, FMODE_READ, NULL);
643 	if (err < 0)
644 		goto exit;
645 	blkdev_put(bdev, FMODE_READ);
646 
647 exit:
648 	/* announce disk after possible partitions are created */
649 	dev_set_uevent_suppress(ddev, 0);
650 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
651 
652 	/* announce possible partitions */
653 	disk_part_iter_init(&piter, disk, 0);
654 	while ((part = disk_part_iter_next(&piter)))
655 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
656 	disk_part_iter_exit(&piter);
657 
658 	err = sysfs_create_link(&ddev->kobj,
659 				&disk->queue->backing_dev_info->dev->kobj,
660 				"bdi");
661 	WARN_ON(err);
662 }
663 
664 /**
665  * __device_add_disk - add disk information to kernel list
666  * @parent: parent device for the disk
667  * @disk: per-device partitioning information
668  * @groups: Additional per-device sysfs groups
669  * @register_queue: register the queue if set to true
670  *
671  * This function registers the partitioning information in @disk
672  * with the kernel.
673  *
674  * FIXME: error handling
675  */
676 static void __device_add_disk(struct device *parent, struct gendisk *disk,
677 			      const struct attribute_group **groups,
678 			      bool register_queue)
679 {
680 	dev_t devt;
681 	int retval;
682 
683 	/* minors == 0 indicates to use ext devt from part0 and should
684 	 * be accompanied with EXT_DEVT flag.  Make sure all
685 	 * parameters make sense.
686 	 */
687 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
688 	WARN_ON(!disk->minors &&
689 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
690 
691 	disk->flags |= GENHD_FL_UP;
692 
693 	retval = blk_alloc_devt(&disk->part0, &devt);
694 	if (retval) {
695 		WARN_ON(1);
696 		return;
697 	}
698 	disk->major = MAJOR(devt);
699 	disk->first_minor = MINOR(devt);
700 
701 	disk_alloc_events(disk);
702 
703 	if (disk->flags & GENHD_FL_HIDDEN) {
704 		/*
705 		 * Don't let hidden disks show up in /proc/partitions,
706 		 * and don't bother scanning for partitions either.
707 		 */
708 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
709 		disk->flags |= GENHD_FL_NO_PART_SCAN;
710 	} else {
711 		int ret;
712 
713 		/* Register BDI before referencing it from bdev */
714 		disk_to_dev(disk)->devt = devt;
715 		ret = bdi_register_owner(disk->queue->backing_dev_info,
716 						disk_to_dev(disk));
717 		WARN_ON(ret);
718 		blk_register_region(disk_devt(disk), disk->minors, NULL,
719 				    exact_match, exact_lock, disk);
720 	}
721 	register_disk(parent, disk, groups);
722 	if (register_queue)
723 		blk_register_queue(disk);
724 
725 	/*
726 	 * Take an extra ref on queue which will be put on disk_release()
727 	 * so that it sticks around as long as @disk is there.
728 	 */
729 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
730 
731 	disk_add_events(disk);
732 	blk_integrity_add(disk);
733 }
734 
735 void device_add_disk(struct device *parent, struct gendisk *disk,
736 		     const struct attribute_group **groups)
737 
738 {
739 	__device_add_disk(parent, disk, groups, true);
740 }
741 EXPORT_SYMBOL(device_add_disk);
742 
743 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
744 {
745 	__device_add_disk(parent, disk, NULL, false);
746 }
747 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
748 
749 void del_gendisk(struct gendisk *disk)
750 {
751 	struct disk_part_iter piter;
752 	struct hd_struct *part;
753 
754 	blk_integrity_del(disk);
755 	disk_del_events(disk);
756 
757 	/*
758 	 * Block lookups of the disk until all bdevs are unhashed and the
759 	 * disk is marked as dead (GENHD_FL_UP cleared).
760 	 */
761 	down_write(&disk->lookup_sem);
762 	/* invalidate stuff */
763 	disk_part_iter_init(&piter, disk,
764 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
765 	while ((part = disk_part_iter_next(&piter))) {
766 		invalidate_partition(disk, part->partno);
767 		bdev_unhash_inode(part_devt(part));
768 		delete_partition(disk, part->partno);
769 	}
770 	disk_part_iter_exit(&piter);
771 
772 	invalidate_partition(disk, 0);
773 	bdev_unhash_inode(disk_devt(disk));
774 	set_capacity(disk, 0);
775 	disk->flags &= ~GENHD_FL_UP;
776 	up_write(&disk->lookup_sem);
777 
778 	if (!(disk->flags & GENHD_FL_HIDDEN))
779 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
780 	if (disk->queue) {
781 		/*
782 		 * Unregister bdi before releasing device numbers (as they can
783 		 * get reused and we'd get clashes in sysfs).
784 		 */
785 		if (!(disk->flags & GENHD_FL_HIDDEN))
786 			bdi_unregister(disk->queue->backing_dev_info);
787 		blk_unregister_queue(disk);
788 	} else {
789 		WARN_ON(1);
790 	}
791 
792 	if (!(disk->flags & GENHD_FL_HIDDEN))
793 		blk_unregister_region(disk_devt(disk), disk->minors);
794 
795 	kobject_put(disk->part0.holder_dir);
796 	kobject_put(disk->slave_dir);
797 
798 	part_stat_set_all(&disk->part0, 0);
799 	disk->part0.stamp = 0;
800 	if (!sysfs_deprecated)
801 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
802 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
803 	device_del(disk_to_dev(disk));
804 }
805 EXPORT_SYMBOL(del_gendisk);
806 
807 /* sysfs access to bad-blocks list. */
808 static ssize_t disk_badblocks_show(struct device *dev,
809 					struct device_attribute *attr,
810 					char *page)
811 {
812 	struct gendisk *disk = dev_to_disk(dev);
813 
814 	if (!disk->bb)
815 		return sprintf(page, "\n");
816 
817 	return badblocks_show(disk->bb, page, 0);
818 }
819 
820 static ssize_t disk_badblocks_store(struct device *dev,
821 					struct device_attribute *attr,
822 					const char *page, size_t len)
823 {
824 	struct gendisk *disk = dev_to_disk(dev);
825 
826 	if (!disk->bb)
827 		return -ENXIO;
828 
829 	return badblocks_store(disk->bb, page, len, 0);
830 }
831 
832 /**
833  * get_gendisk - get partitioning information for a given device
834  * @devt: device to get partitioning information for
835  * @partno: returned partition index
836  *
837  * This function gets the structure containing partitioning
838  * information for the given device @devt.
839  */
840 struct gendisk *get_gendisk(dev_t devt, int *partno)
841 {
842 	struct gendisk *disk = NULL;
843 
844 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
845 		struct kobject *kobj;
846 
847 		kobj = kobj_lookup(bdev_map, devt, partno);
848 		if (kobj)
849 			disk = dev_to_disk(kobj_to_dev(kobj));
850 	} else {
851 		struct hd_struct *part;
852 
853 		spin_lock_bh(&ext_devt_lock);
854 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
855 		if (part && get_disk_and_module(part_to_disk(part))) {
856 			*partno = part->partno;
857 			disk = part_to_disk(part);
858 		}
859 		spin_unlock_bh(&ext_devt_lock);
860 	}
861 
862 	if (!disk)
863 		return NULL;
864 
865 	/*
866 	 * Synchronize with del_gendisk() to not return disk that is being
867 	 * destroyed.
868 	 */
869 	down_read(&disk->lookup_sem);
870 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
871 		     !(disk->flags & GENHD_FL_UP))) {
872 		up_read(&disk->lookup_sem);
873 		put_disk_and_module(disk);
874 		disk = NULL;
875 	} else {
876 		up_read(&disk->lookup_sem);
877 	}
878 	return disk;
879 }
880 EXPORT_SYMBOL(get_gendisk);
881 
882 /**
883  * bdget_disk - do bdget() by gendisk and partition number
884  * @disk: gendisk of interest
885  * @partno: partition number
886  *
887  * Find partition @partno from @disk, do bdget() on it.
888  *
889  * CONTEXT:
890  * Don't care.
891  *
892  * RETURNS:
893  * Resulting block_device on success, NULL on failure.
894  */
895 struct block_device *bdget_disk(struct gendisk *disk, int partno)
896 {
897 	struct hd_struct *part;
898 	struct block_device *bdev = NULL;
899 
900 	part = disk_get_part(disk, partno);
901 	if (part)
902 		bdev = bdget(part_devt(part));
903 	disk_put_part(part);
904 
905 	return bdev;
906 }
907 EXPORT_SYMBOL(bdget_disk);
908 
909 /*
910  * print a full list of all partitions - intended for places where the root
911  * filesystem can't be mounted and thus to give the victim some idea of what
912  * went wrong
913  */
914 void __init printk_all_partitions(void)
915 {
916 	struct class_dev_iter iter;
917 	struct device *dev;
918 
919 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
920 	while ((dev = class_dev_iter_next(&iter))) {
921 		struct gendisk *disk = dev_to_disk(dev);
922 		struct disk_part_iter piter;
923 		struct hd_struct *part;
924 		char name_buf[BDEVNAME_SIZE];
925 		char devt_buf[BDEVT_SIZE];
926 
927 		/*
928 		 * Don't show empty devices or things that have been
929 		 * suppressed
930 		 */
931 		if (get_capacity(disk) == 0 ||
932 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
933 			continue;
934 
935 		/*
936 		 * Note, unlike /proc/partitions, I am showing the
937 		 * numbers in hex - the same format as the root=
938 		 * option takes.
939 		 */
940 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
941 		while ((part = disk_part_iter_next(&piter))) {
942 			bool is_part0 = part == &disk->part0;
943 
944 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
945 			       bdevt_str(part_devt(part), devt_buf),
946 			       (unsigned long long)part_nr_sects_read(part) >> 1
947 			       , disk_name(disk, part->partno, name_buf),
948 			       part->info ? part->info->uuid : "");
949 			if (is_part0) {
950 				if (dev->parent && dev->parent->driver)
951 					printk(" driver: %s\n",
952 					      dev->parent->driver->name);
953 				else
954 					printk(" (driver?)\n");
955 			} else
956 				printk("\n");
957 		}
958 		disk_part_iter_exit(&piter);
959 	}
960 	class_dev_iter_exit(&iter);
961 }
962 
963 #ifdef CONFIG_PROC_FS
964 /* iterator */
965 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
966 {
967 	loff_t skip = *pos;
968 	struct class_dev_iter *iter;
969 	struct device *dev;
970 
971 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
972 	if (!iter)
973 		return ERR_PTR(-ENOMEM);
974 
975 	seqf->private = iter;
976 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
977 	do {
978 		dev = class_dev_iter_next(iter);
979 		if (!dev)
980 			return NULL;
981 	} while (skip--);
982 
983 	return dev_to_disk(dev);
984 }
985 
986 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
987 {
988 	struct device *dev;
989 
990 	(*pos)++;
991 	dev = class_dev_iter_next(seqf->private);
992 	if (dev)
993 		return dev_to_disk(dev);
994 
995 	return NULL;
996 }
997 
998 static void disk_seqf_stop(struct seq_file *seqf, void *v)
999 {
1000 	struct class_dev_iter *iter = seqf->private;
1001 
1002 	/* stop is called even after start failed :-( */
1003 	if (iter) {
1004 		class_dev_iter_exit(iter);
1005 		kfree(iter);
1006 		seqf->private = NULL;
1007 	}
1008 }
1009 
1010 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1011 {
1012 	void *p;
1013 
1014 	p = disk_seqf_start(seqf, pos);
1015 	if (!IS_ERR_OR_NULL(p) && !*pos)
1016 		seq_puts(seqf, "major minor  #blocks  name\n\n");
1017 	return p;
1018 }
1019 
1020 static int show_partition(struct seq_file *seqf, void *v)
1021 {
1022 	struct gendisk *sgp = v;
1023 	struct disk_part_iter piter;
1024 	struct hd_struct *part;
1025 	char buf[BDEVNAME_SIZE];
1026 
1027 	/* Don't show non-partitionable removeable devices or empty devices */
1028 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1029 				   (sgp->flags & GENHD_FL_REMOVABLE)))
1030 		return 0;
1031 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1032 		return 0;
1033 
1034 	/* show the full disk and all non-0 size partitions of it */
1035 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1036 	while ((part = disk_part_iter_next(&piter)))
1037 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1038 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1039 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1040 			   disk_name(sgp, part->partno, buf));
1041 	disk_part_iter_exit(&piter);
1042 
1043 	return 0;
1044 }
1045 
1046 static const struct seq_operations partitions_op = {
1047 	.start	= show_partition_start,
1048 	.next	= disk_seqf_next,
1049 	.stop	= disk_seqf_stop,
1050 	.show	= show_partition
1051 };
1052 #endif
1053 
1054 
1055 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1056 {
1057 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1058 		/* Make old-style 2.4 aliases work */
1059 		request_module("block-major-%d", MAJOR(devt));
1060 	return NULL;
1061 }
1062 
1063 static int __init genhd_device_init(void)
1064 {
1065 	int error;
1066 
1067 	block_class.dev_kobj = sysfs_dev_block_kobj;
1068 	error = class_register(&block_class);
1069 	if (unlikely(error))
1070 		return error;
1071 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1072 	blk_dev_init();
1073 
1074 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1075 
1076 	/* create top-level block dir */
1077 	if (!sysfs_deprecated)
1078 		block_depr = kobject_create_and_add("block", NULL);
1079 	return 0;
1080 }
1081 
1082 subsys_initcall(genhd_device_init);
1083 
1084 static ssize_t disk_range_show(struct device *dev,
1085 			       struct device_attribute *attr, char *buf)
1086 {
1087 	struct gendisk *disk = dev_to_disk(dev);
1088 
1089 	return sprintf(buf, "%d\n", disk->minors);
1090 }
1091 
1092 static ssize_t disk_ext_range_show(struct device *dev,
1093 				   struct device_attribute *attr, char *buf)
1094 {
1095 	struct gendisk *disk = dev_to_disk(dev);
1096 
1097 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1098 }
1099 
1100 static ssize_t disk_removable_show(struct device *dev,
1101 				   struct device_attribute *attr, char *buf)
1102 {
1103 	struct gendisk *disk = dev_to_disk(dev);
1104 
1105 	return sprintf(buf, "%d\n",
1106 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1107 }
1108 
1109 static ssize_t disk_hidden_show(struct device *dev,
1110 				   struct device_attribute *attr, char *buf)
1111 {
1112 	struct gendisk *disk = dev_to_disk(dev);
1113 
1114 	return sprintf(buf, "%d\n",
1115 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1116 }
1117 
1118 static ssize_t disk_ro_show(struct device *dev,
1119 				   struct device_attribute *attr, char *buf)
1120 {
1121 	struct gendisk *disk = dev_to_disk(dev);
1122 
1123 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1124 }
1125 
1126 static ssize_t disk_capability_show(struct device *dev,
1127 				    struct device_attribute *attr, char *buf)
1128 {
1129 	struct gendisk *disk = dev_to_disk(dev);
1130 
1131 	return sprintf(buf, "%x\n", disk->flags);
1132 }
1133 
1134 static ssize_t disk_alignment_offset_show(struct device *dev,
1135 					  struct device_attribute *attr,
1136 					  char *buf)
1137 {
1138 	struct gendisk *disk = dev_to_disk(dev);
1139 
1140 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1141 }
1142 
1143 static ssize_t disk_discard_alignment_show(struct device *dev,
1144 					   struct device_attribute *attr,
1145 					   char *buf)
1146 {
1147 	struct gendisk *disk = dev_to_disk(dev);
1148 
1149 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1150 }
1151 
1152 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1153 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1154 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1155 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1156 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1157 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1158 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1159 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1160 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1161 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1162 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1163 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1164 #ifdef CONFIG_FAIL_MAKE_REQUEST
1165 static struct device_attribute dev_attr_fail =
1166 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1167 #endif
1168 #ifdef CONFIG_FAIL_IO_TIMEOUT
1169 static struct device_attribute dev_attr_fail_timeout =
1170 	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1171 #endif
1172 
1173 static struct attribute *disk_attrs[] = {
1174 	&dev_attr_range.attr,
1175 	&dev_attr_ext_range.attr,
1176 	&dev_attr_removable.attr,
1177 	&dev_attr_hidden.attr,
1178 	&dev_attr_ro.attr,
1179 	&dev_attr_size.attr,
1180 	&dev_attr_alignment_offset.attr,
1181 	&dev_attr_discard_alignment.attr,
1182 	&dev_attr_capability.attr,
1183 	&dev_attr_stat.attr,
1184 	&dev_attr_inflight.attr,
1185 	&dev_attr_badblocks.attr,
1186 #ifdef CONFIG_FAIL_MAKE_REQUEST
1187 	&dev_attr_fail.attr,
1188 #endif
1189 #ifdef CONFIG_FAIL_IO_TIMEOUT
1190 	&dev_attr_fail_timeout.attr,
1191 #endif
1192 	NULL
1193 };
1194 
1195 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1196 {
1197 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1198 	struct gendisk *disk = dev_to_disk(dev);
1199 
1200 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1201 		return 0;
1202 	return a->mode;
1203 }
1204 
1205 static struct attribute_group disk_attr_group = {
1206 	.attrs = disk_attrs,
1207 	.is_visible = disk_visible,
1208 };
1209 
1210 static const struct attribute_group *disk_attr_groups[] = {
1211 	&disk_attr_group,
1212 	NULL
1213 };
1214 
1215 /**
1216  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1217  * @disk: disk to replace part_tbl for
1218  * @new_ptbl: new part_tbl to install
1219  *
1220  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1221  * original ptbl is freed using RCU callback.
1222  *
1223  * LOCKING:
1224  * Matching bd_mutex locked or the caller is the only user of @disk.
1225  */
1226 static void disk_replace_part_tbl(struct gendisk *disk,
1227 				  struct disk_part_tbl *new_ptbl)
1228 {
1229 	struct disk_part_tbl *old_ptbl =
1230 		rcu_dereference_protected(disk->part_tbl, 1);
1231 
1232 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1233 
1234 	if (old_ptbl) {
1235 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1236 		kfree_rcu(old_ptbl, rcu_head);
1237 	}
1238 }
1239 
1240 /**
1241  * disk_expand_part_tbl - expand disk->part_tbl
1242  * @disk: disk to expand part_tbl for
1243  * @partno: expand such that this partno can fit in
1244  *
1245  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1246  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1247  *
1248  * LOCKING:
1249  * Matching bd_mutex locked or the caller is the only user of @disk.
1250  * Might sleep.
1251  *
1252  * RETURNS:
1253  * 0 on success, -errno on failure.
1254  */
1255 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1256 {
1257 	struct disk_part_tbl *old_ptbl =
1258 		rcu_dereference_protected(disk->part_tbl, 1);
1259 	struct disk_part_tbl *new_ptbl;
1260 	int len = old_ptbl ? old_ptbl->len : 0;
1261 	int i, target;
1262 	size_t size;
1263 
1264 	/*
1265 	 * check for int overflow, since we can get here from blkpg_ioctl()
1266 	 * with a user passed 'partno'.
1267 	 */
1268 	target = partno + 1;
1269 	if (target < 0)
1270 		return -EINVAL;
1271 
1272 	/* disk_max_parts() is zero during initialization, ignore if so */
1273 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1274 		return -EINVAL;
1275 
1276 	if (target <= len)
1277 		return 0;
1278 
1279 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1280 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1281 	if (!new_ptbl)
1282 		return -ENOMEM;
1283 
1284 	new_ptbl->len = target;
1285 
1286 	for (i = 0; i < len; i++)
1287 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1288 
1289 	disk_replace_part_tbl(disk, new_ptbl);
1290 	return 0;
1291 }
1292 
1293 static void disk_release(struct device *dev)
1294 {
1295 	struct gendisk *disk = dev_to_disk(dev);
1296 
1297 	blk_free_devt(dev->devt);
1298 	disk_release_events(disk);
1299 	kfree(disk->random);
1300 	disk_replace_part_tbl(disk, NULL);
1301 	hd_free_part(&disk->part0);
1302 	if (disk->queue)
1303 		blk_put_queue(disk->queue);
1304 	kfree(disk);
1305 }
1306 struct class block_class = {
1307 	.name		= "block",
1308 };
1309 
1310 static char *block_devnode(struct device *dev, umode_t *mode,
1311 			   kuid_t *uid, kgid_t *gid)
1312 {
1313 	struct gendisk *disk = dev_to_disk(dev);
1314 
1315 	if (disk->devnode)
1316 		return disk->devnode(disk, mode);
1317 	return NULL;
1318 }
1319 
1320 static const struct device_type disk_type = {
1321 	.name		= "disk",
1322 	.groups		= disk_attr_groups,
1323 	.release	= disk_release,
1324 	.devnode	= block_devnode,
1325 };
1326 
1327 #ifdef CONFIG_PROC_FS
1328 /*
1329  * aggregate disk stat collector.  Uses the same stats that the sysfs
1330  * entries do, above, but makes them available through one seq_file.
1331  *
1332  * The output looks suspiciously like /proc/partitions with a bunch of
1333  * extra fields.
1334  */
1335 static int diskstats_show(struct seq_file *seqf, void *v)
1336 {
1337 	struct gendisk *gp = v;
1338 	struct disk_part_iter piter;
1339 	struct hd_struct *hd;
1340 	char buf[BDEVNAME_SIZE];
1341 	unsigned int inflight;
1342 
1343 	/*
1344 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1345 		seq_puts(seqf,	"major minor name"
1346 				"     rio rmerge rsect ruse wio wmerge "
1347 				"wsect wuse running use aveq"
1348 				"\n\n");
1349 	*/
1350 
1351 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1352 	while ((hd = disk_part_iter_next(&piter))) {
1353 		inflight = part_in_flight(gp->queue, hd);
1354 		seq_printf(seqf, "%4d %7d %s "
1355 			   "%lu %lu %lu %u "
1356 			   "%lu %lu %lu %u "
1357 			   "%u %u %u "
1358 			   "%lu %lu %lu %u\n",
1359 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1360 			   disk_name(gp, hd->partno, buf),
1361 			   part_stat_read(hd, ios[STAT_READ]),
1362 			   part_stat_read(hd, merges[STAT_READ]),
1363 			   part_stat_read(hd, sectors[STAT_READ]),
1364 			   (unsigned int)part_stat_read_msecs(hd, STAT_READ),
1365 			   part_stat_read(hd, ios[STAT_WRITE]),
1366 			   part_stat_read(hd, merges[STAT_WRITE]),
1367 			   part_stat_read(hd, sectors[STAT_WRITE]),
1368 			   (unsigned int)part_stat_read_msecs(hd, STAT_WRITE),
1369 			   inflight,
1370 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1371 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue)),
1372 			   part_stat_read(hd, ios[STAT_DISCARD]),
1373 			   part_stat_read(hd, merges[STAT_DISCARD]),
1374 			   part_stat_read(hd, sectors[STAT_DISCARD]),
1375 			   (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD)
1376 			);
1377 	}
1378 	disk_part_iter_exit(&piter);
1379 
1380 	return 0;
1381 }
1382 
1383 static const struct seq_operations diskstats_op = {
1384 	.start	= disk_seqf_start,
1385 	.next	= disk_seqf_next,
1386 	.stop	= disk_seqf_stop,
1387 	.show	= diskstats_show
1388 };
1389 
1390 static int __init proc_genhd_init(void)
1391 {
1392 	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1393 	proc_create_seq("partitions", 0, NULL, &partitions_op);
1394 	return 0;
1395 }
1396 module_init(proc_genhd_init);
1397 #endif /* CONFIG_PROC_FS */
1398 
1399 dev_t blk_lookup_devt(const char *name, int partno)
1400 {
1401 	dev_t devt = MKDEV(0, 0);
1402 	struct class_dev_iter iter;
1403 	struct device *dev;
1404 
1405 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1406 	while ((dev = class_dev_iter_next(&iter))) {
1407 		struct gendisk *disk = dev_to_disk(dev);
1408 		struct hd_struct *part;
1409 
1410 		if (strcmp(dev_name(dev), name))
1411 			continue;
1412 
1413 		if (partno < disk->minors) {
1414 			/* We need to return the right devno, even
1415 			 * if the partition doesn't exist yet.
1416 			 */
1417 			devt = MKDEV(MAJOR(dev->devt),
1418 				     MINOR(dev->devt) + partno);
1419 			break;
1420 		}
1421 		part = disk_get_part(disk, partno);
1422 		if (part) {
1423 			devt = part_devt(part);
1424 			disk_put_part(part);
1425 			break;
1426 		}
1427 		disk_put_part(part);
1428 	}
1429 	class_dev_iter_exit(&iter);
1430 	return devt;
1431 }
1432 EXPORT_SYMBOL(blk_lookup_devt);
1433 
1434 struct gendisk *__alloc_disk_node(int minors, int node_id)
1435 {
1436 	struct gendisk *disk;
1437 	struct disk_part_tbl *ptbl;
1438 
1439 	if (minors > DISK_MAX_PARTS) {
1440 		printk(KERN_ERR
1441 			"block: can't allocate more than %d partitions\n",
1442 			DISK_MAX_PARTS);
1443 		minors = DISK_MAX_PARTS;
1444 	}
1445 
1446 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1447 	if (disk) {
1448 		if (!init_part_stats(&disk->part0)) {
1449 			kfree(disk);
1450 			return NULL;
1451 		}
1452 		init_rwsem(&disk->lookup_sem);
1453 		disk->node_id = node_id;
1454 		if (disk_expand_part_tbl(disk, 0)) {
1455 			free_part_stats(&disk->part0);
1456 			kfree(disk);
1457 			return NULL;
1458 		}
1459 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1460 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1461 
1462 		/*
1463 		 * set_capacity() and get_capacity() currently don't use
1464 		 * seqcounter to read/update the part0->nr_sects. Still init
1465 		 * the counter as we can read the sectors in IO submission
1466 		 * patch using seqence counters.
1467 		 *
1468 		 * TODO: Ideally set_capacity() and get_capacity() should be
1469 		 * converted to make use of bd_mutex and sequence counters.
1470 		 */
1471 		seqcount_init(&disk->part0.nr_sects_seq);
1472 		if (hd_ref_init(&disk->part0)) {
1473 			hd_free_part(&disk->part0);
1474 			kfree(disk);
1475 			return NULL;
1476 		}
1477 
1478 		disk->minors = minors;
1479 		rand_initialize_disk(disk);
1480 		disk_to_dev(disk)->class = &block_class;
1481 		disk_to_dev(disk)->type = &disk_type;
1482 		device_initialize(disk_to_dev(disk));
1483 	}
1484 	return disk;
1485 }
1486 EXPORT_SYMBOL(__alloc_disk_node);
1487 
1488 struct kobject *get_disk_and_module(struct gendisk *disk)
1489 {
1490 	struct module *owner;
1491 	struct kobject *kobj;
1492 
1493 	if (!disk->fops)
1494 		return NULL;
1495 	owner = disk->fops->owner;
1496 	if (owner && !try_module_get(owner))
1497 		return NULL;
1498 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1499 	if (kobj == NULL) {
1500 		module_put(owner);
1501 		return NULL;
1502 	}
1503 	return kobj;
1504 
1505 }
1506 EXPORT_SYMBOL(get_disk_and_module);
1507 
1508 void put_disk(struct gendisk *disk)
1509 {
1510 	if (disk)
1511 		kobject_put(&disk_to_dev(disk)->kobj);
1512 }
1513 EXPORT_SYMBOL(put_disk);
1514 
1515 /*
1516  * This is a counterpart of get_disk_and_module() and thus also of
1517  * get_gendisk().
1518  */
1519 void put_disk_and_module(struct gendisk *disk)
1520 {
1521 	if (disk) {
1522 		struct module *owner = disk->fops->owner;
1523 
1524 		put_disk(disk);
1525 		module_put(owner);
1526 	}
1527 }
1528 EXPORT_SYMBOL(put_disk_and_module);
1529 
1530 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1531 {
1532 	char event[] = "DISK_RO=1";
1533 	char *envp[] = { event, NULL };
1534 
1535 	if (!ro)
1536 		event[8] = '0';
1537 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1538 }
1539 
1540 void set_device_ro(struct block_device *bdev, int flag)
1541 {
1542 	bdev->bd_part->policy = flag;
1543 }
1544 
1545 EXPORT_SYMBOL(set_device_ro);
1546 
1547 void set_disk_ro(struct gendisk *disk, int flag)
1548 {
1549 	struct disk_part_iter piter;
1550 	struct hd_struct *part;
1551 
1552 	if (disk->part0.policy != flag) {
1553 		set_disk_ro_uevent(disk, flag);
1554 		disk->part0.policy = flag;
1555 	}
1556 
1557 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1558 	while ((part = disk_part_iter_next(&piter)))
1559 		part->policy = flag;
1560 	disk_part_iter_exit(&piter);
1561 }
1562 
1563 EXPORT_SYMBOL(set_disk_ro);
1564 
1565 int bdev_read_only(struct block_device *bdev)
1566 {
1567 	if (!bdev)
1568 		return 0;
1569 	return bdev->bd_part->policy;
1570 }
1571 
1572 EXPORT_SYMBOL(bdev_read_only);
1573 
1574 int invalidate_partition(struct gendisk *disk, int partno)
1575 {
1576 	int res = 0;
1577 	struct block_device *bdev = bdget_disk(disk, partno);
1578 	if (bdev) {
1579 		fsync_bdev(bdev);
1580 		res = __invalidate_device(bdev, true);
1581 		bdput(bdev);
1582 	}
1583 	return res;
1584 }
1585 
1586 EXPORT_SYMBOL(invalidate_partition);
1587 
1588 /*
1589  * Disk events - monitor disk events like media change and eject request.
1590  */
1591 struct disk_events {
1592 	struct list_head	node;		/* all disk_event's */
1593 	struct gendisk		*disk;		/* the associated disk */
1594 	spinlock_t		lock;
1595 
1596 	struct mutex		block_mutex;	/* protects blocking */
1597 	int			block;		/* event blocking depth */
1598 	unsigned int		pending;	/* events already sent out */
1599 	unsigned int		clearing;	/* events being cleared */
1600 
1601 	long			poll_msecs;	/* interval, -1 for default */
1602 	struct delayed_work	dwork;
1603 };
1604 
1605 static const char *disk_events_strs[] = {
1606 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1607 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1608 };
1609 
1610 static char *disk_uevents[] = {
1611 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1612 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1613 };
1614 
1615 /* list of all disk_events */
1616 static DEFINE_MUTEX(disk_events_mutex);
1617 static LIST_HEAD(disk_events);
1618 
1619 /* disable in-kernel polling by default */
1620 static unsigned long disk_events_dfl_poll_msecs;
1621 
1622 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1623 {
1624 	struct disk_events *ev = disk->ev;
1625 	long intv_msecs = 0;
1626 
1627 	/*
1628 	 * If device-specific poll interval is set, always use it.  If
1629 	 * the default is being used, poll iff there are events which
1630 	 * can't be monitored asynchronously.
1631 	 */
1632 	if (ev->poll_msecs >= 0)
1633 		intv_msecs = ev->poll_msecs;
1634 	else if (disk->events & ~disk->async_events)
1635 		intv_msecs = disk_events_dfl_poll_msecs;
1636 
1637 	return msecs_to_jiffies(intv_msecs);
1638 }
1639 
1640 /**
1641  * disk_block_events - block and flush disk event checking
1642  * @disk: disk to block events for
1643  *
1644  * On return from this function, it is guaranteed that event checking
1645  * isn't in progress and won't happen until unblocked by
1646  * disk_unblock_events().  Events blocking is counted and the actual
1647  * unblocking happens after the matching number of unblocks are done.
1648  *
1649  * Note that this intentionally does not block event checking from
1650  * disk_clear_events().
1651  *
1652  * CONTEXT:
1653  * Might sleep.
1654  */
1655 void disk_block_events(struct gendisk *disk)
1656 {
1657 	struct disk_events *ev = disk->ev;
1658 	unsigned long flags;
1659 	bool cancel;
1660 
1661 	if (!ev)
1662 		return;
1663 
1664 	/*
1665 	 * Outer mutex ensures that the first blocker completes canceling
1666 	 * the event work before further blockers are allowed to finish.
1667 	 */
1668 	mutex_lock(&ev->block_mutex);
1669 
1670 	spin_lock_irqsave(&ev->lock, flags);
1671 	cancel = !ev->block++;
1672 	spin_unlock_irqrestore(&ev->lock, flags);
1673 
1674 	if (cancel)
1675 		cancel_delayed_work_sync(&disk->ev->dwork);
1676 
1677 	mutex_unlock(&ev->block_mutex);
1678 }
1679 
1680 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1681 {
1682 	struct disk_events *ev = disk->ev;
1683 	unsigned long intv;
1684 	unsigned long flags;
1685 
1686 	spin_lock_irqsave(&ev->lock, flags);
1687 
1688 	if (WARN_ON_ONCE(ev->block <= 0))
1689 		goto out_unlock;
1690 
1691 	if (--ev->block)
1692 		goto out_unlock;
1693 
1694 	intv = disk_events_poll_jiffies(disk);
1695 	if (check_now)
1696 		queue_delayed_work(system_freezable_power_efficient_wq,
1697 				&ev->dwork, 0);
1698 	else if (intv)
1699 		queue_delayed_work(system_freezable_power_efficient_wq,
1700 				&ev->dwork, intv);
1701 out_unlock:
1702 	spin_unlock_irqrestore(&ev->lock, flags);
1703 }
1704 
1705 /**
1706  * disk_unblock_events - unblock disk event checking
1707  * @disk: disk to unblock events for
1708  *
1709  * Undo disk_block_events().  When the block count reaches zero, it
1710  * starts events polling if configured.
1711  *
1712  * CONTEXT:
1713  * Don't care.  Safe to call from irq context.
1714  */
1715 void disk_unblock_events(struct gendisk *disk)
1716 {
1717 	if (disk->ev)
1718 		__disk_unblock_events(disk, false);
1719 }
1720 
1721 /**
1722  * disk_flush_events - schedule immediate event checking and flushing
1723  * @disk: disk to check and flush events for
1724  * @mask: events to flush
1725  *
1726  * Schedule immediate event checking on @disk if not blocked.  Events in
1727  * @mask are scheduled to be cleared from the driver.  Note that this
1728  * doesn't clear the events from @disk->ev.
1729  *
1730  * CONTEXT:
1731  * If @mask is non-zero must be called with bdev->bd_mutex held.
1732  */
1733 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1734 {
1735 	struct disk_events *ev = disk->ev;
1736 
1737 	if (!ev)
1738 		return;
1739 
1740 	spin_lock_irq(&ev->lock);
1741 	ev->clearing |= mask;
1742 	if (!ev->block)
1743 		mod_delayed_work(system_freezable_power_efficient_wq,
1744 				&ev->dwork, 0);
1745 	spin_unlock_irq(&ev->lock);
1746 }
1747 
1748 /**
1749  * disk_clear_events - synchronously check, clear and return pending events
1750  * @disk: disk to fetch and clear events from
1751  * @mask: mask of events to be fetched and cleared
1752  *
1753  * Disk events are synchronously checked and pending events in @mask
1754  * are cleared and returned.  This ignores the block count.
1755  *
1756  * CONTEXT:
1757  * Might sleep.
1758  */
1759 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1760 {
1761 	const struct block_device_operations *bdops = disk->fops;
1762 	struct disk_events *ev = disk->ev;
1763 	unsigned int pending;
1764 	unsigned int clearing = mask;
1765 
1766 	if (!ev) {
1767 		/* for drivers still using the old ->media_changed method */
1768 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1769 		    bdops->media_changed && bdops->media_changed(disk))
1770 			return DISK_EVENT_MEDIA_CHANGE;
1771 		return 0;
1772 	}
1773 
1774 	disk_block_events(disk);
1775 
1776 	/*
1777 	 * store the union of mask and ev->clearing on the stack so that the
1778 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1779 	 * can still be modified even if events are blocked).
1780 	 */
1781 	spin_lock_irq(&ev->lock);
1782 	clearing |= ev->clearing;
1783 	ev->clearing = 0;
1784 	spin_unlock_irq(&ev->lock);
1785 
1786 	disk_check_events(ev, &clearing);
1787 	/*
1788 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1789 	 * middle of this function, so we want to run the workfn without delay.
1790 	 */
1791 	__disk_unblock_events(disk, ev->clearing ? true : false);
1792 
1793 	/* then, fetch and clear pending events */
1794 	spin_lock_irq(&ev->lock);
1795 	pending = ev->pending & mask;
1796 	ev->pending &= ~mask;
1797 	spin_unlock_irq(&ev->lock);
1798 	WARN_ON_ONCE(clearing & mask);
1799 
1800 	return pending;
1801 }
1802 
1803 /*
1804  * Separate this part out so that a different pointer for clearing_ptr can be
1805  * passed in for disk_clear_events.
1806  */
1807 static void disk_events_workfn(struct work_struct *work)
1808 {
1809 	struct delayed_work *dwork = to_delayed_work(work);
1810 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1811 
1812 	disk_check_events(ev, &ev->clearing);
1813 }
1814 
1815 static void disk_check_events(struct disk_events *ev,
1816 			      unsigned int *clearing_ptr)
1817 {
1818 	struct gendisk *disk = ev->disk;
1819 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1820 	unsigned int clearing = *clearing_ptr;
1821 	unsigned int events;
1822 	unsigned long intv;
1823 	int nr_events = 0, i;
1824 
1825 	/* check events */
1826 	events = disk->fops->check_events(disk, clearing);
1827 
1828 	/* accumulate pending events and schedule next poll if necessary */
1829 	spin_lock_irq(&ev->lock);
1830 
1831 	events &= ~ev->pending;
1832 	ev->pending |= events;
1833 	*clearing_ptr &= ~clearing;
1834 
1835 	intv = disk_events_poll_jiffies(disk);
1836 	if (!ev->block && intv)
1837 		queue_delayed_work(system_freezable_power_efficient_wq,
1838 				&ev->dwork, intv);
1839 
1840 	spin_unlock_irq(&ev->lock);
1841 
1842 	/*
1843 	 * Tell userland about new events.  Only the events listed in
1844 	 * @disk->events are reported.  Unlisted events are processed the
1845 	 * same internally but never get reported to userland.
1846 	 */
1847 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1848 		if (events & disk->events & (1 << i))
1849 			envp[nr_events++] = disk_uevents[i];
1850 
1851 	if (nr_events)
1852 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1853 }
1854 
1855 /*
1856  * A disk events enabled device has the following sysfs nodes under
1857  * its /sys/block/X/ directory.
1858  *
1859  * events		: list of all supported events
1860  * events_async		: list of events which can be detected w/o polling
1861  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1862  */
1863 static ssize_t __disk_events_show(unsigned int events, char *buf)
1864 {
1865 	const char *delim = "";
1866 	ssize_t pos = 0;
1867 	int i;
1868 
1869 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1870 		if (events & (1 << i)) {
1871 			pos += sprintf(buf + pos, "%s%s",
1872 				       delim, disk_events_strs[i]);
1873 			delim = " ";
1874 		}
1875 	if (pos)
1876 		pos += sprintf(buf + pos, "\n");
1877 	return pos;
1878 }
1879 
1880 static ssize_t disk_events_show(struct device *dev,
1881 				struct device_attribute *attr, char *buf)
1882 {
1883 	struct gendisk *disk = dev_to_disk(dev);
1884 
1885 	return __disk_events_show(disk->events, buf);
1886 }
1887 
1888 static ssize_t disk_events_async_show(struct device *dev,
1889 				      struct device_attribute *attr, char *buf)
1890 {
1891 	struct gendisk *disk = dev_to_disk(dev);
1892 
1893 	return __disk_events_show(disk->async_events, buf);
1894 }
1895 
1896 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1897 					   struct device_attribute *attr,
1898 					   char *buf)
1899 {
1900 	struct gendisk *disk = dev_to_disk(dev);
1901 
1902 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1903 }
1904 
1905 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1906 					    struct device_attribute *attr,
1907 					    const char *buf, size_t count)
1908 {
1909 	struct gendisk *disk = dev_to_disk(dev);
1910 	long intv;
1911 
1912 	if (!count || !sscanf(buf, "%ld", &intv))
1913 		return -EINVAL;
1914 
1915 	if (intv < 0 && intv != -1)
1916 		return -EINVAL;
1917 
1918 	disk_block_events(disk);
1919 	disk->ev->poll_msecs = intv;
1920 	__disk_unblock_events(disk, true);
1921 
1922 	return count;
1923 }
1924 
1925 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
1926 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
1927 static const DEVICE_ATTR(events_poll_msecs, 0644,
1928 			 disk_events_poll_msecs_show,
1929 			 disk_events_poll_msecs_store);
1930 
1931 static const struct attribute *disk_events_attrs[] = {
1932 	&dev_attr_events.attr,
1933 	&dev_attr_events_async.attr,
1934 	&dev_attr_events_poll_msecs.attr,
1935 	NULL,
1936 };
1937 
1938 /*
1939  * The default polling interval can be specified by the kernel
1940  * parameter block.events_dfl_poll_msecs which defaults to 0
1941  * (disable).  This can also be modified runtime by writing to
1942  * /sys/module/block/events_dfl_poll_msecs.
1943  */
1944 static int disk_events_set_dfl_poll_msecs(const char *val,
1945 					  const struct kernel_param *kp)
1946 {
1947 	struct disk_events *ev;
1948 	int ret;
1949 
1950 	ret = param_set_ulong(val, kp);
1951 	if (ret < 0)
1952 		return ret;
1953 
1954 	mutex_lock(&disk_events_mutex);
1955 
1956 	list_for_each_entry(ev, &disk_events, node)
1957 		disk_flush_events(ev->disk, 0);
1958 
1959 	mutex_unlock(&disk_events_mutex);
1960 
1961 	return 0;
1962 }
1963 
1964 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1965 	.set	= disk_events_set_dfl_poll_msecs,
1966 	.get	= param_get_ulong,
1967 };
1968 
1969 #undef MODULE_PARAM_PREFIX
1970 #define MODULE_PARAM_PREFIX	"block."
1971 
1972 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1973 		&disk_events_dfl_poll_msecs, 0644);
1974 
1975 /*
1976  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1977  */
1978 static void disk_alloc_events(struct gendisk *disk)
1979 {
1980 	struct disk_events *ev;
1981 
1982 	if (!disk->fops->check_events)
1983 		return;
1984 
1985 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1986 	if (!ev) {
1987 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1988 		return;
1989 	}
1990 
1991 	INIT_LIST_HEAD(&ev->node);
1992 	ev->disk = disk;
1993 	spin_lock_init(&ev->lock);
1994 	mutex_init(&ev->block_mutex);
1995 	ev->block = 1;
1996 	ev->poll_msecs = -1;
1997 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1998 
1999 	disk->ev = ev;
2000 }
2001 
2002 static void disk_add_events(struct gendisk *disk)
2003 {
2004 	if (!disk->ev)
2005 		return;
2006 
2007 	/* FIXME: error handling */
2008 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2009 		pr_warn("%s: failed to create sysfs files for events\n",
2010 			disk->disk_name);
2011 
2012 	mutex_lock(&disk_events_mutex);
2013 	list_add_tail(&disk->ev->node, &disk_events);
2014 	mutex_unlock(&disk_events_mutex);
2015 
2016 	/*
2017 	 * Block count is initialized to 1 and the following initial
2018 	 * unblock kicks it into action.
2019 	 */
2020 	__disk_unblock_events(disk, true);
2021 }
2022 
2023 static void disk_del_events(struct gendisk *disk)
2024 {
2025 	if (!disk->ev)
2026 		return;
2027 
2028 	disk_block_events(disk);
2029 
2030 	mutex_lock(&disk_events_mutex);
2031 	list_del_init(&disk->ev->node);
2032 	mutex_unlock(&disk_events_mutex);
2033 
2034 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2035 }
2036 
2037 static void disk_release_events(struct gendisk *disk)
2038 {
2039 	/* the block count should be 1 from disk_del_events() */
2040 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2041 	kfree(disk->ev);
2042 }
2043