xref: /openbmc/linux/block/genhd.c (revision bbecb07f)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (q->mq_ops)
51 		return;
52 
53 	atomic_inc(&part->in_flight[rw]);
54 	if (part->partno)
55 		atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57 
58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (q->mq_ops)
61 		return;
62 
63 	atomic_dec(&part->in_flight[rw]);
64 	if (part->partno)
65 		atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67 
68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 		    unsigned int inflight[2])
70 {
71 	if (q->mq_ops) {
72 		blk_mq_in_flight(q, part, inflight);
73 		return;
74 	}
75 
76 	inflight[0] = atomic_read(&part->in_flight[0]) +
77 			atomic_read(&part->in_flight[1]);
78 	if (part->partno) {
79 		part = &part_to_disk(part)->part0;
80 		inflight[1] = atomic_read(&part->in_flight[0]) +
81 				atomic_read(&part->in_flight[1]);
82 	}
83 }
84 
85 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
86 {
87 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
88 
89 	if (unlikely(partno < 0 || partno >= ptbl->len))
90 		return NULL;
91 	return rcu_dereference(ptbl->part[partno]);
92 }
93 
94 /**
95  * disk_get_part - get partition
96  * @disk: disk to look partition from
97  * @partno: partition number
98  *
99  * Look for partition @partno from @disk.  If found, increment
100  * reference count and return it.
101  *
102  * CONTEXT:
103  * Don't care.
104  *
105  * RETURNS:
106  * Pointer to the found partition on success, NULL if not found.
107  */
108 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
109 {
110 	struct hd_struct *part;
111 
112 	rcu_read_lock();
113 	part = __disk_get_part(disk, partno);
114 	if (part)
115 		get_device(part_to_dev(part));
116 	rcu_read_unlock();
117 
118 	return part;
119 }
120 EXPORT_SYMBOL_GPL(disk_get_part);
121 
122 /**
123  * disk_part_iter_init - initialize partition iterator
124  * @piter: iterator to initialize
125  * @disk: disk to iterate over
126  * @flags: DISK_PITER_* flags
127  *
128  * Initialize @piter so that it iterates over partitions of @disk.
129  *
130  * CONTEXT:
131  * Don't care.
132  */
133 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
134 			  unsigned int flags)
135 {
136 	struct disk_part_tbl *ptbl;
137 
138 	rcu_read_lock();
139 	ptbl = rcu_dereference(disk->part_tbl);
140 
141 	piter->disk = disk;
142 	piter->part = NULL;
143 
144 	if (flags & DISK_PITER_REVERSE)
145 		piter->idx = ptbl->len - 1;
146 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
147 		piter->idx = 0;
148 	else
149 		piter->idx = 1;
150 
151 	piter->flags = flags;
152 
153 	rcu_read_unlock();
154 }
155 EXPORT_SYMBOL_GPL(disk_part_iter_init);
156 
157 /**
158  * disk_part_iter_next - proceed iterator to the next partition and return it
159  * @piter: iterator of interest
160  *
161  * Proceed @piter to the next partition and return it.
162  *
163  * CONTEXT:
164  * Don't care.
165  */
166 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
167 {
168 	struct disk_part_tbl *ptbl;
169 	int inc, end;
170 
171 	/* put the last partition */
172 	disk_put_part(piter->part);
173 	piter->part = NULL;
174 
175 	/* get part_tbl */
176 	rcu_read_lock();
177 	ptbl = rcu_dereference(piter->disk->part_tbl);
178 
179 	/* determine iteration parameters */
180 	if (piter->flags & DISK_PITER_REVERSE) {
181 		inc = -1;
182 		if (piter->flags & (DISK_PITER_INCL_PART0 |
183 				    DISK_PITER_INCL_EMPTY_PART0))
184 			end = -1;
185 		else
186 			end = 0;
187 	} else {
188 		inc = 1;
189 		end = ptbl->len;
190 	}
191 
192 	/* iterate to the next partition */
193 	for (; piter->idx != end; piter->idx += inc) {
194 		struct hd_struct *part;
195 
196 		part = rcu_dereference(ptbl->part[piter->idx]);
197 		if (!part)
198 			continue;
199 		if (!part_nr_sects_read(part) &&
200 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
201 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
202 		      piter->idx == 0))
203 			continue;
204 
205 		get_device(part_to_dev(part));
206 		piter->part = part;
207 		piter->idx += inc;
208 		break;
209 	}
210 
211 	rcu_read_unlock();
212 
213 	return piter->part;
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_next);
216 
217 /**
218  * disk_part_iter_exit - finish up partition iteration
219  * @piter: iter of interest
220  *
221  * Called when iteration is over.  Cleans up @piter.
222  *
223  * CONTEXT:
224  * Don't care.
225  */
226 void disk_part_iter_exit(struct disk_part_iter *piter)
227 {
228 	disk_put_part(piter->part);
229 	piter->part = NULL;
230 }
231 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
232 
233 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
234 {
235 	return part->start_sect <= sector &&
236 		sector < part->start_sect + part_nr_sects_read(part);
237 }
238 
239 /**
240  * disk_map_sector_rcu - map sector to partition
241  * @disk: gendisk of interest
242  * @sector: sector to map
243  *
244  * Find out which partition @sector maps to on @disk.  This is
245  * primarily used for stats accounting.
246  *
247  * CONTEXT:
248  * RCU read locked.  The returned partition pointer is valid only
249  * while preemption is disabled.
250  *
251  * RETURNS:
252  * Found partition on success, part0 is returned if no partition matches
253  */
254 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
255 {
256 	struct disk_part_tbl *ptbl;
257 	struct hd_struct *part;
258 	int i;
259 
260 	ptbl = rcu_dereference(disk->part_tbl);
261 
262 	part = rcu_dereference(ptbl->last_lookup);
263 	if (part && sector_in_part(part, sector))
264 		return part;
265 
266 	for (i = 1; i < ptbl->len; i++) {
267 		part = rcu_dereference(ptbl->part[i]);
268 
269 		if (part && sector_in_part(part, sector)) {
270 			rcu_assign_pointer(ptbl->last_lookup, part);
271 			return part;
272 		}
273 	}
274 	return &disk->part0;
275 }
276 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
277 
278 /*
279  * Can be deleted altogether. Later.
280  *
281  */
282 #define BLKDEV_MAJOR_HASH_SIZE 255
283 static struct blk_major_name {
284 	struct blk_major_name *next;
285 	int major;
286 	char name[16];
287 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
288 
289 /* index in the above - for now: assume no multimajor ranges */
290 static inline int major_to_index(unsigned major)
291 {
292 	return major % BLKDEV_MAJOR_HASH_SIZE;
293 }
294 
295 #ifdef CONFIG_PROC_FS
296 void blkdev_show(struct seq_file *seqf, off_t offset)
297 {
298 	struct blk_major_name *dp;
299 
300 	mutex_lock(&block_class_lock);
301 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
302 		if (dp->major == offset)
303 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
304 	mutex_unlock(&block_class_lock);
305 }
306 #endif /* CONFIG_PROC_FS */
307 
308 /**
309  * register_blkdev - register a new block device
310  *
311  * @major: the requested major device number [1..255]. If @major = 0, try to
312  *         allocate any unused major number.
313  * @name: the name of the new block device as a zero terminated string
314  *
315  * The @name must be unique within the system.
316  *
317  * The return value depends on the @major input parameter:
318  *
319  *  - if a major device number was requested in range [1..255] then the
320  *    function returns zero on success, or a negative error code
321  *  - if any unused major number was requested with @major = 0 parameter
322  *    then the return value is the allocated major number in range
323  *    [1..255] or a negative error code otherwise
324  */
325 int register_blkdev(unsigned int major, const char *name)
326 {
327 	struct blk_major_name **n, *p;
328 	int index, ret = 0;
329 
330 	mutex_lock(&block_class_lock);
331 
332 	/* temporary */
333 	if (major == 0) {
334 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
335 			if (major_names[index] == NULL)
336 				break;
337 		}
338 
339 		if (index == 0) {
340 			printk("register_blkdev: failed to get major for %s\n",
341 			       name);
342 			ret = -EBUSY;
343 			goto out;
344 		}
345 		major = index;
346 		ret = major;
347 	}
348 
349 	if (major >= BLKDEV_MAJOR_MAX) {
350 		pr_err("register_blkdev: major requested (%d) is greater than the maximum (%d) for %s\n",
351 		       major, BLKDEV_MAJOR_MAX, name);
352 
353 		ret = -EINVAL;
354 		goto out;
355 	}
356 
357 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
358 	if (p == NULL) {
359 		ret = -ENOMEM;
360 		goto out;
361 	}
362 
363 	p->major = major;
364 	strlcpy(p->name, name, sizeof(p->name));
365 	p->next = NULL;
366 	index = major_to_index(major);
367 
368 	for (n = &major_names[index]; *n; n = &(*n)->next) {
369 		if ((*n)->major == major)
370 			break;
371 	}
372 	if (!*n)
373 		*n = p;
374 	else
375 		ret = -EBUSY;
376 
377 	if (ret < 0) {
378 		printk("register_blkdev: cannot get major %d for %s\n",
379 		       major, name);
380 		kfree(p);
381 	}
382 out:
383 	mutex_unlock(&block_class_lock);
384 	return ret;
385 }
386 
387 EXPORT_SYMBOL(register_blkdev);
388 
389 void unregister_blkdev(unsigned int major, const char *name)
390 {
391 	struct blk_major_name **n;
392 	struct blk_major_name *p = NULL;
393 	int index = major_to_index(major);
394 
395 	mutex_lock(&block_class_lock);
396 	for (n = &major_names[index]; *n; n = &(*n)->next)
397 		if ((*n)->major == major)
398 			break;
399 	if (!*n || strcmp((*n)->name, name)) {
400 		WARN_ON(1);
401 	} else {
402 		p = *n;
403 		*n = p->next;
404 	}
405 	mutex_unlock(&block_class_lock);
406 	kfree(p);
407 }
408 
409 EXPORT_SYMBOL(unregister_blkdev);
410 
411 static struct kobj_map *bdev_map;
412 
413 /**
414  * blk_mangle_minor - scatter minor numbers apart
415  * @minor: minor number to mangle
416  *
417  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
418  * is enabled.  Mangling twice gives the original value.
419  *
420  * RETURNS:
421  * Mangled value.
422  *
423  * CONTEXT:
424  * Don't care.
425  */
426 static int blk_mangle_minor(int minor)
427 {
428 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
429 	int i;
430 
431 	for (i = 0; i < MINORBITS / 2; i++) {
432 		int low = minor & (1 << i);
433 		int high = minor & (1 << (MINORBITS - 1 - i));
434 		int distance = MINORBITS - 1 - 2 * i;
435 
436 		minor ^= low | high;	/* clear both bits */
437 		low <<= distance;	/* swap the positions */
438 		high >>= distance;
439 		minor |= low | high;	/* and set */
440 	}
441 #endif
442 	return minor;
443 }
444 
445 /**
446  * blk_alloc_devt - allocate a dev_t for a partition
447  * @part: partition to allocate dev_t for
448  * @devt: out parameter for resulting dev_t
449  *
450  * Allocate a dev_t for block device.
451  *
452  * RETURNS:
453  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
454  * failure.
455  *
456  * CONTEXT:
457  * Might sleep.
458  */
459 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
460 {
461 	struct gendisk *disk = part_to_disk(part);
462 	int idx;
463 
464 	/* in consecutive minor range? */
465 	if (part->partno < disk->minors) {
466 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
467 		return 0;
468 	}
469 
470 	/* allocate ext devt */
471 	idr_preload(GFP_KERNEL);
472 
473 	spin_lock_bh(&ext_devt_lock);
474 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
475 	spin_unlock_bh(&ext_devt_lock);
476 
477 	idr_preload_end();
478 	if (idx < 0)
479 		return idx == -ENOSPC ? -EBUSY : idx;
480 
481 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
482 	return 0;
483 }
484 
485 /**
486  * blk_free_devt - free a dev_t
487  * @devt: dev_t to free
488  *
489  * Free @devt which was allocated using blk_alloc_devt().
490  *
491  * CONTEXT:
492  * Might sleep.
493  */
494 void blk_free_devt(dev_t devt)
495 {
496 	if (devt == MKDEV(0, 0))
497 		return;
498 
499 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
500 		spin_lock_bh(&ext_devt_lock);
501 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
502 		spin_unlock_bh(&ext_devt_lock);
503 	}
504 }
505 
506 static char *bdevt_str(dev_t devt, char *buf)
507 {
508 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
509 		char tbuf[BDEVT_SIZE];
510 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
511 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
512 	} else
513 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
514 
515 	return buf;
516 }
517 
518 /*
519  * Register device numbers dev..(dev+range-1)
520  * range must be nonzero
521  * The hash chain is sorted on range, so that subranges can override.
522  */
523 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
524 			 struct kobject *(*probe)(dev_t, int *, void *),
525 			 int (*lock)(dev_t, void *), void *data)
526 {
527 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
528 }
529 
530 EXPORT_SYMBOL(blk_register_region);
531 
532 void blk_unregister_region(dev_t devt, unsigned long range)
533 {
534 	kobj_unmap(bdev_map, devt, range);
535 }
536 
537 EXPORT_SYMBOL(blk_unregister_region);
538 
539 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
540 {
541 	struct gendisk *p = data;
542 
543 	return &disk_to_dev(p)->kobj;
544 }
545 
546 static int exact_lock(dev_t devt, void *data)
547 {
548 	struct gendisk *p = data;
549 
550 	if (!get_disk(p))
551 		return -1;
552 	return 0;
553 }
554 
555 static void register_disk(struct device *parent, struct gendisk *disk)
556 {
557 	struct device *ddev = disk_to_dev(disk);
558 	struct block_device *bdev;
559 	struct disk_part_iter piter;
560 	struct hd_struct *part;
561 	int err;
562 
563 	ddev->parent = parent;
564 
565 	dev_set_name(ddev, "%s", disk->disk_name);
566 
567 	/* delay uevents, until we scanned partition table */
568 	dev_set_uevent_suppress(ddev, 1);
569 
570 	if (device_add(ddev))
571 		return;
572 	if (!sysfs_deprecated) {
573 		err = sysfs_create_link(block_depr, &ddev->kobj,
574 					kobject_name(&ddev->kobj));
575 		if (err) {
576 			device_del(ddev);
577 			return;
578 		}
579 	}
580 
581 	/*
582 	 * avoid probable deadlock caused by allocating memory with
583 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
584 	 * devices
585 	 */
586 	pm_runtime_set_memalloc_noio(ddev, true);
587 
588 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
589 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
590 
591 	if (disk->flags & GENHD_FL_HIDDEN) {
592 		dev_set_uevent_suppress(ddev, 0);
593 		return;
594 	}
595 
596 	/* No minors to use for partitions */
597 	if (!disk_part_scan_enabled(disk))
598 		goto exit;
599 
600 	/* No such device (e.g., media were just removed) */
601 	if (!get_capacity(disk))
602 		goto exit;
603 
604 	bdev = bdget_disk(disk, 0);
605 	if (!bdev)
606 		goto exit;
607 
608 	bdev->bd_invalidated = 1;
609 	err = blkdev_get(bdev, FMODE_READ, NULL);
610 	if (err < 0)
611 		goto exit;
612 	blkdev_put(bdev, FMODE_READ);
613 
614 exit:
615 	/* announce disk after possible partitions are created */
616 	dev_set_uevent_suppress(ddev, 0);
617 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
618 
619 	/* announce possible partitions */
620 	disk_part_iter_init(&piter, disk, 0);
621 	while ((part = disk_part_iter_next(&piter)))
622 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
623 	disk_part_iter_exit(&piter);
624 
625 	err = sysfs_create_link(&ddev->kobj,
626 				&disk->queue->backing_dev_info->dev->kobj,
627 				"bdi");
628 	WARN_ON(err);
629 }
630 
631 /**
632  * device_add_disk - add partitioning information to kernel list
633  * @parent: parent device for the disk
634  * @disk: per-device partitioning information
635  *
636  * This function registers the partitioning information in @disk
637  * with the kernel.
638  *
639  * FIXME: error handling
640  */
641 void device_add_disk(struct device *parent, struct gendisk *disk)
642 {
643 	dev_t devt;
644 	int retval;
645 
646 	/* minors == 0 indicates to use ext devt from part0 and should
647 	 * be accompanied with EXT_DEVT flag.  Make sure all
648 	 * parameters make sense.
649 	 */
650 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
651 	WARN_ON(!disk->minors &&
652 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
653 
654 	disk->flags |= GENHD_FL_UP;
655 
656 	retval = blk_alloc_devt(&disk->part0, &devt);
657 	if (retval) {
658 		WARN_ON(1);
659 		return;
660 	}
661 	disk->major = MAJOR(devt);
662 	disk->first_minor = MINOR(devt);
663 
664 	disk_alloc_events(disk);
665 
666 	if (disk->flags & GENHD_FL_HIDDEN) {
667 		/*
668 		 * Don't let hidden disks show up in /proc/partitions,
669 		 * and don't bother scanning for partitions either.
670 		 */
671 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
672 		disk->flags |= GENHD_FL_NO_PART_SCAN;
673 	} else {
674 		int ret;
675 
676 		/* Register BDI before referencing it from bdev */
677 		disk_to_dev(disk)->devt = devt;
678 		ret = bdi_register_owner(disk->queue->backing_dev_info,
679 						disk_to_dev(disk));
680 		WARN_ON(ret);
681 		blk_register_region(disk_devt(disk), disk->minors, NULL,
682 				    exact_match, exact_lock, disk);
683 	}
684 	register_disk(parent, disk);
685 	blk_register_queue(disk);
686 
687 	/*
688 	 * Take an extra ref on queue which will be put on disk_release()
689 	 * so that it sticks around as long as @disk is there.
690 	 */
691 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
692 
693 	disk_add_events(disk);
694 	blk_integrity_add(disk);
695 }
696 EXPORT_SYMBOL(device_add_disk);
697 
698 void del_gendisk(struct gendisk *disk)
699 {
700 	struct disk_part_iter piter;
701 	struct hd_struct *part;
702 
703 	blk_integrity_del(disk);
704 	disk_del_events(disk);
705 
706 	/* invalidate stuff */
707 	disk_part_iter_init(&piter, disk,
708 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
709 	while ((part = disk_part_iter_next(&piter))) {
710 		invalidate_partition(disk, part->partno);
711 		bdev_unhash_inode(part_devt(part));
712 		delete_partition(disk, part->partno);
713 	}
714 	disk_part_iter_exit(&piter);
715 
716 	invalidate_partition(disk, 0);
717 	bdev_unhash_inode(disk_devt(disk));
718 	set_capacity(disk, 0);
719 	disk->flags &= ~GENHD_FL_UP;
720 
721 	if (!(disk->flags & GENHD_FL_HIDDEN))
722 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
723 	if (disk->queue) {
724 		/*
725 		 * Unregister bdi before releasing device numbers (as they can
726 		 * get reused and we'd get clashes in sysfs).
727 		 */
728 		bdi_unregister(disk->queue->backing_dev_info);
729 		blk_unregister_queue(disk);
730 	} else {
731 		WARN_ON(1);
732 	}
733 
734 	if (!(disk->flags & GENHD_FL_HIDDEN))
735 		blk_unregister_region(disk_devt(disk), disk->minors);
736 
737 	kobject_put(disk->part0.holder_dir);
738 	kobject_put(disk->slave_dir);
739 
740 	part_stat_set_all(&disk->part0, 0);
741 	disk->part0.stamp = 0;
742 	if (!sysfs_deprecated)
743 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
744 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
745 	device_del(disk_to_dev(disk));
746 }
747 EXPORT_SYMBOL(del_gendisk);
748 
749 /* sysfs access to bad-blocks list. */
750 static ssize_t disk_badblocks_show(struct device *dev,
751 					struct device_attribute *attr,
752 					char *page)
753 {
754 	struct gendisk *disk = dev_to_disk(dev);
755 
756 	if (!disk->bb)
757 		return sprintf(page, "\n");
758 
759 	return badblocks_show(disk->bb, page, 0);
760 }
761 
762 static ssize_t disk_badblocks_store(struct device *dev,
763 					struct device_attribute *attr,
764 					const char *page, size_t len)
765 {
766 	struct gendisk *disk = dev_to_disk(dev);
767 
768 	if (!disk->bb)
769 		return -ENXIO;
770 
771 	return badblocks_store(disk->bb, page, len, 0);
772 }
773 
774 /**
775  * get_gendisk - get partitioning information for a given device
776  * @devt: device to get partitioning information for
777  * @partno: returned partition index
778  *
779  * This function gets the structure containing partitioning
780  * information for the given device @devt.
781  */
782 struct gendisk *get_gendisk(dev_t devt, int *partno)
783 {
784 	struct gendisk *disk = NULL;
785 
786 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
787 		struct kobject *kobj;
788 
789 		kobj = kobj_lookup(bdev_map, devt, partno);
790 		if (kobj)
791 			disk = dev_to_disk(kobj_to_dev(kobj));
792 	} else {
793 		struct hd_struct *part;
794 
795 		spin_lock_bh(&ext_devt_lock);
796 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
797 		if (part && get_disk(part_to_disk(part))) {
798 			*partno = part->partno;
799 			disk = part_to_disk(part);
800 		}
801 		spin_unlock_bh(&ext_devt_lock);
802 	}
803 
804 	if (disk && unlikely(disk->flags & GENHD_FL_HIDDEN)) {
805 		put_disk(disk);
806 		disk = NULL;
807 	}
808 	return disk;
809 }
810 EXPORT_SYMBOL(get_gendisk);
811 
812 /**
813  * bdget_disk - do bdget() by gendisk and partition number
814  * @disk: gendisk of interest
815  * @partno: partition number
816  *
817  * Find partition @partno from @disk, do bdget() on it.
818  *
819  * CONTEXT:
820  * Don't care.
821  *
822  * RETURNS:
823  * Resulting block_device on success, NULL on failure.
824  */
825 struct block_device *bdget_disk(struct gendisk *disk, int partno)
826 {
827 	struct hd_struct *part;
828 	struct block_device *bdev = NULL;
829 
830 	part = disk_get_part(disk, partno);
831 	if (part)
832 		bdev = bdget(part_devt(part));
833 	disk_put_part(part);
834 
835 	return bdev;
836 }
837 EXPORT_SYMBOL(bdget_disk);
838 
839 /*
840  * print a full list of all partitions - intended for places where the root
841  * filesystem can't be mounted and thus to give the victim some idea of what
842  * went wrong
843  */
844 void __init printk_all_partitions(void)
845 {
846 	struct class_dev_iter iter;
847 	struct device *dev;
848 
849 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
850 	while ((dev = class_dev_iter_next(&iter))) {
851 		struct gendisk *disk = dev_to_disk(dev);
852 		struct disk_part_iter piter;
853 		struct hd_struct *part;
854 		char name_buf[BDEVNAME_SIZE];
855 		char devt_buf[BDEVT_SIZE];
856 
857 		/*
858 		 * Don't show empty devices or things that have been
859 		 * suppressed
860 		 */
861 		if (get_capacity(disk) == 0 ||
862 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
863 			continue;
864 
865 		/*
866 		 * Note, unlike /proc/partitions, I am showing the
867 		 * numbers in hex - the same format as the root=
868 		 * option takes.
869 		 */
870 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
871 		while ((part = disk_part_iter_next(&piter))) {
872 			bool is_part0 = part == &disk->part0;
873 
874 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
875 			       bdevt_str(part_devt(part), devt_buf),
876 			       (unsigned long long)part_nr_sects_read(part) >> 1
877 			       , disk_name(disk, part->partno, name_buf),
878 			       part->info ? part->info->uuid : "");
879 			if (is_part0) {
880 				if (dev->parent && dev->parent->driver)
881 					printk(" driver: %s\n",
882 					      dev->parent->driver->name);
883 				else
884 					printk(" (driver?)\n");
885 			} else
886 				printk("\n");
887 		}
888 		disk_part_iter_exit(&piter);
889 	}
890 	class_dev_iter_exit(&iter);
891 }
892 
893 #ifdef CONFIG_PROC_FS
894 /* iterator */
895 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
896 {
897 	loff_t skip = *pos;
898 	struct class_dev_iter *iter;
899 	struct device *dev;
900 
901 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
902 	if (!iter)
903 		return ERR_PTR(-ENOMEM);
904 
905 	seqf->private = iter;
906 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
907 	do {
908 		dev = class_dev_iter_next(iter);
909 		if (!dev)
910 			return NULL;
911 	} while (skip--);
912 
913 	return dev_to_disk(dev);
914 }
915 
916 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
917 {
918 	struct device *dev;
919 
920 	(*pos)++;
921 	dev = class_dev_iter_next(seqf->private);
922 	if (dev)
923 		return dev_to_disk(dev);
924 
925 	return NULL;
926 }
927 
928 static void disk_seqf_stop(struct seq_file *seqf, void *v)
929 {
930 	struct class_dev_iter *iter = seqf->private;
931 
932 	/* stop is called even after start failed :-( */
933 	if (iter) {
934 		class_dev_iter_exit(iter);
935 		kfree(iter);
936 		seqf->private = NULL;
937 	}
938 }
939 
940 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
941 {
942 	void *p;
943 
944 	p = disk_seqf_start(seqf, pos);
945 	if (!IS_ERR_OR_NULL(p) && !*pos)
946 		seq_puts(seqf, "major minor  #blocks  name\n\n");
947 	return p;
948 }
949 
950 static int show_partition(struct seq_file *seqf, void *v)
951 {
952 	struct gendisk *sgp = v;
953 	struct disk_part_iter piter;
954 	struct hd_struct *part;
955 	char buf[BDEVNAME_SIZE];
956 
957 	/* Don't show non-partitionable removeable devices or empty devices */
958 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
959 				   (sgp->flags & GENHD_FL_REMOVABLE)))
960 		return 0;
961 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
962 		return 0;
963 
964 	/* show the full disk and all non-0 size partitions of it */
965 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
966 	while ((part = disk_part_iter_next(&piter)))
967 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
968 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
969 			   (unsigned long long)part_nr_sects_read(part) >> 1,
970 			   disk_name(sgp, part->partno, buf));
971 	disk_part_iter_exit(&piter);
972 
973 	return 0;
974 }
975 
976 static const struct seq_operations partitions_op = {
977 	.start	= show_partition_start,
978 	.next	= disk_seqf_next,
979 	.stop	= disk_seqf_stop,
980 	.show	= show_partition
981 };
982 
983 static int partitions_open(struct inode *inode, struct file *file)
984 {
985 	return seq_open(file, &partitions_op);
986 }
987 
988 static const struct file_operations proc_partitions_operations = {
989 	.open		= partitions_open,
990 	.read		= seq_read,
991 	.llseek		= seq_lseek,
992 	.release	= seq_release,
993 };
994 #endif
995 
996 
997 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
998 {
999 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1000 		/* Make old-style 2.4 aliases work */
1001 		request_module("block-major-%d", MAJOR(devt));
1002 	return NULL;
1003 }
1004 
1005 static int __init genhd_device_init(void)
1006 {
1007 	int error;
1008 
1009 	block_class.dev_kobj = sysfs_dev_block_kobj;
1010 	error = class_register(&block_class);
1011 	if (unlikely(error))
1012 		return error;
1013 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1014 	blk_dev_init();
1015 
1016 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1017 
1018 	/* create top-level block dir */
1019 	if (!sysfs_deprecated)
1020 		block_depr = kobject_create_and_add("block", NULL);
1021 	return 0;
1022 }
1023 
1024 subsys_initcall(genhd_device_init);
1025 
1026 static ssize_t disk_range_show(struct device *dev,
1027 			       struct device_attribute *attr, char *buf)
1028 {
1029 	struct gendisk *disk = dev_to_disk(dev);
1030 
1031 	return sprintf(buf, "%d\n", disk->minors);
1032 }
1033 
1034 static ssize_t disk_ext_range_show(struct device *dev,
1035 				   struct device_attribute *attr, char *buf)
1036 {
1037 	struct gendisk *disk = dev_to_disk(dev);
1038 
1039 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1040 }
1041 
1042 static ssize_t disk_removable_show(struct device *dev,
1043 				   struct device_attribute *attr, char *buf)
1044 {
1045 	struct gendisk *disk = dev_to_disk(dev);
1046 
1047 	return sprintf(buf, "%d\n",
1048 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1049 }
1050 
1051 static ssize_t disk_hidden_show(struct device *dev,
1052 				   struct device_attribute *attr, char *buf)
1053 {
1054 	struct gendisk *disk = dev_to_disk(dev);
1055 
1056 	return sprintf(buf, "%d\n",
1057 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1058 }
1059 
1060 static ssize_t disk_ro_show(struct device *dev,
1061 				   struct device_attribute *attr, char *buf)
1062 {
1063 	struct gendisk *disk = dev_to_disk(dev);
1064 
1065 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1066 }
1067 
1068 static ssize_t disk_capability_show(struct device *dev,
1069 				    struct device_attribute *attr, char *buf)
1070 {
1071 	struct gendisk *disk = dev_to_disk(dev);
1072 
1073 	return sprintf(buf, "%x\n", disk->flags);
1074 }
1075 
1076 static ssize_t disk_alignment_offset_show(struct device *dev,
1077 					  struct device_attribute *attr,
1078 					  char *buf)
1079 {
1080 	struct gendisk *disk = dev_to_disk(dev);
1081 
1082 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1083 }
1084 
1085 static ssize_t disk_discard_alignment_show(struct device *dev,
1086 					   struct device_attribute *attr,
1087 					   char *buf)
1088 {
1089 	struct gendisk *disk = dev_to_disk(dev);
1090 
1091 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1092 }
1093 
1094 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1095 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1096 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1097 static DEVICE_ATTR(hidden, S_IRUGO, disk_hidden_show, NULL);
1098 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1099 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1100 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1101 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1102 		   NULL);
1103 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1104 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1105 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1106 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1107 		disk_badblocks_store);
1108 #ifdef CONFIG_FAIL_MAKE_REQUEST
1109 static struct device_attribute dev_attr_fail =
1110 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1111 #endif
1112 #ifdef CONFIG_FAIL_IO_TIMEOUT
1113 static struct device_attribute dev_attr_fail_timeout =
1114 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1115 		part_timeout_store);
1116 #endif
1117 
1118 static struct attribute *disk_attrs[] = {
1119 	&dev_attr_range.attr,
1120 	&dev_attr_ext_range.attr,
1121 	&dev_attr_removable.attr,
1122 	&dev_attr_hidden.attr,
1123 	&dev_attr_ro.attr,
1124 	&dev_attr_size.attr,
1125 	&dev_attr_alignment_offset.attr,
1126 	&dev_attr_discard_alignment.attr,
1127 	&dev_attr_capability.attr,
1128 	&dev_attr_stat.attr,
1129 	&dev_attr_inflight.attr,
1130 	&dev_attr_badblocks.attr,
1131 #ifdef CONFIG_FAIL_MAKE_REQUEST
1132 	&dev_attr_fail.attr,
1133 #endif
1134 #ifdef CONFIG_FAIL_IO_TIMEOUT
1135 	&dev_attr_fail_timeout.attr,
1136 #endif
1137 	NULL
1138 };
1139 
1140 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1141 {
1142 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1143 	struct gendisk *disk = dev_to_disk(dev);
1144 
1145 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1146 		return 0;
1147 	return a->mode;
1148 }
1149 
1150 static struct attribute_group disk_attr_group = {
1151 	.attrs = disk_attrs,
1152 	.is_visible = disk_visible,
1153 };
1154 
1155 static const struct attribute_group *disk_attr_groups[] = {
1156 	&disk_attr_group,
1157 	NULL
1158 };
1159 
1160 /**
1161  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1162  * @disk: disk to replace part_tbl for
1163  * @new_ptbl: new part_tbl to install
1164  *
1165  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1166  * original ptbl is freed using RCU callback.
1167  *
1168  * LOCKING:
1169  * Matching bd_mutex locked or the caller is the only user of @disk.
1170  */
1171 static void disk_replace_part_tbl(struct gendisk *disk,
1172 				  struct disk_part_tbl *new_ptbl)
1173 {
1174 	struct disk_part_tbl *old_ptbl =
1175 		rcu_dereference_protected(disk->part_tbl, 1);
1176 
1177 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1178 
1179 	if (old_ptbl) {
1180 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1181 		kfree_rcu(old_ptbl, rcu_head);
1182 	}
1183 }
1184 
1185 /**
1186  * disk_expand_part_tbl - expand disk->part_tbl
1187  * @disk: disk to expand part_tbl for
1188  * @partno: expand such that this partno can fit in
1189  *
1190  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1191  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1192  *
1193  * LOCKING:
1194  * Matching bd_mutex locked or the caller is the only user of @disk.
1195  * Might sleep.
1196  *
1197  * RETURNS:
1198  * 0 on success, -errno on failure.
1199  */
1200 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1201 {
1202 	struct disk_part_tbl *old_ptbl =
1203 		rcu_dereference_protected(disk->part_tbl, 1);
1204 	struct disk_part_tbl *new_ptbl;
1205 	int len = old_ptbl ? old_ptbl->len : 0;
1206 	int i, target;
1207 	size_t size;
1208 
1209 	/*
1210 	 * check for int overflow, since we can get here from blkpg_ioctl()
1211 	 * with a user passed 'partno'.
1212 	 */
1213 	target = partno + 1;
1214 	if (target < 0)
1215 		return -EINVAL;
1216 
1217 	/* disk_max_parts() is zero during initialization, ignore if so */
1218 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1219 		return -EINVAL;
1220 
1221 	if (target <= len)
1222 		return 0;
1223 
1224 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1225 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1226 	if (!new_ptbl)
1227 		return -ENOMEM;
1228 
1229 	new_ptbl->len = target;
1230 
1231 	for (i = 0; i < len; i++)
1232 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1233 
1234 	disk_replace_part_tbl(disk, new_ptbl);
1235 	return 0;
1236 }
1237 
1238 static void disk_release(struct device *dev)
1239 {
1240 	struct gendisk *disk = dev_to_disk(dev);
1241 
1242 	blk_free_devt(dev->devt);
1243 	disk_release_events(disk);
1244 	kfree(disk->random);
1245 	disk_replace_part_tbl(disk, NULL);
1246 	hd_free_part(&disk->part0);
1247 	if (disk->queue)
1248 		blk_put_queue(disk->queue);
1249 	kfree(disk);
1250 }
1251 struct class block_class = {
1252 	.name		= "block",
1253 };
1254 
1255 static char *block_devnode(struct device *dev, umode_t *mode,
1256 			   kuid_t *uid, kgid_t *gid)
1257 {
1258 	struct gendisk *disk = dev_to_disk(dev);
1259 
1260 	if (disk->devnode)
1261 		return disk->devnode(disk, mode);
1262 	return NULL;
1263 }
1264 
1265 static const struct device_type disk_type = {
1266 	.name		= "disk",
1267 	.groups		= disk_attr_groups,
1268 	.release	= disk_release,
1269 	.devnode	= block_devnode,
1270 };
1271 
1272 #ifdef CONFIG_PROC_FS
1273 /*
1274  * aggregate disk stat collector.  Uses the same stats that the sysfs
1275  * entries do, above, but makes them available through one seq_file.
1276  *
1277  * The output looks suspiciously like /proc/partitions with a bunch of
1278  * extra fields.
1279  */
1280 static int diskstats_show(struct seq_file *seqf, void *v)
1281 {
1282 	struct gendisk *gp = v;
1283 	struct disk_part_iter piter;
1284 	struct hd_struct *hd;
1285 	char buf[BDEVNAME_SIZE];
1286 	unsigned int inflight[2];
1287 	int cpu;
1288 
1289 	/*
1290 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1291 		seq_puts(seqf,	"major minor name"
1292 				"     rio rmerge rsect ruse wio wmerge "
1293 				"wsect wuse running use aveq"
1294 				"\n\n");
1295 	*/
1296 
1297 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1298 	while ((hd = disk_part_iter_next(&piter))) {
1299 		cpu = part_stat_lock();
1300 		part_round_stats(gp->queue, cpu, hd);
1301 		part_stat_unlock();
1302 		part_in_flight(gp->queue, hd, inflight);
1303 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1304 			   "%u %lu %lu %lu %u %u %u %u\n",
1305 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1306 			   disk_name(gp, hd->partno, buf),
1307 			   part_stat_read(hd, ios[READ]),
1308 			   part_stat_read(hd, merges[READ]),
1309 			   part_stat_read(hd, sectors[READ]),
1310 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1311 			   part_stat_read(hd, ios[WRITE]),
1312 			   part_stat_read(hd, merges[WRITE]),
1313 			   part_stat_read(hd, sectors[WRITE]),
1314 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1315 			   inflight[0],
1316 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1317 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1318 			);
1319 	}
1320 	disk_part_iter_exit(&piter);
1321 
1322 	return 0;
1323 }
1324 
1325 static const struct seq_operations diskstats_op = {
1326 	.start	= disk_seqf_start,
1327 	.next	= disk_seqf_next,
1328 	.stop	= disk_seqf_stop,
1329 	.show	= diskstats_show
1330 };
1331 
1332 static int diskstats_open(struct inode *inode, struct file *file)
1333 {
1334 	return seq_open(file, &diskstats_op);
1335 }
1336 
1337 static const struct file_operations proc_diskstats_operations = {
1338 	.open		= diskstats_open,
1339 	.read		= seq_read,
1340 	.llseek		= seq_lseek,
1341 	.release	= seq_release,
1342 };
1343 
1344 static int __init proc_genhd_init(void)
1345 {
1346 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1347 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1348 	return 0;
1349 }
1350 module_init(proc_genhd_init);
1351 #endif /* CONFIG_PROC_FS */
1352 
1353 dev_t blk_lookup_devt(const char *name, int partno)
1354 {
1355 	dev_t devt = MKDEV(0, 0);
1356 	struct class_dev_iter iter;
1357 	struct device *dev;
1358 
1359 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1360 	while ((dev = class_dev_iter_next(&iter))) {
1361 		struct gendisk *disk = dev_to_disk(dev);
1362 		struct hd_struct *part;
1363 
1364 		if (strcmp(dev_name(dev), name))
1365 			continue;
1366 
1367 		if (partno < disk->minors) {
1368 			/* We need to return the right devno, even
1369 			 * if the partition doesn't exist yet.
1370 			 */
1371 			devt = MKDEV(MAJOR(dev->devt),
1372 				     MINOR(dev->devt) + partno);
1373 			break;
1374 		}
1375 		part = disk_get_part(disk, partno);
1376 		if (part) {
1377 			devt = part_devt(part);
1378 			disk_put_part(part);
1379 			break;
1380 		}
1381 		disk_put_part(part);
1382 	}
1383 	class_dev_iter_exit(&iter);
1384 	return devt;
1385 }
1386 EXPORT_SYMBOL(blk_lookup_devt);
1387 
1388 struct gendisk *__alloc_disk_node(int minors, int node_id)
1389 {
1390 	struct gendisk *disk;
1391 	struct disk_part_tbl *ptbl;
1392 
1393 	if (minors > DISK_MAX_PARTS) {
1394 		printk(KERN_ERR
1395 			"block: can't allocate more than %d partitions\n",
1396 			DISK_MAX_PARTS);
1397 		minors = DISK_MAX_PARTS;
1398 	}
1399 
1400 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1401 	if (disk) {
1402 		if (!init_part_stats(&disk->part0)) {
1403 			kfree(disk);
1404 			return NULL;
1405 		}
1406 		disk->node_id = node_id;
1407 		if (disk_expand_part_tbl(disk, 0)) {
1408 			free_part_stats(&disk->part0);
1409 			kfree(disk);
1410 			return NULL;
1411 		}
1412 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1413 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1414 
1415 		/*
1416 		 * set_capacity() and get_capacity() currently don't use
1417 		 * seqcounter to read/update the part0->nr_sects. Still init
1418 		 * the counter as we can read the sectors in IO submission
1419 		 * patch using seqence counters.
1420 		 *
1421 		 * TODO: Ideally set_capacity() and get_capacity() should be
1422 		 * converted to make use of bd_mutex and sequence counters.
1423 		 */
1424 		seqcount_init(&disk->part0.nr_sects_seq);
1425 		if (hd_ref_init(&disk->part0)) {
1426 			hd_free_part(&disk->part0);
1427 			kfree(disk);
1428 			return NULL;
1429 		}
1430 
1431 		disk->minors = minors;
1432 		rand_initialize_disk(disk);
1433 		disk_to_dev(disk)->class = &block_class;
1434 		disk_to_dev(disk)->type = &disk_type;
1435 		device_initialize(disk_to_dev(disk));
1436 	}
1437 	return disk;
1438 }
1439 EXPORT_SYMBOL(__alloc_disk_node);
1440 
1441 struct kobject *get_disk(struct gendisk *disk)
1442 {
1443 	struct module *owner;
1444 	struct kobject *kobj;
1445 
1446 	if (!disk->fops)
1447 		return NULL;
1448 	owner = disk->fops->owner;
1449 	if (owner && !try_module_get(owner))
1450 		return NULL;
1451 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1452 	if (kobj == NULL) {
1453 		module_put(owner);
1454 		return NULL;
1455 	}
1456 	return kobj;
1457 
1458 }
1459 
1460 EXPORT_SYMBOL(get_disk);
1461 
1462 void put_disk(struct gendisk *disk)
1463 {
1464 	if (disk)
1465 		kobject_put(&disk_to_dev(disk)->kobj);
1466 }
1467 
1468 EXPORT_SYMBOL(put_disk);
1469 
1470 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1471 {
1472 	char event[] = "DISK_RO=1";
1473 	char *envp[] = { event, NULL };
1474 
1475 	if (!ro)
1476 		event[8] = '0';
1477 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1478 }
1479 
1480 void set_device_ro(struct block_device *bdev, int flag)
1481 {
1482 	bdev->bd_part->policy = flag;
1483 }
1484 
1485 EXPORT_SYMBOL(set_device_ro);
1486 
1487 void set_disk_ro(struct gendisk *disk, int flag)
1488 {
1489 	struct disk_part_iter piter;
1490 	struct hd_struct *part;
1491 
1492 	if (disk->part0.policy != flag) {
1493 		set_disk_ro_uevent(disk, flag);
1494 		disk->part0.policy = flag;
1495 	}
1496 
1497 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1498 	while ((part = disk_part_iter_next(&piter)))
1499 		part->policy = flag;
1500 	disk_part_iter_exit(&piter);
1501 }
1502 
1503 EXPORT_SYMBOL(set_disk_ro);
1504 
1505 int bdev_read_only(struct block_device *bdev)
1506 {
1507 	if (!bdev)
1508 		return 0;
1509 	return bdev->bd_part->policy;
1510 }
1511 
1512 EXPORT_SYMBOL(bdev_read_only);
1513 
1514 int invalidate_partition(struct gendisk *disk, int partno)
1515 {
1516 	int res = 0;
1517 	struct block_device *bdev = bdget_disk(disk, partno);
1518 	if (bdev) {
1519 		fsync_bdev(bdev);
1520 		res = __invalidate_device(bdev, true);
1521 		bdput(bdev);
1522 	}
1523 	return res;
1524 }
1525 
1526 EXPORT_SYMBOL(invalidate_partition);
1527 
1528 /*
1529  * Disk events - monitor disk events like media change and eject request.
1530  */
1531 struct disk_events {
1532 	struct list_head	node;		/* all disk_event's */
1533 	struct gendisk		*disk;		/* the associated disk */
1534 	spinlock_t		lock;
1535 
1536 	struct mutex		block_mutex;	/* protects blocking */
1537 	int			block;		/* event blocking depth */
1538 	unsigned int		pending;	/* events already sent out */
1539 	unsigned int		clearing;	/* events being cleared */
1540 
1541 	long			poll_msecs;	/* interval, -1 for default */
1542 	struct delayed_work	dwork;
1543 };
1544 
1545 static const char *disk_events_strs[] = {
1546 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1547 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1548 };
1549 
1550 static char *disk_uevents[] = {
1551 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1552 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1553 };
1554 
1555 /* list of all disk_events */
1556 static DEFINE_MUTEX(disk_events_mutex);
1557 static LIST_HEAD(disk_events);
1558 
1559 /* disable in-kernel polling by default */
1560 static unsigned long disk_events_dfl_poll_msecs;
1561 
1562 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1563 {
1564 	struct disk_events *ev = disk->ev;
1565 	long intv_msecs = 0;
1566 
1567 	/*
1568 	 * If device-specific poll interval is set, always use it.  If
1569 	 * the default is being used, poll iff there are events which
1570 	 * can't be monitored asynchronously.
1571 	 */
1572 	if (ev->poll_msecs >= 0)
1573 		intv_msecs = ev->poll_msecs;
1574 	else if (disk->events & ~disk->async_events)
1575 		intv_msecs = disk_events_dfl_poll_msecs;
1576 
1577 	return msecs_to_jiffies(intv_msecs);
1578 }
1579 
1580 /**
1581  * disk_block_events - block and flush disk event checking
1582  * @disk: disk to block events for
1583  *
1584  * On return from this function, it is guaranteed that event checking
1585  * isn't in progress and won't happen until unblocked by
1586  * disk_unblock_events().  Events blocking is counted and the actual
1587  * unblocking happens after the matching number of unblocks are done.
1588  *
1589  * Note that this intentionally does not block event checking from
1590  * disk_clear_events().
1591  *
1592  * CONTEXT:
1593  * Might sleep.
1594  */
1595 void disk_block_events(struct gendisk *disk)
1596 {
1597 	struct disk_events *ev = disk->ev;
1598 	unsigned long flags;
1599 	bool cancel;
1600 
1601 	if (!ev)
1602 		return;
1603 
1604 	/*
1605 	 * Outer mutex ensures that the first blocker completes canceling
1606 	 * the event work before further blockers are allowed to finish.
1607 	 */
1608 	mutex_lock(&ev->block_mutex);
1609 
1610 	spin_lock_irqsave(&ev->lock, flags);
1611 	cancel = !ev->block++;
1612 	spin_unlock_irqrestore(&ev->lock, flags);
1613 
1614 	if (cancel)
1615 		cancel_delayed_work_sync(&disk->ev->dwork);
1616 
1617 	mutex_unlock(&ev->block_mutex);
1618 }
1619 
1620 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1621 {
1622 	struct disk_events *ev = disk->ev;
1623 	unsigned long intv;
1624 	unsigned long flags;
1625 
1626 	spin_lock_irqsave(&ev->lock, flags);
1627 
1628 	if (WARN_ON_ONCE(ev->block <= 0))
1629 		goto out_unlock;
1630 
1631 	if (--ev->block)
1632 		goto out_unlock;
1633 
1634 	intv = disk_events_poll_jiffies(disk);
1635 	if (check_now)
1636 		queue_delayed_work(system_freezable_power_efficient_wq,
1637 				&ev->dwork, 0);
1638 	else if (intv)
1639 		queue_delayed_work(system_freezable_power_efficient_wq,
1640 				&ev->dwork, intv);
1641 out_unlock:
1642 	spin_unlock_irqrestore(&ev->lock, flags);
1643 }
1644 
1645 /**
1646  * disk_unblock_events - unblock disk event checking
1647  * @disk: disk to unblock events for
1648  *
1649  * Undo disk_block_events().  When the block count reaches zero, it
1650  * starts events polling if configured.
1651  *
1652  * CONTEXT:
1653  * Don't care.  Safe to call from irq context.
1654  */
1655 void disk_unblock_events(struct gendisk *disk)
1656 {
1657 	if (disk->ev)
1658 		__disk_unblock_events(disk, false);
1659 }
1660 
1661 /**
1662  * disk_flush_events - schedule immediate event checking and flushing
1663  * @disk: disk to check and flush events for
1664  * @mask: events to flush
1665  *
1666  * Schedule immediate event checking on @disk if not blocked.  Events in
1667  * @mask are scheduled to be cleared from the driver.  Note that this
1668  * doesn't clear the events from @disk->ev.
1669  *
1670  * CONTEXT:
1671  * If @mask is non-zero must be called with bdev->bd_mutex held.
1672  */
1673 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1674 {
1675 	struct disk_events *ev = disk->ev;
1676 
1677 	if (!ev)
1678 		return;
1679 
1680 	spin_lock_irq(&ev->lock);
1681 	ev->clearing |= mask;
1682 	if (!ev->block)
1683 		mod_delayed_work(system_freezable_power_efficient_wq,
1684 				&ev->dwork, 0);
1685 	spin_unlock_irq(&ev->lock);
1686 }
1687 
1688 /**
1689  * disk_clear_events - synchronously check, clear and return pending events
1690  * @disk: disk to fetch and clear events from
1691  * @mask: mask of events to be fetched and cleared
1692  *
1693  * Disk events are synchronously checked and pending events in @mask
1694  * are cleared and returned.  This ignores the block count.
1695  *
1696  * CONTEXT:
1697  * Might sleep.
1698  */
1699 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1700 {
1701 	const struct block_device_operations *bdops = disk->fops;
1702 	struct disk_events *ev = disk->ev;
1703 	unsigned int pending;
1704 	unsigned int clearing = mask;
1705 
1706 	if (!ev) {
1707 		/* for drivers still using the old ->media_changed method */
1708 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1709 		    bdops->media_changed && bdops->media_changed(disk))
1710 			return DISK_EVENT_MEDIA_CHANGE;
1711 		return 0;
1712 	}
1713 
1714 	disk_block_events(disk);
1715 
1716 	/*
1717 	 * store the union of mask and ev->clearing on the stack so that the
1718 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1719 	 * can still be modified even if events are blocked).
1720 	 */
1721 	spin_lock_irq(&ev->lock);
1722 	clearing |= ev->clearing;
1723 	ev->clearing = 0;
1724 	spin_unlock_irq(&ev->lock);
1725 
1726 	disk_check_events(ev, &clearing);
1727 	/*
1728 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1729 	 * middle of this function, so we want to run the workfn without delay.
1730 	 */
1731 	__disk_unblock_events(disk, ev->clearing ? true : false);
1732 
1733 	/* then, fetch and clear pending events */
1734 	spin_lock_irq(&ev->lock);
1735 	pending = ev->pending & mask;
1736 	ev->pending &= ~mask;
1737 	spin_unlock_irq(&ev->lock);
1738 	WARN_ON_ONCE(clearing & mask);
1739 
1740 	return pending;
1741 }
1742 
1743 /*
1744  * Separate this part out so that a different pointer for clearing_ptr can be
1745  * passed in for disk_clear_events.
1746  */
1747 static void disk_events_workfn(struct work_struct *work)
1748 {
1749 	struct delayed_work *dwork = to_delayed_work(work);
1750 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1751 
1752 	disk_check_events(ev, &ev->clearing);
1753 }
1754 
1755 static void disk_check_events(struct disk_events *ev,
1756 			      unsigned int *clearing_ptr)
1757 {
1758 	struct gendisk *disk = ev->disk;
1759 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1760 	unsigned int clearing = *clearing_ptr;
1761 	unsigned int events;
1762 	unsigned long intv;
1763 	int nr_events = 0, i;
1764 
1765 	/* check events */
1766 	events = disk->fops->check_events(disk, clearing);
1767 
1768 	/* accumulate pending events and schedule next poll if necessary */
1769 	spin_lock_irq(&ev->lock);
1770 
1771 	events &= ~ev->pending;
1772 	ev->pending |= events;
1773 	*clearing_ptr &= ~clearing;
1774 
1775 	intv = disk_events_poll_jiffies(disk);
1776 	if (!ev->block && intv)
1777 		queue_delayed_work(system_freezable_power_efficient_wq,
1778 				&ev->dwork, intv);
1779 
1780 	spin_unlock_irq(&ev->lock);
1781 
1782 	/*
1783 	 * Tell userland about new events.  Only the events listed in
1784 	 * @disk->events are reported.  Unlisted events are processed the
1785 	 * same internally but never get reported to userland.
1786 	 */
1787 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1788 		if (events & disk->events & (1 << i))
1789 			envp[nr_events++] = disk_uevents[i];
1790 
1791 	if (nr_events)
1792 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1793 }
1794 
1795 /*
1796  * A disk events enabled device has the following sysfs nodes under
1797  * its /sys/block/X/ directory.
1798  *
1799  * events		: list of all supported events
1800  * events_async		: list of events which can be detected w/o polling
1801  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1802  */
1803 static ssize_t __disk_events_show(unsigned int events, char *buf)
1804 {
1805 	const char *delim = "";
1806 	ssize_t pos = 0;
1807 	int i;
1808 
1809 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1810 		if (events & (1 << i)) {
1811 			pos += sprintf(buf + pos, "%s%s",
1812 				       delim, disk_events_strs[i]);
1813 			delim = " ";
1814 		}
1815 	if (pos)
1816 		pos += sprintf(buf + pos, "\n");
1817 	return pos;
1818 }
1819 
1820 static ssize_t disk_events_show(struct device *dev,
1821 				struct device_attribute *attr, char *buf)
1822 {
1823 	struct gendisk *disk = dev_to_disk(dev);
1824 
1825 	return __disk_events_show(disk->events, buf);
1826 }
1827 
1828 static ssize_t disk_events_async_show(struct device *dev,
1829 				      struct device_attribute *attr, char *buf)
1830 {
1831 	struct gendisk *disk = dev_to_disk(dev);
1832 
1833 	return __disk_events_show(disk->async_events, buf);
1834 }
1835 
1836 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1837 					   struct device_attribute *attr,
1838 					   char *buf)
1839 {
1840 	struct gendisk *disk = dev_to_disk(dev);
1841 
1842 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1843 }
1844 
1845 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1846 					    struct device_attribute *attr,
1847 					    const char *buf, size_t count)
1848 {
1849 	struct gendisk *disk = dev_to_disk(dev);
1850 	long intv;
1851 
1852 	if (!count || !sscanf(buf, "%ld", &intv))
1853 		return -EINVAL;
1854 
1855 	if (intv < 0 && intv != -1)
1856 		return -EINVAL;
1857 
1858 	disk_block_events(disk);
1859 	disk->ev->poll_msecs = intv;
1860 	__disk_unblock_events(disk, true);
1861 
1862 	return count;
1863 }
1864 
1865 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1866 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1867 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1868 			 disk_events_poll_msecs_show,
1869 			 disk_events_poll_msecs_store);
1870 
1871 static const struct attribute *disk_events_attrs[] = {
1872 	&dev_attr_events.attr,
1873 	&dev_attr_events_async.attr,
1874 	&dev_attr_events_poll_msecs.attr,
1875 	NULL,
1876 };
1877 
1878 /*
1879  * The default polling interval can be specified by the kernel
1880  * parameter block.events_dfl_poll_msecs which defaults to 0
1881  * (disable).  This can also be modified runtime by writing to
1882  * /sys/module/block/events_dfl_poll_msecs.
1883  */
1884 static int disk_events_set_dfl_poll_msecs(const char *val,
1885 					  const struct kernel_param *kp)
1886 {
1887 	struct disk_events *ev;
1888 	int ret;
1889 
1890 	ret = param_set_ulong(val, kp);
1891 	if (ret < 0)
1892 		return ret;
1893 
1894 	mutex_lock(&disk_events_mutex);
1895 
1896 	list_for_each_entry(ev, &disk_events, node)
1897 		disk_flush_events(ev->disk, 0);
1898 
1899 	mutex_unlock(&disk_events_mutex);
1900 
1901 	return 0;
1902 }
1903 
1904 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1905 	.set	= disk_events_set_dfl_poll_msecs,
1906 	.get	= param_get_ulong,
1907 };
1908 
1909 #undef MODULE_PARAM_PREFIX
1910 #define MODULE_PARAM_PREFIX	"block."
1911 
1912 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1913 		&disk_events_dfl_poll_msecs, 0644);
1914 
1915 /*
1916  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1917  */
1918 static void disk_alloc_events(struct gendisk *disk)
1919 {
1920 	struct disk_events *ev;
1921 
1922 	if (!disk->fops->check_events)
1923 		return;
1924 
1925 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1926 	if (!ev) {
1927 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1928 		return;
1929 	}
1930 
1931 	INIT_LIST_HEAD(&ev->node);
1932 	ev->disk = disk;
1933 	spin_lock_init(&ev->lock);
1934 	mutex_init(&ev->block_mutex);
1935 	ev->block = 1;
1936 	ev->poll_msecs = -1;
1937 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1938 
1939 	disk->ev = ev;
1940 }
1941 
1942 static void disk_add_events(struct gendisk *disk)
1943 {
1944 	if (!disk->ev)
1945 		return;
1946 
1947 	/* FIXME: error handling */
1948 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1949 		pr_warn("%s: failed to create sysfs files for events\n",
1950 			disk->disk_name);
1951 
1952 	mutex_lock(&disk_events_mutex);
1953 	list_add_tail(&disk->ev->node, &disk_events);
1954 	mutex_unlock(&disk_events_mutex);
1955 
1956 	/*
1957 	 * Block count is initialized to 1 and the following initial
1958 	 * unblock kicks it into action.
1959 	 */
1960 	__disk_unblock_events(disk, true);
1961 }
1962 
1963 static void disk_del_events(struct gendisk *disk)
1964 {
1965 	if (!disk->ev)
1966 		return;
1967 
1968 	disk_block_events(disk);
1969 
1970 	mutex_lock(&disk_events_mutex);
1971 	list_del_init(&disk->ev->node);
1972 	mutex_unlock(&disk_events_mutex);
1973 
1974 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1975 }
1976 
1977 static void disk_release_events(struct gendisk *disk)
1978 {
1979 	/* the block count should be 1 from disk_del_events() */
1980 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1981 	kfree(disk->ev);
1982 }
1983