xref: /openbmc/linux/block/genhd.c (revision aac5987a)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 /**
49  * disk_get_part - get partition
50  * @disk: disk to look partition from
51  * @partno: partition number
52  *
53  * Look for partition @partno from @disk.  If found, increment
54  * reference count and return it.
55  *
56  * CONTEXT:
57  * Don't care.
58  *
59  * RETURNS:
60  * Pointer to the found partition on success, NULL if not found.
61  */
62 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
63 {
64 	struct hd_struct *part = NULL;
65 	struct disk_part_tbl *ptbl;
66 
67 	if (unlikely(partno < 0))
68 		return NULL;
69 
70 	rcu_read_lock();
71 
72 	ptbl = rcu_dereference(disk->part_tbl);
73 	if (likely(partno < ptbl->len)) {
74 		part = rcu_dereference(ptbl->part[partno]);
75 		if (part)
76 			get_device(part_to_dev(part));
77 	}
78 
79 	rcu_read_unlock();
80 
81 	return part;
82 }
83 EXPORT_SYMBOL_GPL(disk_get_part);
84 
85 /**
86  * disk_part_iter_init - initialize partition iterator
87  * @piter: iterator to initialize
88  * @disk: disk to iterate over
89  * @flags: DISK_PITER_* flags
90  *
91  * Initialize @piter so that it iterates over partitions of @disk.
92  *
93  * CONTEXT:
94  * Don't care.
95  */
96 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
97 			  unsigned int flags)
98 {
99 	struct disk_part_tbl *ptbl;
100 
101 	rcu_read_lock();
102 	ptbl = rcu_dereference(disk->part_tbl);
103 
104 	piter->disk = disk;
105 	piter->part = NULL;
106 
107 	if (flags & DISK_PITER_REVERSE)
108 		piter->idx = ptbl->len - 1;
109 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
110 		piter->idx = 0;
111 	else
112 		piter->idx = 1;
113 
114 	piter->flags = flags;
115 
116 	rcu_read_unlock();
117 }
118 EXPORT_SYMBOL_GPL(disk_part_iter_init);
119 
120 /**
121  * disk_part_iter_next - proceed iterator to the next partition and return it
122  * @piter: iterator of interest
123  *
124  * Proceed @piter to the next partition and return it.
125  *
126  * CONTEXT:
127  * Don't care.
128  */
129 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
130 {
131 	struct disk_part_tbl *ptbl;
132 	int inc, end;
133 
134 	/* put the last partition */
135 	disk_put_part(piter->part);
136 	piter->part = NULL;
137 
138 	/* get part_tbl */
139 	rcu_read_lock();
140 	ptbl = rcu_dereference(piter->disk->part_tbl);
141 
142 	/* determine iteration parameters */
143 	if (piter->flags & DISK_PITER_REVERSE) {
144 		inc = -1;
145 		if (piter->flags & (DISK_PITER_INCL_PART0 |
146 				    DISK_PITER_INCL_EMPTY_PART0))
147 			end = -1;
148 		else
149 			end = 0;
150 	} else {
151 		inc = 1;
152 		end = ptbl->len;
153 	}
154 
155 	/* iterate to the next partition */
156 	for (; piter->idx != end; piter->idx += inc) {
157 		struct hd_struct *part;
158 
159 		part = rcu_dereference(ptbl->part[piter->idx]);
160 		if (!part)
161 			continue;
162 		if (!part_nr_sects_read(part) &&
163 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
164 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
165 		      piter->idx == 0))
166 			continue;
167 
168 		get_device(part_to_dev(part));
169 		piter->part = part;
170 		piter->idx += inc;
171 		break;
172 	}
173 
174 	rcu_read_unlock();
175 
176 	return piter->part;
177 }
178 EXPORT_SYMBOL_GPL(disk_part_iter_next);
179 
180 /**
181  * disk_part_iter_exit - finish up partition iteration
182  * @piter: iter of interest
183  *
184  * Called when iteration is over.  Cleans up @piter.
185  *
186  * CONTEXT:
187  * Don't care.
188  */
189 void disk_part_iter_exit(struct disk_part_iter *piter)
190 {
191 	disk_put_part(piter->part);
192 	piter->part = NULL;
193 }
194 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
195 
196 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
197 {
198 	return part->start_sect <= sector &&
199 		sector < part->start_sect + part_nr_sects_read(part);
200 }
201 
202 /**
203  * disk_map_sector_rcu - map sector to partition
204  * @disk: gendisk of interest
205  * @sector: sector to map
206  *
207  * Find out which partition @sector maps to on @disk.  This is
208  * primarily used for stats accounting.
209  *
210  * CONTEXT:
211  * RCU read locked.  The returned partition pointer is valid only
212  * while preemption is disabled.
213  *
214  * RETURNS:
215  * Found partition on success, part0 is returned if no partition matches
216  */
217 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
218 {
219 	struct disk_part_tbl *ptbl;
220 	struct hd_struct *part;
221 	int i;
222 
223 	ptbl = rcu_dereference(disk->part_tbl);
224 
225 	part = rcu_dereference(ptbl->last_lookup);
226 	if (part && sector_in_part(part, sector))
227 		return part;
228 
229 	for (i = 1; i < ptbl->len; i++) {
230 		part = rcu_dereference(ptbl->part[i]);
231 
232 		if (part && sector_in_part(part, sector)) {
233 			rcu_assign_pointer(ptbl->last_lookup, part);
234 			return part;
235 		}
236 	}
237 	return &disk->part0;
238 }
239 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
240 
241 /*
242  * Can be deleted altogether. Later.
243  *
244  */
245 static struct blk_major_name {
246 	struct blk_major_name *next;
247 	int major;
248 	char name[16];
249 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
250 
251 /* index in the above - for now: assume no multimajor ranges */
252 static inline int major_to_index(unsigned major)
253 {
254 	return major % BLKDEV_MAJOR_HASH_SIZE;
255 }
256 
257 #ifdef CONFIG_PROC_FS
258 void blkdev_show(struct seq_file *seqf, off_t offset)
259 {
260 	struct blk_major_name *dp;
261 
262 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
263 		mutex_lock(&block_class_lock);
264 		for (dp = major_names[offset]; dp; dp = dp->next)
265 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
266 		mutex_unlock(&block_class_lock);
267 	}
268 }
269 #endif /* CONFIG_PROC_FS */
270 
271 /**
272  * register_blkdev - register a new block device
273  *
274  * @major: the requested major device number [1..255]. If @major=0, try to
275  *         allocate any unused major number.
276  * @name: the name of the new block device as a zero terminated string
277  *
278  * The @name must be unique within the system.
279  *
280  * The return value depends on the @major input parameter.
281  *  - if a major device number was requested in range [1..255] then the
282  *    function returns zero on success, or a negative error code
283  *  - if any unused major number was requested with @major=0 parameter
284  *    then the return value is the allocated major number in range
285  *    [1..255] or a negative error code otherwise
286  */
287 int register_blkdev(unsigned int major, const char *name)
288 {
289 	struct blk_major_name **n, *p;
290 	int index, ret = 0;
291 
292 	mutex_lock(&block_class_lock);
293 
294 	/* temporary */
295 	if (major == 0) {
296 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
297 			if (major_names[index] == NULL)
298 				break;
299 		}
300 
301 		if (index == 0) {
302 			printk("register_blkdev: failed to get major for %s\n",
303 			       name);
304 			ret = -EBUSY;
305 			goto out;
306 		}
307 		major = index;
308 		ret = major;
309 	}
310 
311 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
312 	if (p == NULL) {
313 		ret = -ENOMEM;
314 		goto out;
315 	}
316 
317 	p->major = major;
318 	strlcpy(p->name, name, sizeof(p->name));
319 	p->next = NULL;
320 	index = major_to_index(major);
321 
322 	for (n = &major_names[index]; *n; n = &(*n)->next) {
323 		if ((*n)->major == major)
324 			break;
325 	}
326 	if (!*n)
327 		*n = p;
328 	else
329 		ret = -EBUSY;
330 
331 	if (ret < 0) {
332 		printk("register_blkdev: cannot get major %d for %s\n",
333 		       major, name);
334 		kfree(p);
335 	}
336 out:
337 	mutex_unlock(&block_class_lock);
338 	return ret;
339 }
340 
341 EXPORT_SYMBOL(register_blkdev);
342 
343 void unregister_blkdev(unsigned int major, const char *name)
344 {
345 	struct blk_major_name **n;
346 	struct blk_major_name *p = NULL;
347 	int index = major_to_index(major);
348 
349 	mutex_lock(&block_class_lock);
350 	for (n = &major_names[index]; *n; n = &(*n)->next)
351 		if ((*n)->major == major)
352 			break;
353 	if (!*n || strcmp((*n)->name, name)) {
354 		WARN_ON(1);
355 	} else {
356 		p = *n;
357 		*n = p->next;
358 	}
359 	mutex_unlock(&block_class_lock);
360 	kfree(p);
361 }
362 
363 EXPORT_SYMBOL(unregister_blkdev);
364 
365 static struct kobj_map *bdev_map;
366 
367 /**
368  * blk_mangle_minor - scatter minor numbers apart
369  * @minor: minor number to mangle
370  *
371  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
372  * is enabled.  Mangling twice gives the original value.
373  *
374  * RETURNS:
375  * Mangled value.
376  *
377  * CONTEXT:
378  * Don't care.
379  */
380 static int blk_mangle_minor(int minor)
381 {
382 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
383 	int i;
384 
385 	for (i = 0; i < MINORBITS / 2; i++) {
386 		int low = minor & (1 << i);
387 		int high = minor & (1 << (MINORBITS - 1 - i));
388 		int distance = MINORBITS - 1 - 2 * i;
389 
390 		minor ^= low | high;	/* clear both bits */
391 		low <<= distance;	/* swap the positions */
392 		high >>= distance;
393 		minor |= low | high;	/* and set */
394 	}
395 #endif
396 	return minor;
397 }
398 
399 /**
400  * blk_alloc_devt - allocate a dev_t for a partition
401  * @part: partition to allocate dev_t for
402  * @devt: out parameter for resulting dev_t
403  *
404  * Allocate a dev_t for block device.
405  *
406  * RETURNS:
407  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
408  * failure.
409  *
410  * CONTEXT:
411  * Might sleep.
412  */
413 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
414 {
415 	struct gendisk *disk = part_to_disk(part);
416 	int idx;
417 
418 	/* in consecutive minor range? */
419 	if (part->partno < disk->minors) {
420 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
421 		return 0;
422 	}
423 
424 	/* allocate ext devt */
425 	idr_preload(GFP_KERNEL);
426 
427 	spin_lock_bh(&ext_devt_lock);
428 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
429 	spin_unlock_bh(&ext_devt_lock);
430 
431 	idr_preload_end();
432 	if (idx < 0)
433 		return idx == -ENOSPC ? -EBUSY : idx;
434 
435 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
436 	return 0;
437 }
438 
439 /**
440  * blk_free_devt - free a dev_t
441  * @devt: dev_t to free
442  *
443  * Free @devt which was allocated using blk_alloc_devt().
444  *
445  * CONTEXT:
446  * Might sleep.
447  */
448 void blk_free_devt(dev_t devt)
449 {
450 	if (devt == MKDEV(0, 0))
451 		return;
452 
453 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
454 		spin_lock_bh(&ext_devt_lock);
455 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
456 		spin_unlock_bh(&ext_devt_lock);
457 	}
458 }
459 
460 static char *bdevt_str(dev_t devt, char *buf)
461 {
462 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
463 		char tbuf[BDEVT_SIZE];
464 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
465 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
466 	} else
467 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
468 
469 	return buf;
470 }
471 
472 /*
473  * Register device numbers dev..(dev+range-1)
474  * range must be nonzero
475  * The hash chain is sorted on range, so that subranges can override.
476  */
477 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
478 			 struct kobject *(*probe)(dev_t, int *, void *),
479 			 int (*lock)(dev_t, void *), void *data)
480 {
481 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
482 }
483 
484 EXPORT_SYMBOL(blk_register_region);
485 
486 void blk_unregister_region(dev_t devt, unsigned long range)
487 {
488 	kobj_unmap(bdev_map, devt, range);
489 }
490 
491 EXPORT_SYMBOL(blk_unregister_region);
492 
493 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
494 {
495 	struct gendisk *p = data;
496 
497 	return &disk_to_dev(p)->kobj;
498 }
499 
500 static int exact_lock(dev_t devt, void *data)
501 {
502 	struct gendisk *p = data;
503 
504 	if (!get_disk(p))
505 		return -1;
506 	return 0;
507 }
508 
509 static void register_disk(struct device *parent, struct gendisk *disk)
510 {
511 	struct device *ddev = disk_to_dev(disk);
512 	struct block_device *bdev;
513 	struct disk_part_iter piter;
514 	struct hd_struct *part;
515 	int err;
516 
517 	ddev->parent = parent;
518 
519 	dev_set_name(ddev, "%s", disk->disk_name);
520 
521 	/* delay uevents, until we scanned partition table */
522 	dev_set_uevent_suppress(ddev, 1);
523 
524 	if (device_add(ddev))
525 		return;
526 	if (!sysfs_deprecated) {
527 		err = sysfs_create_link(block_depr, &ddev->kobj,
528 					kobject_name(&ddev->kobj));
529 		if (err) {
530 			device_del(ddev);
531 			return;
532 		}
533 	}
534 
535 	/*
536 	 * avoid probable deadlock caused by allocating memory with
537 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
538 	 * devices
539 	 */
540 	pm_runtime_set_memalloc_noio(ddev, true);
541 
542 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
543 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
544 
545 	/* No minors to use for partitions */
546 	if (!disk_part_scan_enabled(disk))
547 		goto exit;
548 
549 	/* No such device (e.g., media were just removed) */
550 	if (!get_capacity(disk))
551 		goto exit;
552 
553 	bdev = bdget_disk(disk, 0);
554 	if (!bdev)
555 		goto exit;
556 
557 	bdev->bd_invalidated = 1;
558 	err = blkdev_get(bdev, FMODE_READ, NULL);
559 	if (err < 0)
560 		goto exit;
561 	blkdev_put(bdev, FMODE_READ);
562 
563 exit:
564 	/* announce disk after possible partitions are created */
565 	dev_set_uevent_suppress(ddev, 0);
566 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
567 
568 	/* announce possible partitions */
569 	disk_part_iter_init(&piter, disk, 0);
570 	while ((part = disk_part_iter_next(&piter)))
571 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
572 	disk_part_iter_exit(&piter);
573 }
574 
575 void put_disk_devt(struct disk_devt *disk_devt)
576 {
577 	if (disk_devt && atomic_dec_and_test(&disk_devt->count))
578 		disk_devt->release(disk_devt);
579 }
580 EXPORT_SYMBOL(put_disk_devt);
581 
582 void get_disk_devt(struct disk_devt *disk_devt)
583 {
584 	if (disk_devt)
585 		atomic_inc(&disk_devt->count);
586 }
587 EXPORT_SYMBOL(get_disk_devt);
588 
589 /**
590  * device_add_disk - add partitioning information to kernel list
591  * @parent: parent device for the disk
592  * @disk: per-device partitioning information
593  *
594  * This function registers the partitioning information in @disk
595  * with the kernel.
596  *
597  * FIXME: error handling
598  */
599 void device_add_disk(struct device *parent, struct gendisk *disk)
600 {
601 	struct backing_dev_info *bdi;
602 	dev_t devt;
603 	int retval;
604 
605 	/* minors == 0 indicates to use ext devt from part0 and should
606 	 * be accompanied with EXT_DEVT flag.  Make sure all
607 	 * parameters make sense.
608 	 */
609 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
610 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
611 
612 	disk->flags |= GENHD_FL_UP;
613 
614 	retval = blk_alloc_devt(&disk->part0, &devt);
615 	if (retval) {
616 		WARN_ON(1);
617 		return;
618 	}
619 	disk_to_dev(disk)->devt = devt;
620 
621 	/* ->major and ->first_minor aren't supposed to be
622 	 * dereferenced from here on, but set them just in case.
623 	 */
624 	disk->major = MAJOR(devt);
625 	disk->first_minor = MINOR(devt);
626 
627 	disk_alloc_events(disk);
628 
629 	/*
630 	 * Take a reference on the devt and assign it to queue since it
631 	 * must not be reallocated while the bdi is registered
632 	 */
633 	disk->queue->disk_devt = disk->disk_devt;
634 	get_disk_devt(disk->disk_devt);
635 
636 	/* Register BDI before referencing it from bdev */
637 	bdi = disk->queue->backing_dev_info;
638 	bdi_register_owner(bdi, disk_to_dev(disk));
639 
640 	blk_register_region(disk_devt(disk), disk->minors, NULL,
641 			    exact_match, exact_lock, disk);
642 	register_disk(parent, disk);
643 	blk_register_queue(disk);
644 
645 	/*
646 	 * Take an extra ref on queue which will be put on disk_release()
647 	 * so that it sticks around as long as @disk is there.
648 	 */
649 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
650 
651 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
652 				   "bdi");
653 	WARN_ON(retval);
654 
655 	disk_add_events(disk);
656 	blk_integrity_add(disk);
657 }
658 EXPORT_SYMBOL(device_add_disk);
659 
660 void del_gendisk(struct gendisk *disk)
661 {
662 	struct disk_part_iter piter;
663 	struct hd_struct *part;
664 
665 	blk_integrity_del(disk);
666 	disk_del_events(disk);
667 
668 	/* invalidate stuff */
669 	disk_part_iter_init(&piter, disk,
670 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
671 	while ((part = disk_part_iter_next(&piter))) {
672 		invalidate_partition(disk, part->partno);
673 		bdev_unhash_inode(part_devt(part));
674 		delete_partition(disk, part->partno);
675 	}
676 	disk_part_iter_exit(&piter);
677 
678 	invalidate_partition(disk, 0);
679 	bdev_unhash_inode(disk_devt(disk));
680 	set_capacity(disk, 0);
681 	disk->flags &= ~GENHD_FL_UP;
682 
683 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
684 	/*
685 	 * Unregister bdi before releasing device numbers (as they can get
686 	 * reused and we'd get clashes in sysfs).
687 	 */
688 	bdi_unregister(disk->queue->backing_dev_info);
689 	blk_unregister_queue(disk);
690 	blk_unregister_region(disk_devt(disk), disk->minors);
691 
692 	part_stat_set_all(&disk->part0, 0);
693 	disk->part0.stamp = 0;
694 
695 	kobject_put(disk->part0.holder_dir);
696 	kobject_put(disk->slave_dir);
697 	if (!sysfs_deprecated)
698 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
699 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
700 	device_del(disk_to_dev(disk));
701 }
702 EXPORT_SYMBOL(del_gendisk);
703 
704 /* sysfs access to bad-blocks list. */
705 static ssize_t disk_badblocks_show(struct device *dev,
706 					struct device_attribute *attr,
707 					char *page)
708 {
709 	struct gendisk *disk = dev_to_disk(dev);
710 
711 	if (!disk->bb)
712 		return sprintf(page, "\n");
713 
714 	return badblocks_show(disk->bb, page, 0);
715 }
716 
717 static ssize_t disk_badblocks_store(struct device *dev,
718 					struct device_attribute *attr,
719 					const char *page, size_t len)
720 {
721 	struct gendisk *disk = dev_to_disk(dev);
722 
723 	if (!disk->bb)
724 		return -ENXIO;
725 
726 	return badblocks_store(disk->bb, page, len, 0);
727 }
728 
729 /**
730  * get_gendisk - get partitioning information for a given device
731  * @devt: device to get partitioning information for
732  * @partno: returned partition index
733  *
734  * This function gets the structure containing partitioning
735  * information for the given device @devt.
736  */
737 struct gendisk *get_gendisk(dev_t devt, int *partno)
738 {
739 	struct gendisk *disk = NULL;
740 
741 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
742 		struct kobject *kobj;
743 
744 		kobj = kobj_lookup(bdev_map, devt, partno);
745 		if (kobj)
746 			disk = dev_to_disk(kobj_to_dev(kobj));
747 	} else {
748 		struct hd_struct *part;
749 
750 		spin_lock_bh(&ext_devt_lock);
751 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
752 		if (part && get_disk(part_to_disk(part))) {
753 			*partno = part->partno;
754 			disk = part_to_disk(part);
755 		}
756 		spin_unlock_bh(&ext_devt_lock);
757 	}
758 
759 	return disk;
760 }
761 EXPORT_SYMBOL(get_gendisk);
762 
763 /**
764  * bdget_disk - do bdget() by gendisk and partition number
765  * @disk: gendisk of interest
766  * @partno: partition number
767  *
768  * Find partition @partno from @disk, do bdget() on it.
769  *
770  * CONTEXT:
771  * Don't care.
772  *
773  * RETURNS:
774  * Resulting block_device on success, NULL on failure.
775  */
776 struct block_device *bdget_disk(struct gendisk *disk, int partno)
777 {
778 	struct hd_struct *part;
779 	struct block_device *bdev = NULL;
780 
781 	part = disk_get_part(disk, partno);
782 	if (part)
783 		bdev = bdget(part_devt(part));
784 	disk_put_part(part);
785 
786 	return bdev;
787 }
788 EXPORT_SYMBOL(bdget_disk);
789 
790 /*
791  * print a full list of all partitions - intended for places where the root
792  * filesystem can't be mounted and thus to give the victim some idea of what
793  * went wrong
794  */
795 void __init printk_all_partitions(void)
796 {
797 	struct class_dev_iter iter;
798 	struct device *dev;
799 
800 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
801 	while ((dev = class_dev_iter_next(&iter))) {
802 		struct gendisk *disk = dev_to_disk(dev);
803 		struct disk_part_iter piter;
804 		struct hd_struct *part;
805 		char name_buf[BDEVNAME_SIZE];
806 		char devt_buf[BDEVT_SIZE];
807 
808 		/*
809 		 * Don't show empty devices or things that have been
810 		 * suppressed
811 		 */
812 		if (get_capacity(disk) == 0 ||
813 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
814 			continue;
815 
816 		/*
817 		 * Note, unlike /proc/partitions, I am showing the
818 		 * numbers in hex - the same format as the root=
819 		 * option takes.
820 		 */
821 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
822 		while ((part = disk_part_iter_next(&piter))) {
823 			bool is_part0 = part == &disk->part0;
824 
825 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
826 			       bdevt_str(part_devt(part), devt_buf),
827 			       (unsigned long long)part_nr_sects_read(part) >> 1
828 			       , disk_name(disk, part->partno, name_buf),
829 			       part->info ? part->info->uuid : "");
830 			if (is_part0) {
831 				if (dev->parent && dev->parent->driver)
832 					printk(" driver: %s\n",
833 					      dev->parent->driver->name);
834 				else
835 					printk(" (driver?)\n");
836 			} else
837 				printk("\n");
838 		}
839 		disk_part_iter_exit(&piter);
840 	}
841 	class_dev_iter_exit(&iter);
842 }
843 
844 #ifdef CONFIG_PROC_FS
845 /* iterator */
846 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
847 {
848 	loff_t skip = *pos;
849 	struct class_dev_iter *iter;
850 	struct device *dev;
851 
852 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
853 	if (!iter)
854 		return ERR_PTR(-ENOMEM);
855 
856 	seqf->private = iter;
857 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
858 	do {
859 		dev = class_dev_iter_next(iter);
860 		if (!dev)
861 			return NULL;
862 	} while (skip--);
863 
864 	return dev_to_disk(dev);
865 }
866 
867 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
868 {
869 	struct device *dev;
870 
871 	(*pos)++;
872 	dev = class_dev_iter_next(seqf->private);
873 	if (dev)
874 		return dev_to_disk(dev);
875 
876 	return NULL;
877 }
878 
879 static void disk_seqf_stop(struct seq_file *seqf, void *v)
880 {
881 	struct class_dev_iter *iter = seqf->private;
882 
883 	/* stop is called even after start failed :-( */
884 	if (iter) {
885 		class_dev_iter_exit(iter);
886 		kfree(iter);
887 		seqf->private = NULL;
888 	}
889 }
890 
891 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
892 {
893 	void *p;
894 
895 	p = disk_seqf_start(seqf, pos);
896 	if (!IS_ERR_OR_NULL(p) && !*pos)
897 		seq_puts(seqf, "major minor  #blocks  name\n\n");
898 	return p;
899 }
900 
901 static int show_partition(struct seq_file *seqf, void *v)
902 {
903 	struct gendisk *sgp = v;
904 	struct disk_part_iter piter;
905 	struct hd_struct *part;
906 	char buf[BDEVNAME_SIZE];
907 
908 	/* Don't show non-partitionable removeable devices or empty devices */
909 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
910 				   (sgp->flags & GENHD_FL_REMOVABLE)))
911 		return 0;
912 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
913 		return 0;
914 
915 	/* show the full disk and all non-0 size partitions of it */
916 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
917 	while ((part = disk_part_iter_next(&piter)))
918 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
919 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
920 			   (unsigned long long)part_nr_sects_read(part) >> 1,
921 			   disk_name(sgp, part->partno, buf));
922 	disk_part_iter_exit(&piter);
923 
924 	return 0;
925 }
926 
927 static const struct seq_operations partitions_op = {
928 	.start	= show_partition_start,
929 	.next	= disk_seqf_next,
930 	.stop	= disk_seqf_stop,
931 	.show	= show_partition
932 };
933 
934 static int partitions_open(struct inode *inode, struct file *file)
935 {
936 	return seq_open(file, &partitions_op);
937 }
938 
939 static const struct file_operations proc_partitions_operations = {
940 	.open		= partitions_open,
941 	.read		= seq_read,
942 	.llseek		= seq_lseek,
943 	.release	= seq_release,
944 };
945 #endif
946 
947 
948 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
949 {
950 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
951 		/* Make old-style 2.4 aliases work */
952 		request_module("block-major-%d", MAJOR(devt));
953 	return NULL;
954 }
955 
956 static int __init genhd_device_init(void)
957 {
958 	int error;
959 
960 	block_class.dev_kobj = sysfs_dev_block_kobj;
961 	error = class_register(&block_class);
962 	if (unlikely(error))
963 		return error;
964 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
965 	blk_dev_init();
966 
967 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
968 
969 	/* create top-level block dir */
970 	if (!sysfs_deprecated)
971 		block_depr = kobject_create_and_add("block", NULL);
972 	return 0;
973 }
974 
975 subsys_initcall(genhd_device_init);
976 
977 static ssize_t disk_range_show(struct device *dev,
978 			       struct device_attribute *attr, char *buf)
979 {
980 	struct gendisk *disk = dev_to_disk(dev);
981 
982 	return sprintf(buf, "%d\n", disk->minors);
983 }
984 
985 static ssize_t disk_ext_range_show(struct device *dev,
986 				   struct device_attribute *attr, char *buf)
987 {
988 	struct gendisk *disk = dev_to_disk(dev);
989 
990 	return sprintf(buf, "%d\n", disk_max_parts(disk));
991 }
992 
993 static ssize_t disk_removable_show(struct device *dev,
994 				   struct device_attribute *attr, char *buf)
995 {
996 	struct gendisk *disk = dev_to_disk(dev);
997 
998 	return sprintf(buf, "%d\n",
999 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1000 }
1001 
1002 static ssize_t disk_ro_show(struct device *dev,
1003 				   struct device_attribute *attr, char *buf)
1004 {
1005 	struct gendisk *disk = dev_to_disk(dev);
1006 
1007 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1008 }
1009 
1010 static ssize_t disk_capability_show(struct device *dev,
1011 				    struct device_attribute *attr, char *buf)
1012 {
1013 	struct gendisk *disk = dev_to_disk(dev);
1014 
1015 	return sprintf(buf, "%x\n", disk->flags);
1016 }
1017 
1018 static ssize_t disk_alignment_offset_show(struct device *dev,
1019 					  struct device_attribute *attr,
1020 					  char *buf)
1021 {
1022 	struct gendisk *disk = dev_to_disk(dev);
1023 
1024 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1025 }
1026 
1027 static ssize_t disk_discard_alignment_show(struct device *dev,
1028 					   struct device_attribute *attr,
1029 					   char *buf)
1030 {
1031 	struct gendisk *disk = dev_to_disk(dev);
1032 
1033 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1034 }
1035 
1036 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1037 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1038 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1039 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1040 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1041 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1042 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1043 		   NULL);
1044 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1045 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1046 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1047 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1048 		disk_badblocks_store);
1049 #ifdef CONFIG_FAIL_MAKE_REQUEST
1050 static struct device_attribute dev_attr_fail =
1051 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1052 #endif
1053 #ifdef CONFIG_FAIL_IO_TIMEOUT
1054 static struct device_attribute dev_attr_fail_timeout =
1055 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1056 		part_timeout_store);
1057 #endif
1058 
1059 static struct attribute *disk_attrs[] = {
1060 	&dev_attr_range.attr,
1061 	&dev_attr_ext_range.attr,
1062 	&dev_attr_removable.attr,
1063 	&dev_attr_ro.attr,
1064 	&dev_attr_size.attr,
1065 	&dev_attr_alignment_offset.attr,
1066 	&dev_attr_discard_alignment.attr,
1067 	&dev_attr_capability.attr,
1068 	&dev_attr_stat.attr,
1069 	&dev_attr_inflight.attr,
1070 	&dev_attr_badblocks.attr,
1071 #ifdef CONFIG_FAIL_MAKE_REQUEST
1072 	&dev_attr_fail.attr,
1073 #endif
1074 #ifdef CONFIG_FAIL_IO_TIMEOUT
1075 	&dev_attr_fail_timeout.attr,
1076 #endif
1077 	NULL
1078 };
1079 
1080 static struct attribute_group disk_attr_group = {
1081 	.attrs = disk_attrs,
1082 };
1083 
1084 static const struct attribute_group *disk_attr_groups[] = {
1085 	&disk_attr_group,
1086 	NULL
1087 };
1088 
1089 /**
1090  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1091  * @disk: disk to replace part_tbl for
1092  * @new_ptbl: new part_tbl to install
1093  *
1094  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1095  * original ptbl is freed using RCU callback.
1096  *
1097  * LOCKING:
1098  * Matching bd_mutx locked.
1099  */
1100 static void disk_replace_part_tbl(struct gendisk *disk,
1101 				  struct disk_part_tbl *new_ptbl)
1102 {
1103 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1104 
1105 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1106 
1107 	if (old_ptbl) {
1108 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1109 		kfree_rcu(old_ptbl, rcu_head);
1110 	}
1111 }
1112 
1113 /**
1114  * disk_expand_part_tbl - expand disk->part_tbl
1115  * @disk: disk to expand part_tbl for
1116  * @partno: expand such that this partno can fit in
1117  *
1118  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1119  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1120  *
1121  * LOCKING:
1122  * Matching bd_mutex locked, might sleep.
1123  *
1124  * RETURNS:
1125  * 0 on success, -errno on failure.
1126  */
1127 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1128 {
1129 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1130 	struct disk_part_tbl *new_ptbl;
1131 	int len = old_ptbl ? old_ptbl->len : 0;
1132 	int i, target;
1133 	size_t size;
1134 
1135 	/*
1136 	 * check for int overflow, since we can get here from blkpg_ioctl()
1137 	 * with a user passed 'partno'.
1138 	 */
1139 	target = partno + 1;
1140 	if (target < 0)
1141 		return -EINVAL;
1142 
1143 	/* disk_max_parts() is zero during initialization, ignore if so */
1144 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1145 		return -EINVAL;
1146 
1147 	if (target <= len)
1148 		return 0;
1149 
1150 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1151 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1152 	if (!new_ptbl)
1153 		return -ENOMEM;
1154 
1155 	new_ptbl->len = target;
1156 
1157 	for (i = 0; i < len; i++)
1158 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1159 
1160 	disk_replace_part_tbl(disk, new_ptbl);
1161 	return 0;
1162 }
1163 
1164 static void disk_release(struct device *dev)
1165 {
1166 	struct gendisk *disk = dev_to_disk(dev);
1167 
1168 	blk_free_devt(dev->devt);
1169 	disk_release_events(disk);
1170 	kfree(disk->random);
1171 	disk_replace_part_tbl(disk, NULL);
1172 	hd_free_part(&disk->part0);
1173 	if (disk->queue)
1174 		blk_put_queue(disk->queue);
1175 	kfree(disk);
1176 }
1177 struct class block_class = {
1178 	.name		= "block",
1179 };
1180 
1181 static char *block_devnode(struct device *dev, umode_t *mode,
1182 			   kuid_t *uid, kgid_t *gid)
1183 {
1184 	struct gendisk *disk = dev_to_disk(dev);
1185 
1186 	if (disk->devnode)
1187 		return disk->devnode(disk, mode);
1188 	return NULL;
1189 }
1190 
1191 static struct device_type disk_type = {
1192 	.name		= "disk",
1193 	.groups		= disk_attr_groups,
1194 	.release	= disk_release,
1195 	.devnode	= block_devnode,
1196 };
1197 
1198 #ifdef CONFIG_PROC_FS
1199 /*
1200  * aggregate disk stat collector.  Uses the same stats that the sysfs
1201  * entries do, above, but makes them available through one seq_file.
1202  *
1203  * The output looks suspiciously like /proc/partitions with a bunch of
1204  * extra fields.
1205  */
1206 static int diskstats_show(struct seq_file *seqf, void *v)
1207 {
1208 	struct gendisk *gp = v;
1209 	struct disk_part_iter piter;
1210 	struct hd_struct *hd;
1211 	char buf[BDEVNAME_SIZE];
1212 	int cpu;
1213 
1214 	/*
1215 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1216 		seq_puts(seqf,	"major minor name"
1217 				"     rio rmerge rsect ruse wio wmerge "
1218 				"wsect wuse running use aveq"
1219 				"\n\n");
1220 	*/
1221 
1222 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1223 	while ((hd = disk_part_iter_next(&piter))) {
1224 		cpu = part_stat_lock();
1225 		part_round_stats(cpu, hd);
1226 		part_stat_unlock();
1227 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1228 			   "%u %lu %lu %lu %u %u %u %u\n",
1229 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1230 			   disk_name(gp, hd->partno, buf),
1231 			   part_stat_read(hd, ios[READ]),
1232 			   part_stat_read(hd, merges[READ]),
1233 			   part_stat_read(hd, sectors[READ]),
1234 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1235 			   part_stat_read(hd, ios[WRITE]),
1236 			   part_stat_read(hd, merges[WRITE]),
1237 			   part_stat_read(hd, sectors[WRITE]),
1238 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1239 			   part_in_flight(hd),
1240 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1241 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1242 			);
1243 	}
1244 	disk_part_iter_exit(&piter);
1245 
1246 	return 0;
1247 }
1248 
1249 static const struct seq_operations diskstats_op = {
1250 	.start	= disk_seqf_start,
1251 	.next	= disk_seqf_next,
1252 	.stop	= disk_seqf_stop,
1253 	.show	= diskstats_show
1254 };
1255 
1256 static int diskstats_open(struct inode *inode, struct file *file)
1257 {
1258 	return seq_open(file, &diskstats_op);
1259 }
1260 
1261 static const struct file_operations proc_diskstats_operations = {
1262 	.open		= diskstats_open,
1263 	.read		= seq_read,
1264 	.llseek		= seq_lseek,
1265 	.release	= seq_release,
1266 };
1267 
1268 static int __init proc_genhd_init(void)
1269 {
1270 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1271 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1272 	return 0;
1273 }
1274 module_init(proc_genhd_init);
1275 #endif /* CONFIG_PROC_FS */
1276 
1277 dev_t blk_lookup_devt(const char *name, int partno)
1278 {
1279 	dev_t devt = MKDEV(0, 0);
1280 	struct class_dev_iter iter;
1281 	struct device *dev;
1282 
1283 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1284 	while ((dev = class_dev_iter_next(&iter))) {
1285 		struct gendisk *disk = dev_to_disk(dev);
1286 		struct hd_struct *part;
1287 
1288 		if (strcmp(dev_name(dev), name))
1289 			continue;
1290 
1291 		if (partno < disk->minors) {
1292 			/* We need to return the right devno, even
1293 			 * if the partition doesn't exist yet.
1294 			 */
1295 			devt = MKDEV(MAJOR(dev->devt),
1296 				     MINOR(dev->devt) + partno);
1297 			break;
1298 		}
1299 		part = disk_get_part(disk, partno);
1300 		if (part) {
1301 			devt = part_devt(part);
1302 			disk_put_part(part);
1303 			break;
1304 		}
1305 		disk_put_part(part);
1306 	}
1307 	class_dev_iter_exit(&iter);
1308 	return devt;
1309 }
1310 EXPORT_SYMBOL(blk_lookup_devt);
1311 
1312 struct gendisk *alloc_disk(int minors)
1313 {
1314 	return alloc_disk_node(minors, NUMA_NO_NODE);
1315 }
1316 EXPORT_SYMBOL(alloc_disk);
1317 
1318 struct gendisk *alloc_disk_node(int minors, int node_id)
1319 {
1320 	struct gendisk *disk;
1321 
1322 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1323 	if (disk) {
1324 		if (!init_part_stats(&disk->part0)) {
1325 			kfree(disk);
1326 			return NULL;
1327 		}
1328 		disk->node_id = node_id;
1329 		if (disk_expand_part_tbl(disk, 0)) {
1330 			free_part_stats(&disk->part0);
1331 			kfree(disk);
1332 			return NULL;
1333 		}
1334 		disk->part_tbl->part[0] = &disk->part0;
1335 
1336 		/*
1337 		 * set_capacity() and get_capacity() currently don't use
1338 		 * seqcounter to read/update the part0->nr_sects. Still init
1339 		 * the counter as we can read the sectors in IO submission
1340 		 * patch using seqence counters.
1341 		 *
1342 		 * TODO: Ideally set_capacity() and get_capacity() should be
1343 		 * converted to make use of bd_mutex and sequence counters.
1344 		 */
1345 		seqcount_init(&disk->part0.nr_sects_seq);
1346 		if (hd_ref_init(&disk->part0)) {
1347 			hd_free_part(&disk->part0);
1348 			kfree(disk);
1349 			return NULL;
1350 		}
1351 
1352 		disk->minors = minors;
1353 		rand_initialize_disk(disk);
1354 		disk_to_dev(disk)->class = &block_class;
1355 		disk_to_dev(disk)->type = &disk_type;
1356 		device_initialize(disk_to_dev(disk));
1357 	}
1358 	return disk;
1359 }
1360 EXPORT_SYMBOL(alloc_disk_node);
1361 
1362 struct kobject *get_disk(struct gendisk *disk)
1363 {
1364 	struct module *owner;
1365 	struct kobject *kobj;
1366 
1367 	if (!disk->fops)
1368 		return NULL;
1369 	owner = disk->fops->owner;
1370 	if (owner && !try_module_get(owner))
1371 		return NULL;
1372 	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1373 	if (kobj == NULL) {
1374 		module_put(owner);
1375 		return NULL;
1376 	}
1377 	return kobj;
1378 
1379 }
1380 
1381 EXPORT_SYMBOL(get_disk);
1382 
1383 void put_disk(struct gendisk *disk)
1384 {
1385 	if (disk)
1386 		kobject_put(&disk_to_dev(disk)->kobj);
1387 }
1388 
1389 EXPORT_SYMBOL(put_disk);
1390 
1391 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1392 {
1393 	char event[] = "DISK_RO=1";
1394 	char *envp[] = { event, NULL };
1395 
1396 	if (!ro)
1397 		event[8] = '0';
1398 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1399 }
1400 
1401 void set_device_ro(struct block_device *bdev, int flag)
1402 {
1403 	bdev->bd_part->policy = flag;
1404 }
1405 
1406 EXPORT_SYMBOL(set_device_ro);
1407 
1408 void set_disk_ro(struct gendisk *disk, int flag)
1409 {
1410 	struct disk_part_iter piter;
1411 	struct hd_struct *part;
1412 
1413 	if (disk->part0.policy != flag) {
1414 		set_disk_ro_uevent(disk, flag);
1415 		disk->part0.policy = flag;
1416 	}
1417 
1418 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1419 	while ((part = disk_part_iter_next(&piter)))
1420 		part->policy = flag;
1421 	disk_part_iter_exit(&piter);
1422 }
1423 
1424 EXPORT_SYMBOL(set_disk_ro);
1425 
1426 int bdev_read_only(struct block_device *bdev)
1427 {
1428 	if (!bdev)
1429 		return 0;
1430 	return bdev->bd_part->policy;
1431 }
1432 
1433 EXPORT_SYMBOL(bdev_read_only);
1434 
1435 int invalidate_partition(struct gendisk *disk, int partno)
1436 {
1437 	int res = 0;
1438 	struct block_device *bdev = bdget_disk(disk, partno);
1439 	if (bdev) {
1440 		fsync_bdev(bdev);
1441 		res = __invalidate_device(bdev, true);
1442 		bdput(bdev);
1443 	}
1444 	return res;
1445 }
1446 
1447 EXPORT_SYMBOL(invalidate_partition);
1448 
1449 /*
1450  * Disk events - monitor disk events like media change and eject request.
1451  */
1452 struct disk_events {
1453 	struct list_head	node;		/* all disk_event's */
1454 	struct gendisk		*disk;		/* the associated disk */
1455 	spinlock_t		lock;
1456 
1457 	struct mutex		block_mutex;	/* protects blocking */
1458 	int			block;		/* event blocking depth */
1459 	unsigned int		pending;	/* events already sent out */
1460 	unsigned int		clearing;	/* events being cleared */
1461 
1462 	long			poll_msecs;	/* interval, -1 for default */
1463 	struct delayed_work	dwork;
1464 };
1465 
1466 static const char *disk_events_strs[] = {
1467 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1468 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1469 };
1470 
1471 static char *disk_uevents[] = {
1472 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1473 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1474 };
1475 
1476 /* list of all disk_events */
1477 static DEFINE_MUTEX(disk_events_mutex);
1478 static LIST_HEAD(disk_events);
1479 
1480 /* disable in-kernel polling by default */
1481 static unsigned long disk_events_dfl_poll_msecs;
1482 
1483 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1484 {
1485 	struct disk_events *ev = disk->ev;
1486 	long intv_msecs = 0;
1487 
1488 	/*
1489 	 * If device-specific poll interval is set, always use it.  If
1490 	 * the default is being used, poll iff there are events which
1491 	 * can't be monitored asynchronously.
1492 	 */
1493 	if (ev->poll_msecs >= 0)
1494 		intv_msecs = ev->poll_msecs;
1495 	else if (disk->events & ~disk->async_events)
1496 		intv_msecs = disk_events_dfl_poll_msecs;
1497 
1498 	return msecs_to_jiffies(intv_msecs);
1499 }
1500 
1501 /**
1502  * disk_block_events - block and flush disk event checking
1503  * @disk: disk to block events for
1504  *
1505  * On return from this function, it is guaranteed that event checking
1506  * isn't in progress and won't happen until unblocked by
1507  * disk_unblock_events().  Events blocking is counted and the actual
1508  * unblocking happens after the matching number of unblocks are done.
1509  *
1510  * Note that this intentionally does not block event checking from
1511  * disk_clear_events().
1512  *
1513  * CONTEXT:
1514  * Might sleep.
1515  */
1516 void disk_block_events(struct gendisk *disk)
1517 {
1518 	struct disk_events *ev = disk->ev;
1519 	unsigned long flags;
1520 	bool cancel;
1521 
1522 	if (!ev)
1523 		return;
1524 
1525 	/*
1526 	 * Outer mutex ensures that the first blocker completes canceling
1527 	 * the event work before further blockers are allowed to finish.
1528 	 */
1529 	mutex_lock(&ev->block_mutex);
1530 
1531 	spin_lock_irqsave(&ev->lock, flags);
1532 	cancel = !ev->block++;
1533 	spin_unlock_irqrestore(&ev->lock, flags);
1534 
1535 	if (cancel)
1536 		cancel_delayed_work_sync(&disk->ev->dwork);
1537 
1538 	mutex_unlock(&ev->block_mutex);
1539 }
1540 
1541 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1542 {
1543 	struct disk_events *ev = disk->ev;
1544 	unsigned long intv;
1545 	unsigned long flags;
1546 
1547 	spin_lock_irqsave(&ev->lock, flags);
1548 
1549 	if (WARN_ON_ONCE(ev->block <= 0))
1550 		goto out_unlock;
1551 
1552 	if (--ev->block)
1553 		goto out_unlock;
1554 
1555 	intv = disk_events_poll_jiffies(disk);
1556 	if (check_now)
1557 		queue_delayed_work(system_freezable_power_efficient_wq,
1558 				&ev->dwork, 0);
1559 	else if (intv)
1560 		queue_delayed_work(system_freezable_power_efficient_wq,
1561 				&ev->dwork, intv);
1562 out_unlock:
1563 	spin_unlock_irqrestore(&ev->lock, flags);
1564 }
1565 
1566 /**
1567  * disk_unblock_events - unblock disk event checking
1568  * @disk: disk to unblock events for
1569  *
1570  * Undo disk_block_events().  When the block count reaches zero, it
1571  * starts events polling if configured.
1572  *
1573  * CONTEXT:
1574  * Don't care.  Safe to call from irq context.
1575  */
1576 void disk_unblock_events(struct gendisk *disk)
1577 {
1578 	if (disk->ev)
1579 		__disk_unblock_events(disk, false);
1580 }
1581 
1582 /**
1583  * disk_flush_events - schedule immediate event checking and flushing
1584  * @disk: disk to check and flush events for
1585  * @mask: events to flush
1586  *
1587  * Schedule immediate event checking on @disk if not blocked.  Events in
1588  * @mask are scheduled to be cleared from the driver.  Note that this
1589  * doesn't clear the events from @disk->ev.
1590  *
1591  * CONTEXT:
1592  * If @mask is non-zero must be called with bdev->bd_mutex held.
1593  */
1594 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1595 {
1596 	struct disk_events *ev = disk->ev;
1597 
1598 	if (!ev)
1599 		return;
1600 
1601 	spin_lock_irq(&ev->lock);
1602 	ev->clearing |= mask;
1603 	if (!ev->block)
1604 		mod_delayed_work(system_freezable_power_efficient_wq,
1605 				&ev->dwork, 0);
1606 	spin_unlock_irq(&ev->lock);
1607 }
1608 
1609 /**
1610  * disk_clear_events - synchronously check, clear and return pending events
1611  * @disk: disk to fetch and clear events from
1612  * @mask: mask of events to be fetched and cleared
1613  *
1614  * Disk events are synchronously checked and pending events in @mask
1615  * are cleared and returned.  This ignores the block count.
1616  *
1617  * CONTEXT:
1618  * Might sleep.
1619  */
1620 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1621 {
1622 	const struct block_device_operations *bdops = disk->fops;
1623 	struct disk_events *ev = disk->ev;
1624 	unsigned int pending;
1625 	unsigned int clearing = mask;
1626 
1627 	if (!ev) {
1628 		/* for drivers still using the old ->media_changed method */
1629 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1630 		    bdops->media_changed && bdops->media_changed(disk))
1631 			return DISK_EVENT_MEDIA_CHANGE;
1632 		return 0;
1633 	}
1634 
1635 	disk_block_events(disk);
1636 
1637 	/*
1638 	 * store the union of mask and ev->clearing on the stack so that the
1639 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1640 	 * can still be modified even if events are blocked).
1641 	 */
1642 	spin_lock_irq(&ev->lock);
1643 	clearing |= ev->clearing;
1644 	ev->clearing = 0;
1645 	spin_unlock_irq(&ev->lock);
1646 
1647 	disk_check_events(ev, &clearing);
1648 	/*
1649 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1650 	 * middle of this function, so we want to run the workfn without delay.
1651 	 */
1652 	__disk_unblock_events(disk, ev->clearing ? true : false);
1653 
1654 	/* then, fetch and clear pending events */
1655 	spin_lock_irq(&ev->lock);
1656 	pending = ev->pending & mask;
1657 	ev->pending &= ~mask;
1658 	spin_unlock_irq(&ev->lock);
1659 	WARN_ON_ONCE(clearing & mask);
1660 
1661 	return pending;
1662 }
1663 
1664 /*
1665  * Separate this part out so that a different pointer for clearing_ptr can be
1666  * passed in for disk_clear_events.
1667  */
1668 static void disk_events_workfn(struct work_struct *work)
1669 {
1670 	struct delayed_work *dwork = to_delayed_work(work);
1671 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1672 
1673 	disk_check_events(ev, &ev->clearing);
1674 }
1675 
1676 static void disk_check_events(struct disk_events *ev,
1677 			      unsigned int *clearing_ptr)
1678 {
1679 	struct gendisk *disk = ev->disk;
1680 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1681 	unsigned int clearing = *clearing_ptr;
1682 	unsigned int events;
1683 	unsigned long intv;
1684 	int nr_events = 0, i;
1685 
1686 	/* check events */
1687 	events = disk->fops->check_events(disk, clearing);
1688 
1689 	/* accumulate pending events and schedule next poll if necessary */
1690 	spin_lock_irq(&ev->lock);
1691 
1692 	events &= ~ev->pending;
1693 	ev->pending |= events;
1694 	*clearing_ptr &= ~clearing;
1695 
1696 	intv = disk_events_poll_jiffies(disk);
1697 	if (!ev->block && intv)
1698 		queue_delayed_work(system_freezable_power_efficient_wq,
1699 				&ev->dwork, intv);
1700 
1701 	spin_unlock_irq(&ev->lock);
1702 
1703 	/*
1704 	 * Tell userland about new events.  Only the events listed in
1705 	 * @disk->events are reported.  Unlisted events are processed the
1706 	 * same internally but never get reported to userland.
1707 	 */
1708 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1709 		if (events & disk->events & (1 << i))
1710 			envp[nr_events++] = disk_uevents[i];
1711 
1712 	if (nr_events)
1713 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1714 }
1715 
1716 /*
1717  * A disk events enabled device has the following sysfs nodes under
1718  * its /sys/block/X/ directory.
1719  *
1720  * events		: list of all supported events
1721  * events_async		: list of events which can be detected w/o polling
1722  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1723  */
1724 static ssize_t __disk_events_show(unsigned int events, char *buf)
1725 {
1726 	const char *delim = "";
1727 	ssize_t pos = 0;
1728 	int i;
1729 
1730 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1731 		if (events & (1 << i)) {
1732 			pos += sprintf(buf + pos, "%s%s",
1733 				       delim, disk_events_strs[i]);
1734 			delim = " ";
1735 		}
1736 	if (pos)
1737 		pos += sprintf(buf + pos, "\n");
1738 	return pos;
1739 }
1740 
1741 static ssize_t disk_events_show(struct device *dev,
1742 				struct device_attribute *attr, char *buf)
1743 {
1744 	struct gendisk *disk = dev_to_disk(dev);
1745 
1746 	return __disk_events_show(disk->events, buf);
1747 }
1748 
1749 static ssize_t disk_events_async_show(struct device *dev,
1750 				      struct device_attribute *attr, char *buf)
1751 {
1752 	struct gendisk *disk = dev_to_disk(dev);
1753 
1754 	return __disk_events_show(disk->async_events, buf);
1755 }
1756 
1757 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1758 					   struct device_attribute *attr,
1759 					   char *buf)
1760 {
1761 	struct gendisk *disk = dev_to_disk(dev);
1762 
1763 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1764 }
1765 
1766 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1767 					    struct device_attribute *attr,
1768 					    const char *buf, size_t count)
1769 {
1770 	struct gendisk *disk = dev_to_disk(dev);
1771 	long intv;
1772 
1773 	if (!count || !sscanf(buf, "%ld", &intv))
1774 		return -EINVAL;
1775 
1776 	if (intv < 0 && intv != -1)
1777 		return -EINVAL;
1778 
1779 	disk_block_events(disk);
1780 	disk->ev->poll_msecs = intv;
1781 	__disk_unblock_events(disk, true);
1782 
1783 	return count;
1784 }
1785 
1786 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1787 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1788 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1789 			 disk_events_poll_msecs_show,
1790 			 disk_events_poll_msecs_store);
1791 
1792 static const struct attribute *disk_events_attrs[] = {
1793 	&dev_attr_events.attr,
1794 	&dev_attr_events_async.attr,
1795 	&dev_attr_events_poll_msecs.attr,
1796 	NULL,
1797 };
1798 
1799 /*
1800  * The default polling interval can be specified by the kernel
1801  * parameter block.events_dfl_poll_msecs which defaults to 0
1802  * (disable).  This can also be modified runtime by writing to
1803  * /sys/module/block/events_dfl_poll_msecs.
1804  */
1805 static int disk_events_set_dfl_poll_msecs(const char *val,
1806 					  const struct kernel_param *kp)
1807 {
1808 	struct disk_events *ev;
1809 	int ret;
1810 
1811 	ret = param_set_ulong(val, kp);
1812 	if (ret < 0)
1813 		return ret;
1814 
1815 	mutex_lock(&disk_events_mutex);
1816 
1817 	list_for_each_entry(ev, &disk_events, node)
1818 		disk_flush_events(ev->disk, 0);
1819 
1820 	mutex_unlock(&disk_events_mutex);
1821 
1822 	return 0;
1823 }
1824 
1825 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1826 	.set	= disk_events_set_dfl_poll_msecs,
1827 	.get	= param_get_ulong,
1828 };
1829 
1830 #undef MODULE_PARAM_PREFIX
1831 #define MODULE_PARAM_PREFIX	"block."
1832 
1833 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1834 		&disk_events_dfl_poll_msecs, 0644);
1835 
1836 /*
1837  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1838  */
1839 static void disk_alloc_events(struct gendisk *disk)
1840 {
1841 	struct disk_events *ev;
1842 
1843 	if (!disk->fops->check_events)
1844 		return;
1845 
1846 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1847 	if (!ev) {
1848 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1849 		return;
1850 	}
1851 
1852 	INIT_LIST_HEAD(&ev->node);
1853 	ev->disk = disk;
1854 	spin_lock_init(&ev->lock);
1855 	mutex_init(&ev->block_mutex);
1856 	ev->block = 1;
1857 	ev->poll_msecs = -1;
1858 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1859 
1860 	disk->ev = ev;
1861 }
1862 
1863 static void disk_add_events(struct gendisk *disk)
1864 {
1865 	if (!disk->ev)
1866 		return;
1867 
1868 	/* FIXME: error handling */
1869 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1870 		pr_warn("%s: failed to create sysfs files for events\n",
1871 			disk->disk_name);
1872 
1873 	mutex_lock(&disk_events_mutex);
1874 	list_add_tail(&disk->ev->node, &disk_events);
1875 	mutex_unlock(&disk_events_mutex);
1876 
1877 	/*
1878 	 * Block count is initialized to 1 and the following initial
1879 	 * unblock kicks it into action.
1880 	 */
1881 	__disk_unblock_events(disk, true);
1882 }
1883 
1884 static void disk_del_events(struct gendisk *disk)
1885 {
1886 	if (!disk->ev)
1887 		return;
1888 
1889 	disk_block_events(disk);
1890 
1891 	mutex_lock(&disk_events_mutex);
1892 	list_del_init(&disk->ev->node);
1893 	mutex_unlock(&disk_events_mutex);
1894 
1895 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1896 }
1897 
1898 static void disk_release_events(struct gendisk *disk)
1899 {
1900 	/* the block count should be 1 from disk_del_events() */
1901 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1902 	kfree(disk->ev);
1903 }
1904