1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/backing-dev.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include <linux/slab.h> 17 #include <linux/kmod.h> 18 #include <linux/kobj_map.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/badblocks.h> 24 25 #include "blk.h" 26 27 static DEFINE_MUTEX(block_class_lock); 28 struct kobject *block_depr; 29 30 /* for extended dynamic devt allocation, currently only one major is used */ 31 #define NR_EXT_DEVT (1 << MINORBITS) 32 33 /* For extended devt allocation. ext_devt_lock prevents look up 34 * results from going away underneath its user. 35 */ 36 static DEFINE_SPINLOCK(ext_devt_lock); 37 static DEFINE_IDR(ext_devt_idr); 38 39 static struct device_type disk_type; 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 /** 49 * disk_get_part - get partition 50 * @disk: disk to look partition from 51 * @partno: partition number 52 * 53 * Look for partition @partno from @disk. If found, increment 54 * reference count and return it. 55 * 56 * CONTEXT: 57 * Don't care. 58 * 59 * RETURNS: 60 * Pointer to the found partition on success, NULL if not found. 61 */ 62 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 63 { 64 struct hd_struct *part = NULL; 65 struct disk_part_tbl *ptbl; 66 67 if (unlikely(partno < 0)) 68 return NULL; 69 70 rcu_read_lock(); 71 72 ptbl = rcu_dereference(disk->part_tbl); 73 if (likely(partno < ptbl->len)) { 74 part = rcu_dereference(ptbl->part[partno]); 75 if (part) 76 get_device(part_to_dev(part)); 77 } 78 79 rcu_read_unlock(); 80 81 return part; 82 } 83 EXPORT_SYMBOL_GPL(disk_get_part); 84 85 /** 86 * disk_part_iter_init - initialize partition iterator 87 * @piter: iterator to initialize 88 * @disk: disk to iterate over 89 * @flags: DISK_PITER_* flags 90 * 91 * Initialize @piter so that it iterates over partitions of @disk. 92 * 93 * CONTEXT: 94 * Don't care. 95 */ 96 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 97 unsigned int flags) 98 { 99 struct disk_part_tbl *ptbl; 100 101 rcu_read_lock(); 102 ptbl = rcu_dereference(disk->part_tbl); 103 104 piter->disk = disk; 105 piter->part = NULL; 106 107 if (flags & DISK_PITER_REVERSE) 108 piter->idx = ptbl->len - 1; 109 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 110 piter->idx = 0; 111 else 112 piter->idx = 1; 113 114 piter->flags = flags; 115 116 rcu_read_unlock(); 117 } 118 EXPORT_SYMBOL_GPL(disk_part_iter_init); 119 120 /** 121 * disk_part_iter_next - proceed iterator to the next partition and return it 122 * @piter: iterator of interest 123 * 124 * Proceed @piter to the next partition and return it. 125 * 126 * CONTEXT: 127 * Don't care. 128 */ 129 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 130 { 131 struct disk_part_tbl *ptbl; 132 int inc, end; 133 134 /* put the last partition */ 135 disk_put_part(piter->part); 136 piter->part = NULL; 137 138 /* get part_tbl */ 139 rcu_read_lock(); 140 ptbl = rcu_dereference(piter->disk->part_tbl); 141 142 /* determine iteration parameters */ 143 if (piter->flags & DISK_PITER_REVERSE) { 144 inc = -1; 145 if (piter->flags & (DISK_PITER_INCL_PART0 | 146 DISK_PITER_INCL_EMPTY_PART0)) 147 end = -1; 148 else 149 end = 0; 150 } else { 151 inc = 1; 152 end = ptbl->len; 153 } 154 155 /* iterate to the next partition */ 156 for (; piter->idx != end; piter->idx += inc) { 157 struct hd_struct *part; 158 159 part = rcu_dereference(ptbl->part[piter->idx]); 160 if (!part) 161 continue; 162 if (!part_nr_sects_read(part) && 163 !(piter->flags & DISK_PITER_INCL_EMPTY) && 164 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 165 piter->idx == 0)) 166 continue; 167 168 get_device(part_to_dev(part)); 169 piter->part = part; 170 piter->idx += inc; 171 break; 172 } 173 174 rcu_read_unlock(); 175 176 return piter->part; 177 } 178 EXPORT_SYMBOL_GPL(disk_part_iter_next); 179 180 /** 181 * disk_part_iter_exit - finish up partition iteration 182 * @piter: iter of interest 183 * 184 * Called when iteration is over. Cleans up @piter. 185 * 186 * CONTEXT: 187 * Don't care. 188 */ 189 void disk_part_iter_exit(struct disk_part_iter *piter) 190 { 191 disk_put_part(piter->part); 192 piter->part = NULL; 193 } 194 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 195 196 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 197 { 198 return part->start_sect <= sector && 199 sector < part->start_sect + part_nr_sects_read(part); 200 } 201 202 /** 203 * disk_map_sector_rcu - map sector to partition 204 * @disk: gendisk of interest 205 * @sector: sector to map 206 * 207 * Find out which partition @sector maps to on @disk. This is 208 * primarily used for stats accounting. 209 * 210 * CONTEXT: 211 * RCU read locked. The returned partition pointer is valid only 212 * while preemption is disabled. 213 * 214 * RETURNS: 215 * Found partition on success, part0 is returned if no partition matches 216 */ 217 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 218 { 219 struct disk_part_tbl *ptbl; 220 struct hd_struct *part; 221 int i; 222 223 ptbl = rcu_dereference(disk->part_tbl); 224 225 part = rcu_dereference(ptbl->last_lookup); 226 if (part && sector_in_part(part, sector)) 227 return part; 228 229 for (i = 1; i < ptbl->len; i++) { 230 part = rcu_dereference(ptbl->part[i]); 231 232 if (part && sector_in_part(part, sector)) { 233 rcu_assign_pointer(ptbl->last_lookup, part); 234 return part; 235 } 236 } 237 return &disk->part0; 238 } 239 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 240 241 /* 242 * Can be deleted altogether. Later. 243 * 244 */ 245 static struct blk_major_name { 246 struct blk_major_name *next; 247 int major; 248 char name[16]; 249 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 250 251 /* index in the above - for now: assume no multimajor ranges */ 252 static inline int major_to_index(unsigned major) 253 { 254 return major % BLKDEV_MAJOR_HASH_SIZE; 255 } 256 257 #ifdef CONFIG_PROC_FS 258 void blkdev_show(struct seq_file *seqf, off_t offset) 259 { 260 struct blk_major_name *dp; 261 262 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 263 mutex_lock(&block_class_lock); 264 for (dp = major_names[offset]; dp; dp = dp->next) 265 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 266 mutex_unlock(&block_class_lock); 267 } 268 } 269 #endif /* CONFIG_PROC_FS */ 270 271 /** 272 * register_blkdev - register a new block device 273 * 274 * @major: the requested major device number [1..255]. If @major=0, try to 275 * allocate any unused major number. 276 * @name: the name of the new block device as a zero terminated string 277 * 278 * The @name must be unique within the system. 279 * 280 * The return value depends on the @major input parameter. 281 * - if a major device number was requested in range [1..255] then the 282 * function returns zero on success, or a negative error code 283 * - if any unused major number was requested with @major=0 parameter 284 * then the return value is the allocated major number in range 285 * [1..255] or a negative error code otherwise 286 */ 287 int register_blkdev(unsigned int major, const char *name) 288 { 289 struct blk_major_name **n, *p; 290 int index, ret = 0; 291 292 mutex_lock(&block_class_lock); 293 294 /* temporary */ 295 if (major == 0) { 296 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 297 if (major_names[index] == NULL) 298 break; 299 } 300 301 if (index == 0) { 302 printk("register_blkdev: failed to get major for %s\n", 303 name); 304 ret = -EBUSY; 305 goto out; 306 } 307 major = index; 308 ret = major; 309 } 310 311 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 312 if (p == NULL) { 313 ret = -ENOMEM; 314 goto out; 315 } 316 317 p->major = major; 318 strlcpy(p->name, name, sizeof(p->name)); 319 p->next = NULL; 320 index = major_to_index(major); 321 322 for (n = &major_names[index]; *n; n = &(*n)->next) { 323 if ((*n)->major == major) 324 break; 325 } 326 if (!*n) 327 *n = p; 328 else 329 ret = -EBUSY; 330 331 if (ret < 0) { 332 printk("register_blkdev: cannot get major %d for %s\n", 333 major, name); 334 kfree(p); 335 } 336 out: 337 mutex_unlock(&block_class_lock); 338 return ret; 339 } 340 341 EXPORT_SYMBOL(register_blkdev); 342 343 void unregister_blkdev(unsigned int major, const char *name) 344 { 345 struct blk_major_name **n; 346 struct blk_major_name *p = NULL; 347 int index = major_to_index(major); 348 349 mutex_lock(&block_class_lock); 350 for (n = &major_names[index]; *n; n = &(*n)->next) 351 if ((*n)->major == major) 352 break; 353 if (!*n || strcmp((*n)->name, name)) { 354 WARN_ON(1); 355 } else { 356 p = *n; 357 *n = p->next; 358 } 359 mutex_unlock(&block_class_lock); 360 kfree(p); 361 } 362 363 EXPORT_SYMBOL(unregister_blkdev); 364 365 static struct kobj_map *bdev_map; 366 367 /** 368 * blk_mangle_minor - scatter minor numbers apart 369 * @minor: minor number to mangle 370 * 371 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 372 * is enabled. Mangling twice gives the original value. 373 * 374 * RETURNS: 375 * Mangled value. 376 * 377 * CONTEXT: 378 * Don't care. 379 */ 380 static int blk_mangle_minor(int minor) 381 { 382 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 383 int i; 384 385 for (i = 0; i < MINORBITS / 2; i++) { 386 int low = minor & (1 << i); 387 int high = minor & (1 << (MINORBITS - 1 - i)); 388 int distance = MINORBITS - 1 - 2 * i; 389 390 minor ^= low | high; /* clear both bits */ 391 low <<= distance; /* swap the positions */ 392 high >>= distance; 393 minor |= low | high; /* and set */ 394 } 395 #endif 396 return minor; 397 } 398 399 /** 400 * blk_alloc_devt - allocate a dev_t for a partition 401 * @part: partition to allocate dev_t for 402 * @devt: out parameter for resulting dev_t 403 * 404 * Allocate a dev_t for block device. 405 * 406 * RETURNS: 407 * 0 on success, allocated dev_t is returned in *@devt. -errno on 408 * failure. 409 * 410 * CONTEXT: 411 * Might sleep. 412 */ 413 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 414 { 415 struct gendisk *disk = part_to_disk(part); 416 int idx; 417 418 /* in consecutive minor range? */ 419 if (part->partno < disk->minors) { 420 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 421 return 0; 422 } 423 424 /* allocate ext devt */ 425 idr_preload(GFP_KERNEL); 426 427 spin_lock_bh(&ext_devt_lock); 428 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 429 spin_unlock_bh(&ext_devt_lock); 430 431 idr_preload_end(); 432 if (idx < 0) 433 return idx == -ENOSPC ? -EBUSY : idx; 434 435 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 436 return 0; 437 } 438 439 /** 440 * blk_free_devt - free a dev_t 441 * @devt: dev_t to free 442 * 443 * Free @devt which was allocated using blk_alloc_devt(). 444 * 445 * CONTEXT: 446 * Might sleep. 447 */ 448 void blk_free_devt(dev_t devt) 449 { 450 if (devt == MKDEV(0, 0)) 451 return; 452 453 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 454 spin_lock_bh(&ext_devt_lock); 455 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 456 spin_unlock_bh(&ext_devt_lock); 457 } 458 } 459 460 static char *bdevt_str(dev_t devt, char *buf) 461 { 462 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 463 char tbuf[BDEVT_SIZE]; 464 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 465 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 466 } else 467 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 468 469 return buf; 470 } 471 472 /* 473 * Register device numbers dev..(dev+range-1) 474 * range must be nonzero 475 * The hash chain is sorted on range, so that subranges can override. 476 */ 477 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 478 struct kobject *(*probe)(dev_t, int *, void *), 479 int (*lock)(dev_t, void *), void *data) 480 { 481 kobj_map(bdev_map, devt, range, module, probe, lock, data); 482 } 483 484 EXPORT_SYMBOL(blk_register_region); 485 486 void blk_unregister_region(dev_t devt, unsigned long range) 487 { 488 kobj_unmap(bdev_map, devt, range); 489 } 490 491 EXPORT_SYMBOL(blk_unregister_region); 492 493 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 494 { 495 struct gendisk *p = data; 496 497 return &disk_to_dev(p)->kobj; 498 } 499 500 static int exact_lock(dev_t devt, void *data) 501 { 502 struct gendisk *p = data; 503 504 if (!get_disk(p)) 505 return -1; 506 return 0; 507 } 508 509 static void register_disk(struct device *parent, struct gendisk *disk) 510 { 511 struct device *ddev = disk_to_dev(disk); 512 struct block_device *bdev; 513 struct disk_part_iter piter; 514 struct hd_struct *part; 515 int err; 516 517 ddev->parent = parent; 518 519 dev_set_name(ddev, "%s", disk->disk_name); 520 521 /* delay uevents, until we scanned partition table */ 522 dev_set_uevent_suppress(ddev, 1); 523 524 if (device_add(ddev)) 525 return; 526 if (!sysfs_deprecated) { 527 err = sysfs_create_link(block_depr, &ddev->kobj, 528 kobject_name(&ddev->kobj)); 529 if (err) { 530 device_del(ddev); 531 return; 532 } 533 } 534 535 /* 536 * avoid probable deadlock caused by allocating memory with 537 * GFP_KERNEL in runtime_resume callback of its all ancestor 538 * devices 539 */ 540 pm_runtime_set_memalloc_noio(ddev, true); 541 542 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 543 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 544 545 /* No minors to use for partitions */ 546 if (!disk_part_scan_enabled(disk)) 547 goto exit; 548 549 /* No such device (e.g., media were just removed) */ 550 if (!get_capacity(disk)) 551 goto exit; 552 553 bdev = bdget_disk(disk, 0); 554 if (!bdev) 555 goto exit; 556 557 bdev->bd_invalidated = 1; 558 err = blkdev_get(bdev, FMODE_READ, NULL); 559 if (err < 0) 560 goto exit; 561 blkdev_put(bdev, FMODE_READ); 562 563 exit: 564 /* announce disk after possible partitions are created */ 565 dev_set_uevent_suppress(ddev, 0); 566 kobject_uevent(&ddev->kobj, KOBJ_ADD); 567 568 /* announce possible partitions */ 569 disk_part_iter_init(&piter, disk, 0); 570 while ((part = disk_part_iter_next(&piter))) 571 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 572 disk_part_iter_exit(&piter); 573 } 574 575 void put_disk_devt(struct disk_devt *disk_devt) 576 { 577 if (disk_devt && atomic_dec_and_test(&disk_devt->count)) 578 disk_devt->release(disk_devt); 579 } 580 EXPORT_SYMBOL(put_disk_devt); 581 582 void get_disk_devt(struct disk_devt *disk_devt) 583 { 584 if (disk_devt) 585 atomic_inc(&disk_devt->count); 586 } 587 EXPORT_SYMBOL(get_disk_devt); 588 589 /** 590 * device_add_disk - add partitioning information to kernel list 591 * @parent: parent device for the disk 592 * @disk: per-device partitioning information 593 * 594 * This function registers the partitioning information in @disk 595 * with the kernel. 596 * 597 * FIXME: error handling 598 */ 599 void device_add_disk(struct device *parent, struct gendisk *disk) 600 { 601 struct backing_dev_info *bdi; 602 dev_t devt; 603 int retval; 604 605 /* minors == 0 indicates to use ext devt from part0 and should 606 * be accompanied with EXT_DEVT flag. Make sure all 607 * parameters make sense. 608 */ 609 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 610 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 611 612 disk->flags |= GENHD_FL_UP; 613 614 retval = blk_alloc_devt(&disk->part0, &devt); 615 if (retval) { 616 WARN_ON(1); 617 return; 618 } 619 disk_to_dev(disk)->devt = devt; 620 621 /* ->major and ->first_minor aren't supposed to be 622 * dereferenced from here on, but set them just in case. 623 */ 624 disk->major = MAJOR(devt); 625 disk->first_minor = MINOR(devt); 626 627 disk_alloc_events(disk); 628 629 /* 630 * Take a reference on the devt and assign it to queue since it 631 * must not be reallocated while the bdi is registered 632 */ 633 disk->queue->disk_devt = disk->disk_devt; 634 get_disk_devt(disk->disk_devt); 635 636 /* Register BDI before referencing it from bdev */ 637 bdi = disk->queue->backing_dev_info; 638 bdi_register_owner(bdi, disk_to_dev(disk)); 639 640 blk_register_region(disk_devt(disk), disk->minors, NULL, 641 exact_match, exact_lock, disk); 642 register_disk(parent, disk); 643 blk_register_queue(disk); 644 645 /* 646 * Take an extra ref on queue which will be put on disk_release() 647 * so that it sticks around as long as @disk is there. 648 */ 649 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 650 651 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 652 "bdi"); 653 WARN_ON(retval); 654 655 disk_add_events(disk); 656 blk_integrity_add(disk); 657 } 658 EXPORT_SYMBOL(device_add_disk); 659 660 void del_gendisk(struct gendisk *disk) 661 { 662 struct disk_part_iter piter; 663 struct hd_struct *part; 664 665 blk_integrity_del(disk); 666 disk_del_events(disk); 667 668 /* invalidate stuff */ 669 disk_part_iter_init(&piter, disk, 670 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 671 while ((part = disk_part_iter_next(&piter))) { 672 invalidate_partition(disk, part->partno); 673 bdev_unhash_inode(part_devt(part)); 674 delete_partition(disk, part->partno); 675 } 676 disk_part_iter_exit(&piter); 677 678 invalidate_partition(disk, 0); 679 bdev_unhash_inode(disk_devt(disk)); 680 set_capacity(disk, 0); 681 disk->flags &= ~GENHD_FL_UP; 682 683 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 684 /* 685 * Unregister bdi before releasing device numbers (as they can get 686 * reused and we'd get clashes in sysfs). 687 */ 688 bdi_unregister(disk->queue->backing_dev_info); 689 blk_unregister_queue(disk); 690 blk_unregister_region(disk_devt(disk), disk->minors); 691 692 part_stat_set_all(&disk->part0, 0); 693 disk->part0.stamp = 0; 694 695 kobject_put(disk->part0.holder_dir); 696 kobject_put(disk->slave_dir); 697 if (!sysfs_deprecated) 698 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 699 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 700 device_del(disk_to_dev(disk)); 701 } 702 EXPORT_SYMBOL(del_gendisk); 703 704 /* sysfs access to bad-blocks list. */ 705 static ssize_t disk_badblocks_show(struct device *dev, 706 struct device_attribute *attr, 707 char *page) 708 { 709 struct gendisk *disk = dev_to_disk(dev); 710 711 if (!disk->bb) 712 return sprintf(page, "\n"); 713 714 return badblocks_show(disk->bb, page, 0); 715 } 716 717 static ssize_t disk_badblocks_store(struct device *dev, 718 struct device_attribute *attr, 719 const char *page, size_t len) 720 { 721 struct gendisk *disk = dev_to_disk(dev); 722 723 if (!disk->bb) 724 return -ENXIO; 725 726 return badblocks_store(disk->bb, page, len, 0); 727 } 728 729 /** 730 * get_gendisk - get partitioning information for a given device 731 * @devt: device to get partitioning information for 732 * @partno: returned partition index 733 * 734 * This function gets the structure containing partitioning 735 * information for the given device @devt. 736 */ 737 struct gendisk *get_gendisk(dev_t devt, int *partno) 738 { 739 struct gendisk *disk = NULL; 740 741 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 742 struct kobject *kobj; 743 744 kobj = kobj_lookup(bdev_map, devt, partno); 745 if (kobj) 746 disk = dev_to_disk(kobj_to_dev(kobj)); 747 } else { 748 struct hd_struct *part; 749 750 spin_lock_bh(&ext_devt_lock); 751 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 752 if (part && get_disk(part_to_disk(part))) { 753 *partno = part->partno; 754 disk = part_to_disk(part); 755 } 756 spin_unlock_bh(&ext_devt_lock); 757 } 758 759 return disk; 760 } 761 EXPORT_SYMBOL(get_gendisk); 762 763 /** 764 * bdget_disk - do bdget() by gendisk and partition number 765 * @disk: gendisk of interest 766 * @partno: partition number 767 * 768 * Find partition @partno from @disk, do bdget() on it. 769 * 770 * CONTEXT: 771 * Don't care. 772 * 773 * RETURNS: 774 * Resulting block_device on success, NULL on failure. 775 */ 776 struct block_device *bdget_disk(struct gendisk *disk, int partno) 777 { 778 struct hd_struct *part; 779 struct block_device *bdev = NULL; 780 781 part = disk_get_part(disk, partno); 782 if (part) 783 bdev = bdget(part_devt(part)); 784 disk_put_part(part); 785 786 return bdev; 787 } 788 EXPORT_SYMBOL(bdget_disk); 789 790 /* 791 * print a full list of all partitions - intended for places where the root 792 * filesystem can't be mounted and thus to give the victim some idea of what 793 * went wrong 794 */ 795 void __init printk_all_partitions(void) 796 { 797 struct class_dev_iter iter; 798 struct device *dev; 799 800 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 801 while ((dev = class_dev_iter_next(&iter))) { 802 struct gendisk *disk = dev_to_disk(dev); 803 struct disk_part_iter piter; 804 struct hd_struct *part; 805 char name_buf[BDEVNAME_SIZE]; 806 char devt_buf[BDEVT_SIZE]; 807 808 /* 809 * Don't show empty devices or things that have been 810 * suppressed 811 */ 812 if (get_capacity(disk) == 0 || 813 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 814 continue; 815 816 /* 817 * Note, unlike /proc/partitions, I am showing the 818 * numbers in hex - the same format as the root= 819 * option takes. 820 */ 821 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 822 while ((part = disk_part_iter_next(&piter))) { 823 bool is_part0 = part == &disk->part0; 824 825 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 826 bdevt_str(part_devt(part), devt_buf), 827 (unsigned long long)part_nr_sects_read(part) >> 1 828 , disk_name(disk, part->partno, name_buf), 829 part->info ? part->info->uuid : ""); 830 if (is_part0) { 831 if (dev->parent && dev->parent->driver) 832 printk(" driver: %s\n", 833 dev->parent->driver->name); 834 else 835 printk(" (driver?)\n"); 836 } else 837 printk("\n"); 838 } 839 disk_part_iter_exit(&piter); 840 } 841 class_dev_iter_exit(&iter); 842 } 843 844 #ifdef CONFIG_PROC_FS 845 /* iterator */ 846 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 847 { 848 loff_t skip = *pos; 849 struct class_dev_iter *iter; 850 struct device *dev; 851 852 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 853 if (!iter) 854 return ERR_PTR(-ENOMEM); 855 856 seqf->private = iter; 857 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 858 do { 859 dev = class_dev_iter_next(iter); 860 if (!dev) 861 return NULL; 862 } while (skip--); 863 864 return dev_to_disk(dev); 865 } 866 867 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 868 { 869 struct device *dev; 870 871 (*pos)++; 872 dev = class_dev_iter_next(seqf->private); 873 if (dev) 874 return dev_to_disk(dev); 875 876 return NULL; 877 } 878 879 static void disk_seqf_stop(struct seq_file *seqf, void *v) 880 { 881 struct class_dev_iter *iter = seqf->private; 882 883 /* stop is called even after start failed :-( */ 884 if (iter) { 885 class_dev_iter_exit(iter); 886 kfree(iter); 887 seqf->private = NULL; 888 } 889 } 890 891 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 892 { 893 void *p; 894 895 p = disk_seqf_start(seqf, pos); 896 if (!IS_ERR_OR_NULL(p) && !*pos) 897 seq_puts(seqf, "major minor #blocks name\n\n"); 898 return p; 899 } 900 901 static int show_partition(struct seq_file *seqf, void *v) 902 { 903 struct gendisk *sgp = v; 904 struct disk_part_iter piter; 905 struct hd_struct *part; 906 char buf[BDEVNAME_SIZE]; 907 908 /* Don't show non-partitionable removeable devices or empty devices */ 909 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 910 (sgp->flags & GENHD_FL_REMOVABLE))) 911 return 0; 912 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 913 return 0; 914 915 /* show the full disk and all non-0 size partitions of it */ 916 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 917 while ((part = disk_part_iter_next(&piter))) 918 seq_printf(seqf, "%4d %7d %10llu %s\n", 919 MAJOR(part_devt(part)), MINOR(part_devt(part)), 920 (unsigned long long)part_nr_sects_read(part) >> 1, 921 disk_name(sgp, part->partno, buf)); 922 disk_part_iter_exit(&piter); 923 924 return 0; 925 } 926 927 static const struct seq_operations partitions_op = { 928 .start = show_partition_start, 929 .next = disk_seqf_next, 930 .stop = disk_seqf_stop, 931 .show = show_partition 932 }; 933 934 static int partitions_open(struct inode *inode, struct file *file) 935 { 936 return seq_open(file, &partitions_op); 937 } 938 939 static const struct file_operations proc_partitions_operations = { 940 .open = partitions_open, 941 .read = seq_read, 942 .llseek = seq_lseek, 943 .release = seq_release, 944 }; 945 #endif 946 947 948 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 949 { 950 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 951 /* Make old-style 2.4 aliases work */ 952 request_module("block-major-%d", MAJOR(devt)); 953 return NULL; 954 } 955 956 static int __init genhd_device_init(void) 957 { 958 int error; 959 960 block_class.dev_kobj = sysfs_dev_block_kobj; 961 error = class_register(&block_class); 962 if (unlikely(error)) 963 return error; 964 bdev_map = kobj_map_init(base_probe, &block_class_lock); 965 blk_dev_init(); 966 967 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 968 969 /* create top-level block dir */ 970 if (!sysfs_deprecated) 971 block_depr = kobject_create_and_add("block", NULL); 972 return 0; 973 } 974 975 subsys_initcall(genhd_device_init); 976 977 static ssize_t disk_range_show(struct device *dev, 978 struct device_attribute *attr, char *buf) 979 { 980 struct gendisk *disk = dev_to_disk(dev); 981 982 return sprintf(buf, "%d\n", disk->minors); 983 } 984 985 static ssize_t disk_ext_range_show(struct device *dev, 986 struct device_attribute *attr, char *buf) 987 { 988 struct gendisk *disk = dev_to_disk(dev); 989 990 return sprintf(buf, "%d\n", disk_max_parts(disk)); 991 } 992 993 static ssize_t disk_removable_show(struct device *dev, 994 struct device_attribute *attr, char *buf) 995 { 996 struct gendisk *disk = dev_to_disk(dev); 997 998 return sprintf(buf, "%d\n", 999 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1000 } 1001 1002 static ssize_t disk_ro_show(struct device *dev, 1003 struct device_attribute *attr, char *buf) 1004 { 1005 struct gendisk *disk = dev_to_disk(dev); 1006 1007 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1008 } 1009 1010 static ssize_t disk_capability_show(struct device *dev, 1011 struct device_attribute *attr, char *buf) 1012 { 1013 struct gendisk *disk = dev_to_disk(dev); 1014 1015 return sprintf(buf, "%x\n", disk->flags); 1016 } 1017 1018 static ssize_t disk_alignment_offset_show(struct device *dev, 1019 struct device_attribute *attr, 1020 char *buf) 1021 { 1022 struct gendisk *disk = dev_to_disk(dev); 1023 1024 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1025 } 1026 1027 static ssize_t disk_discard_alignment_show(struct device *dev, 1028 struct device_attribute *attr, 1029 char *buf) 1030 { 1031 struct gendisk *disk = dev_to_disk(dev); 1032 1033 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1034 } 1035 1036 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 1037 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 1038 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 1039 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 1040 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 1041 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 1042 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 1043 NULL); 1044 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 1045 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 1046 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 1047 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show, 1048 disk_badblocks_store); 1049 #ifdef CONFIG_FAIL_MAKE_REQUEST 1050 static struct device_attribute dev_attr_fail = 1051 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 1052 #endif 1053 #ifdef CONFIG_FAIL_IO_TIMEOUT 1054 static struct device_attribute dev_attr_fail_timeout = 1055 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 1056 part_timeout_store); 1057 #endif 1058 1059 static struct attribute *disk_attrs[] = { 1060 &dev_attr_range.attr, 1061 &dev_attr_ext_range.attr, 1062 &dev_attr_removable.attr, 1063 &dev_attr_ro.attr, 1064 &dev_attr_size.attr, 1065 &dev_attr_alignment_offset.attr, 1066 &dev_attr_discard_alignment.attr, 1067 &dev_attr_capability.attr, 1068 &dev_attr_stat.attr, 1069 &dev_attr_inflight.attr, 1070 &dev_attr_badblocks.attr, 1071 #ifdef CONFIG_FAIL_MAKE_REQUEST 1072 &dev_attr_fail.attr, 1073 #endif 1074 #ifdef CONFIG_FAIL_IO_TIMEOUT 1075 &dev_attr_fail_timeout.attr, 1076 #endif 1077 NULL 1078 }; 1079 1080 static struct attribute_group disk_attr_group = { 1081 .attrs = disk_attrs, 1082 }; 1083 1084 static const struct attribute_group *disk_attr_groups[] = { 1085 &disk_attr_group, 1086 NULL 1087 }; 1088 1089 /** 1090 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1091 * @disk: disk to replace part_tbl for 1092 * @new_ptbl: new part_tbl to install 1093 * 1094 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1095 * original ptbl is freed using RCU callback. 1096 * 1097 * LOCKING: 1098 * Matching bd_mutx locked. 1099 */ 1100 static void disk_replace_part_tbl(struct gendisk *disk, 1101 struct disk_part_tbl *new_ptbl) 1102 { 1103 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1104 1105 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1106 1107 if (old_ptbl) { 1108 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1109 kfree_rcu(old_ptbl, rcu_head); 1110 } 1111 } 1112 1113 /** 1114 * disk_expand_part_tbl - expand disk->part_tbl 1115 * @disk: disk to expand part_tbl for 1116 * @partno: expand such that this partno can fit in 1117 * 1118 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1119 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1120 * 1121 * LOCKING: 1122 * Matching bd_mutex locked, might sleep. 1123 * 1124 * RETURNS: 1125 * 0 on success, -errno on failure. 1126 */ 1127 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1128 { 1129 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1130 struct disk_part_tbl *new_ptbl; 1131 int len = old_ptbl ? old_ptbl->len : 0; 1132 int i, target; 1133 size_t size; 1134 1135 /* 1136 * check for int overflow, since we can get here from blkpg_ioctl() 1137 * with a user passed 'partno'. 1138 */ 1139 target = partno + 1; 1140 if (target < 0) 1141 return -EINVAL; 1142 1143 /* disk_max_parts() is zero during initialization, ignore if so */ 1144 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1145 return -EINVAL; 1146 1147 if (target <= len) 1148 return 0; 1149 1150 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1151 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1152 if (!new_ptbl) 1153 return -ENOMEM; 1154 1155 new_ptbl->len = target; 1156 1157 for (i = 0; i < len; i++) 1158 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1159 1160 disk_replace_part_tbl(disk, new_ptbl); 1161 return 0; 1162 } 1163 1164 static void disk_release(struct device *dev) 1165 { 1166 struct gendisk *disk = dev_to_disk(dev); 1167 1168 blk_free_devt(dev->devt); 1169 disk_release_events(disk); 1170 kfree(disk->random); 1171 disk_replace_part_tbl(disk, NULL); 1172 hd_free_part(&disk->part0); 1173 if (disk->queue) 1174 blk_put_queue(disk->queue); 1175 kfree(disk); 1176 } 1177 struct class block_class = { 1178 .name = "block", 1179 }; 1180 1181 static char *block_devnode(struct device *dev, umode_t *mode, 1182 kuid_t *uid, kgid_t *gid) 1183 { 1184 struct gendisk *disk = dev_to_disk(dev); 1185 1186 if (disk->devnode) 1187 return disk->devnode(disk, mode); 1188 return NULL; 1189 } 1190 1191 static struct device_type disk_type = { 1192 .name = "disk", 1193 .groups = disk_attr_groups, 1194 .release = disk_release, 1195 .devnode = block_devnode, 1196 }; 1197 1198 #ifdef CONFIG_PROC_FS 1199 /* 1200 * aggregate disk stat collector. Uses the same stats that the sysfs 1201 * entries do, above, but makes them available through one seq_file. 1202 * 1203 * The output looks suspiciously like /proc/partitions with a bunch of 1204 * extra fields. 1205 */ 1206 static int diskstats_show(struct seq_file *seqf, void *v) 1207 { 1208 struct gendisk *gp = v; 1209 struct disk_part_iter piter; 1210 struct hd_struct *hd; 1211 char buf[BDEVNAME_SIZE]; 1212 int cpu; 1213 1214 /* 1215 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1216 seq_puts(seqf, "major minor name" 1217 " rio rmerge rsect ruse wio wmerge " 1218 "wsect wuse running use aveq" 1219 "\n\n"); 1220 */ 1221 1222 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1223 while ((hd = disk_part_iter_next(&piter))) { 1224 cpu = part_stat_lock(); 1225 part_round_stats(cpu, hd); 1226 part_stat_unlock(); 1227 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1228 "%u %lu %lu %lu %u %u %u %u\n", 1229 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1230 disk_name(gp, hd->partno, buf), 1231 part_stat_read(hd, ios[READ]), 1232 part_stat_read(hd, merges[READ]), 1233 part_stat_read(hd, sectors[READ]), 1234 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1235 part_stat_read(hd, ios[WRITE]), 1236 part_stat_read(hd, merges[WRITE]), 1237 part_stat_read(hd, sectors[WRITE]), 1238 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1239 part_in_flight(hd), 1240 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1241 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1242 ); 1243 } 1244 disk_part_iter_exit(&piter); 1245 1246 return 0; 1247 } 1248 1249 static const struct seq_operations diskstats_op = { 1250 .start = disk_seqf_start, 1251 .next = disk_seqf_next, 1252 .stop = disk_seqf_stop, 1253 .show = diskstats_show 1254 }; 1255 1256 static int diskstats_open(struct inode *inode, struct file *file) 1257 { 1258 return seq_open(file, &diskstats_op); 1259 } 1260 1261 static const struct file_operations proc_diskstats_operations = { 1262 .open = diskstats_open, 1263 .read = seq_read, 1264 .llseek = seq_lseek, 1265 .release = seq_release, 1266 }; 1267 1268 static int __init proc_genhd_init(void) 1269 { 1270 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1271 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1272 return 0; 1273 } 1274 module_init(proc_genhd_init); 1275 #endif /* CONFIG_PROC_FS */ 1276 1277 dev_t blk_lookup_devt(const char *name, int partno) 1278 { 1279 dev_t devt = MKDEV(0, 0); 1280 struct class_dev_iter iter; 1281 struct device *dev; 1282 1283 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1284 while ((dev = class_dev_iter_next(&iter))) { 1285 struct gendisk *disk = dev_to_disk(dev); 1286 struct hd_struct *part; 1287 1288 if (strcmp(dev_name(dev), name)) 1289 continue; 1290 1291 if (partno < disk->minors) { 1292 /* We need to return the right devno, even 1293 * if the partition doesn't exist yet. 1294 */ 1295 devt = MKDEV(MAJOR(dev->devt), 1296 MINOR(dev->devt) + partno); 1297 break; 1298 } 1299 part = disk_get_part(disk, partno); 1300 if (part) { 1301 devt = part_devt(part); 1302 disk_put_part(part); 1303 break; 1304 } 1305 disk_put_part(part); 1306 } 1307 class_dev_iter_exit(&iter); 1308 return devt; 1309 } 1310 EXPORT_SYMBOL(blk_lookup_devt); 1311 1312 struct gendisk *alloc_disk(int minors) 1313 { 1314 return alloc_disk_node(minors, NUMA_NO_NODE); 1315 } 1316 EXPORT_SYMBOL(alloc_disk); 1317 1318 struct gendisk *alloc_disk_node(int minors, int node_id) 1319 { 1320 struct gendisk *disk; 1321 1322 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1323 if (disk) { 1324 if (!init_part_stats(&disk->part0)) { 1325 kfree(disk); 1326 return NULL; 1327 } 1328 disk->node_id = node_id; 1329 if (disk_expand_part_tbl(disk, 0)) { 1330 free_part_stats(&disk->part0); 1331 kfree(disk); 1332 return NULL; 1333 } 1334 disk->part_tbl->part[0] = &disk->part0; 1335 1336 /* 1337 * set_capacity() and get_capacity() currently don't use 1338 * seqcounter to read/update the part0->nr_sects. Still init 1339 * the counter as we can read the sectors in IO submission 1340 * patch using seqence counters. 1341 * 1342 * TODO: Ideally set_capacity() and get_capacity() should be 1343 * converted to make use of bd_mutex and sequence counters. 1344 */ 1345 seqcount_init(&disk->part0.nr_sects_seq); 1346 if (hd_ref_init(&disk->part0)) { 1347 hd_free_part(&disk->part0); 1348 kfree(disk); 1349 return NULL; 1350 } 1351 1352 disk->minors = minors; 1353 rand_initialize_disk(disk); 1354 disk_to_dev(disk)->class = &block_class; 1355 disk_to_dev(disk)->type = &disk_type; 1356 device_initialize(disk_to_dev(disk)); 1357 } 1358 return disk; 1359 } 1360 EXPORT_SYMBOL(alloc_disk_node); 1361 1362 struct kobject *get_disk(struct gendisk *disk) 1363 { 1364 struct module *owner; 1365 struct kobject *kobj; 1366 1367 if (!disk->fops) 1368 return NULL; 1369 owner = disk->fops->owner; 1370 if (owner && !try_module_get(owner)) 1371 return NULL; 1372 kobj = kobject_get(&disk_to_dev(disk)->kobj); 1373 if (kobj == NULL) { 1374 module_put(owner); 1375 return NULL; 1376 } 1377 return kobj; 1378 1379 } 1380 1381 EXPORT_SYMBOL(get_disk); 1382 1383 void put_disk(struct gendisk *disk) 1384 { 1385 if (disk) 1386 kobject_put(&disk_to_dev(disk)->kobj); 1387 } 1388 1389 EXPORT_SYMBOL(put_disk); 1390 1391 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1392 { 1393 char event[] = "DISK_RO=1"; 1394 char *envp[] = { event, NULL }; 1395 1396 if (!ro) 1397 event[8] = '0'; 1398 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1399 } 1400 1401 void set_device_ro(struct block_device *bdev, int flag) 1402 { 1403 bdev->bd_part->policy = flag; 1404 } 1405 1406 EXPORT_SYMBOL(set_device_ro); 1407 1408 void set_disk_ro(struct gendisk *disk, int flag) 1409 { 1410 struct disk_part_iter piter; 1411 struct hd_struct *part; 1412 1413 if (disk->part0.policy != flag) { 1414 set_disk_ro_uevent(disk, flag); 1415 disk->part0.policy = flag; 1416 } 1417 1418 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1419 while ((part = disk_part_iter_next(&piter))) 1420 part->policy = flag; 1421 disk_part_iter_exit(&piter); 1422 } 1423 1424 EXPORT_SYMBOL(set_disk_ro); 1425 1426 int bdev_read_only(struct block_device *bdev) 1427 { 1428 if (!bdev) 1429 return 0; 1430 return bdev->bd_part->policy; 1431 } 1432 1433 EXPORT_SYMBOL(bdev_read_only); 1434 1435 int invalidate_partition(struct gendisk *disk, int partno) 1436 { 1437 int res = 0; 1438 struct block_device *bdev = bdget_disk(disk, partno); 1439 if (bdev) { 1440 fsync_bdev(bdev); 1441 res = __invalidate_device(bdev, true); 1442 bdput(bdev); 1443 } 1444 return res; 1445 } 1446 1447 EXPORT_SYMBOL(invalidate_partition); 1448 1449 /* 1450 * Disk events - monitor disk events like media change and eject request. 1451 */ 1452 struct disk_events { 1453 struct list_head node; /* all disk_event's */ 1454 struct gendisk *disk; /* the associated disk */ 1455 spinlock_t lock; 1456 1457 struct mutex block_mutex; /* protects blocking */ 1458 int block; /* event blocking depth */ 1459 unsigned int pending; /* events already sent out */ 1460 unsigned int clearing; /* events being cleared */ 1461 1462 long poll_msecs; /* interval, -1 for default */ 1463 struct delayed_work dwork; 1464 }; 1465 1466 static const char *disk_events_strs[] = { 1467 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1468 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1469 }; 1470 1471 static char *disk_uevents[] = { 1472 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1473 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1474 }; 1475 1476 /* list of all disk_events */ 1477 static DEFINE_MUTEX(disk_events_mutex); 1478 static LIST_HEAD(disk_events); 1479 1480 /* disable in-kernel polling by default */ 1481 static unsigned long disk_events_dfl_poll_msecs; 1482 1483 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1484 { 1485 struct disk_events *ev = disk->ev; 1486 long intv_msecs = 0; 1487 1488 /* 1489 * If device-specific poll interval is set, always use it. If 1490 * the default is being used, poll iff there are events which 1491 * can't be monitored asynchronously. 1492 */ 1493 if (ev->poll_msecs >= 0) 1494 intv_msecs = ev->poll_msecs; 1495 else if (disk->events & ~disk->async_events) 1496 intv_msecs = disk_events_dfl_poll_msecs; 1497 1498 return msecs_to_jiffies(intv_msecs); 1499 } 1500 1501 /** 1502 * disk_block_events - block and flush disk event checking 1503 * @disk: disk to block events for 1504 * 1505 * On return from this function, it is guaranteed that event checking 1506 * isn't in progress and won't happen until unblocked by 1507 * disk_unblock_events(). Events blocking is counted and the actual 1508 * unblocking happens after the matching number of unblocks are done. 1509 * 1510 * Note that this intentionally does not block event checking from 1511 * disk_clear_events(). 1512 * 1513 * CONTEXT: 1514 * Might sleep. 1515 */ 1516 void disk_block_events(struct gendisk *disk) 1517 { 1518 struct disk_events *ev = disk->ev; 1519 unsigned long flags; 1520 bool cancel; 1521 1522 if (!ev) 1523 return; 1524 1525 /* 1526 * Outer mutex ensures that the first blocker completes canceling 1527 * the event work before further blockers are allowed to finish. 1528 */ 1529 mutex_lock(&ev->block_mutex); 1530 1531 spin_lock_irqsave(&ev->lock, flags); 1532 cancel = !ev->block++; 1533 spin_unlock_irqrestore(&ev->lock, flags); 1534 1535 if (cancel) 1536 cancel_delayed_work_sync(&disk->ev->dwork); 1537 1538 mutex_unlock(&ev->block_mutex); 1539 } 1540 1541 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1542 { 1543 struct disk_events *ev = disk->ev; 1544 unsigned long intv; 1545 unsigned long flags; 1546 1547 spin_lock_irqsave(&ev->lock, flags); 1548 1549 if (WARN_ON_ONCE(ev->block <= 0)) 1550 goto out_unlock; 1551 1552 if (--ev->block) 1553 goto out_unlock; 1554 1555 intv = disk_events_poll_jiffies(disk); 1556 if (check_now) 1557 queue_delayed_work(system_freezable_power_efficient_wq, 1558 &ev->dwork, 0); 1559 else if (intv) 1560 queue_delayed_work(system_freezable_power_efficient_wq, 1561 &ev->dwork, intv); 1562 out_unlock: 1563 spin_unlock_irqrestore(&ev->lock, flags); 1564 } 1565 1566 /** 1567 * disk_unblock_events - unblock disk event checking 1568 * @disk: disk to unblock events for 1569 * 1570 * Undo disk_block_events(). When the block count reaches zero, it 1571 * starts events polling if configured. 1572 * 1573 * CONTEXT: 1574 * Don't care. Safe to call from irq context. 1575 */ 1576 void disk_unblock_events(struct gendisk *disk) 1577 { 1578 if (disk->ev) 1579 __disk_unblock_events(disk, false); 1580 } 1581 1582 /** 1583 * disk_flush_events - schedule immediate event checking and flushing 1584 * @disk: disk to check and flush events for 1585 * @mask: events to flush 1586 * 1587 * Schedule immediate event checking on @disk if not blocked. Events in 1588 * @mask are scheduled to be cleared from the driver. Note that this 1589 * doesn't clear the events from @disk->ev. 1590 * 1591 * CONTEXT: 1592 * If @mask is non-zero must be called with bdev->bd_mutex held. 1593 */ 1594 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1595 { 1596 struct disk_events *ev = disk->ev; 1597 1598 if (!ev) 1599 return; 1600 1601 spin_lock_irq(&ev->lock); 1602 ev->clearing |= mask; 1603 if (!ev->block) 1604 mod_delayed_work(system_freezable_power_efficient_wq, 1605 &ev->dwork, 0); 1606 spin_unlock_irq(&ev->lock); 1607 } 1608 1609 /** 1610 * disk_clear_events - synchronously check, clear and return pending events 1611 * @disk: disk to fetch and clear events from 1612 * @mask: mask of events to be fetched and cleared 1613 * 1614 * Disk events are synchronously checked and pending events in @mask 1615 * are cleared and returned. This ignores the block count. 1616 * 1617 * CONTEXT: 1618 * Might sleep. 1619 */ 1620 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1621 { 1622 const struct block_device_operations *bdops = disk->fops; 1623 struct disk_events *ev = disk->ev; 1624 unsigned int pending; 1625 unsigned int clearing = mask; 1626 1627 if (!ev) { 1628 /* for drivers still using the old ->media_changed method */ 1629 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1630 bdops->media_changed && bdops->media_changed(disk)) 1631 return DISK_EVENT_MEDIA_CHANGE; 1632 return 0; 1633 } 1634 1635 disk_block_events(disk); 1636 1637 /* 1638 * store the union of mask and ev->clearing on the stack so that the 1639 * race with disk_flush_events does not cause ambiguity (ev->clearing 1640 * can still be modified even if events are blocked). 1641 */ 1642 spin_lock_irq(&ev->lock); 1643 clearing |= ev->clearing; 1644 ev->clearing = 0; 1645 spin_unlock_irq(&ev->lock); 1646 1647 disk_check_events(ev, &clearing); 1648 /* 1649 * if ev->clearing is not 0, the disk_flush_events got called in the 1650 * middle of this function, so we want to run the workfn without delay. 1651 */ 1652 __disk_unblock_events(disk, ev->clearing ? true : false); 1653 1654 /* then, fetch and clear pending events */ 1655 spin_lock_irq(&ev->lock); 1656 pending = ev->pending & mask; 1657 ev->pending &= ~mask; 1658 spin_unlock_irq(&ev->lock); 1659 WARN_ON_ONCE(clearing & mask); 1660 1661 return pending; 1662 } 1663 1664 /* 1665 * Separate this part out so that a different pointer for clearing_ptr can be 1666 * passed in for disk_clear_events. 1667 */ 1668 static void disk_events_workfn(struct work_struct *work) 1669 { 1670 struct delayed_work *dwork = to_delayed_work(work); 1671 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1672 1673 disk_check_events(ev, &ev->clearing); 1674 } 1675 1676 static void disk_check_events(struct disk_events *ev, 1677 unsigned int *clearing_ptr) 1678 { 1679 struct gendisk *disk = ev->disk; 1680 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1681 unsigned int clearing = *clearing_ptr; 1682 unsigned int events; 1683 unsigned long intv; 1684 int nr_events = 0, i; 1685 1686 /* check events */ 1687 events = disk->fops->check_events(disk, clearing); 1688 1689 /* accumulate pending events and schedule next poll if necessary */ 1690 spin_lock_irq(&ev->lock); 1691 1692 events &= ~ev->pending; 1693 ev->pending |= events; 1694 *clearing_ptr &= ~clearing; 1695 1696 intv = disk_events_poll_jiffies(disk); 1697 if (!ev->block && intv) 1698 queue_delayed_work(system_freezable_power_efficient_wq, 1699 &ev->dwork, intv); 1700 1701 spin_unlock_irq(&ev->lock); 1702 1703 /* 1704 * Tell userland about new events. Only the events listed in 1705 * @disk->events are reported. Unlisted events are processed the 1706 * same internally but never get reported to userland. 1707 */ 1708 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1709 if (events & disk->events & (1 << i)) 1710 envp[nr_events++] = disk_uevents[i]; 1711 1712 if (nr_events) 1713 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1714 } 1715 1716 /* 1717 * A disk events enabled device has the following sysfs nodes under 1718 * its /sys/block/X/ directory. 1719 * 1720 * events : list of all supported events 1721 * events_async : list of events which can be detected w/o polling 1722 * events_poll_msecs : polling interval, 0: disable, -1: system default 1723 */ 1724 static ssize_t __disk_events_show(unsigned int events, char *buf) 1725 { 1726 const char *delim = ""; 1727 ssize_t pos = 0; 1728 int i; 1729 1730 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1731 if (events & (1 << i)) { 1732 pos += sprintf(buf + pos, "%s%s", 1733 delim, disk_events_strs[i]); 1734 delim = " "; 1735 } 1736 if (pos) 1737 pos += sprintf(buf + pos, "\n"); 1738 return pos; 1739 } 1740 1741 static ssize_t disk_events_show(struct device *dev, 1742 struct device_attribute *attr, char *buf) 1743 { 1744 struct gendisk *disk = dev_to_disk(dev); 1745 1746 return __disk_events_show(disk->events, buf); 1747 } 1748 1749 static ssize_t disk_events_async_show(struct device *dev, 1750 struct device_attribute *attr, char *buf) 1751 { 1752 struct gendisk *disk = dev_to_disk(dev); 1753 1754 return __disk_events_show(disk->async_events, buf); 1755 } 1756 1757 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1758 struct device_attribute *attr, 1759 char *buf) 1760 { 1761 struct gendisk *disk = dev_to_disk(dev); 1762 1763 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1764 } 1765 1766 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1767 struct device_attribute *attr, 1768 const char *buf, size_t count) 1769 { 1770 struct gendisk *disk = dev_to_disk(dev); 1771 long intv; 1772 1773 if (!count || !sscanf(buf, "%ld", &intv)) 1774 return -EINVAL; 1775 1776 if (intv < 0 && intv != -1) 1777 return -EINVAL; 1778 1779 disk_block_events(disk); 1780 disk->ev->poll_msecs = intv; 1781 __disk_unblock_events(disk, true); 1782 1783 return count; 1784 } 1785 1786 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1787 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1788 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1789 disk_events_poll_msecs_show, 1790 disk_events_poll_msecs_store); 1791 1792 static const struct attribute *disk_events_attrs[] = { 1793 &dev_attr_events.attr, 1794 &dev_attr_events_async.attr, 1795 &dev_attr_events_poll_msecs.attr, 1796 NULL, 1797 }; 1798 1799 /* 1800 * The default polling interval can be specified by the kernel 1801 * parameter block.events_dfl_poll_msecs which defaults to 0 1802 * (disable). This can also be modified runtime by writing to 1803 * /sys/module/block/events_dfl_poll_msecs. 1804 */ 1805 static int disk_events_set_dfl_poll_msecs(const char *val, 1806 const struct kernel_param *kp) 1807 { 1808 struct disk_events *ev; 1809 int ret; 1810 1811 ret = param_set_ulong(val, kp); 1812 if (ret < 0) 1813 return ret; 1814 1815 mutex_lock(&disk_events_mutex); 1816 1817 list_for_each_entry(ev, &disk_events, node) 1818 disk_flush_events(ev->disk, 0); 1819 1820 mutex_unlock(&disk_events_mutex); 1821 1822 return 0; 1823 } 1824 1825 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1826 .set = disk_events_set_dfl_poll_msecs, 1827 .get = param_get_ulong, 1828 }; 1829 1830 #undef MODULE_PARAM_PREFIX 1831 #define MODULE_PARAM_PREFIX "block." 1832 1833 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1834 &disk_events_dfl_poll_msecs, 0644); 1835 1836 /* 1837 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1838 */ 1839 static void disk_alloc_events(struct gendisk *disk) 1840 { 1841 struct disk_events *ev; 1842 1843 if (!disk->fops->check_events) 1844 return; 1845 1846 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1847 if (!ev) { 1848 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1849 return; 1850 } 1851 1852 INIT_LIST_HEAD(&ev->node); 1853 ev->disk = disk; 1854 spin_lock_init(&ev->lock); 1855 mutex_init(&ev->block_mutex); 1856 ev->block = 1; 1857 ev->poll_msecs = -1; 1858 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1859 1860 disk->ev = ev; 1861 } 1862 1863 static void disk_add_events(struct gendisk *disk) 1864 { 1865 if (!disk->ev) 1866 return; 1867 1868 /* FIXME: error handling */ 1869 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 1870 pr_warn("%s: failed to create sysfs files for events\n", 1871 disk->disk_name); 1872 1873 mutex_lock(&disk_events_mutex); 1874 list_add_tail(&disk->ev->node, &disk_events); 1875 mutex_unlock(&disk_events_mutex); 1876 1877 /* 1878 * Block count is initialized to 1 and the following initial 1879 * unblock kicks it into action. 1880 */ 1881 __disk_unblock_events(disk, true); 1882 } 1883 1884 static void disk_del_events(struct gendisk *disk) 1885 { 1886 if (!disk->ev) 1887 return; 1888 1889 disk_block_events(disk); 1890 1891 mutex_lock(&disk_events_mutex); 1892 list_del_init(&disk->ev->node); 1893 mutex_unlock(&disk_events_mutex); 1894 1895 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1896 } 1897 1898 static void disk_release_events(struct gendisk *disk) 1899 { 1900 /* the block count should be 1 from disk_del_events() */ 1901 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1902 kfree(disk->ev); 1903 } 1904