xref: /openbmc/linux/block/genhd.c (revision a8fe58ce)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 /**
49  * disk_get_part - get partition
50  * @disk: disk to look partition from
51  * @partno: partition number
52  *
53  * Look for partition @partno from @disk.  If found, increment
54  * reference count and return it.
55  *
56  * CONTEXT:
57  * Don't care.
58  *
59  * RETURNS:
60  * Pointer to the found partition on success, NULL if not found.
61  */
62 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
63 {
64 	struct hd_struct *part = NULL;
65 	struct disk_part_tbl *ptbl;
66 
67 	if (unlikely(partno < 0))
68 		return NULL;
69 
70 	rcu_read_lock();
71 
72 	ptbl = rcu_dereference(disk->part_tbl);
73 	if (likely(partno < ptbl->len)) {
74 		part = rcu_dereference(ptbl->part[partno]);
75 		if (part)
76 			get_device(part_to_dev(part));
77 	}
78 
79 	rcu_read_unlock();
80 
81 	return part;
82 }
83 EXPORT_SYMBOL_GPL(disk_get_part);
84 
85 /**
86  * disk_part_iter_init - initialize partition iterator
87  * @piter: iterator to initialize
88  * @disk: disk to iterate over
89  * @flags: DISK_PITER_* flags
90  *
91  * Initialize @piter so that it iterates over partitions of @disk.
92  *
93  * CONTEXT:
94  * Don't care.
95  */
96 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
97 			  unsigned int flags)
98 {
99 	struct disk_part_tbl *ptbl;
100 
101 	rcu_read_lock();
102 	ptbl = rcu_dereference(disk->part_tbl);
103 
104 	piter->disk = disk;
105 	piter->part = NULL;
106 
107 	if (flags & DISK_PITER_REVERSE)
108 		piter->idx = ptbl->len - 1;
109 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
110 		piter->idx = 0;
111 	else
112 		piter->idx = 1;
113 
114 	piter->flags = flags;
115 
116 	rcu_read_unlock();
117 }
118 EXPORT_SYMBOL_GPL(disk_part_iter_init);
119 
120 /**
121  * disk_part_iter_next - proceed iterator to the next partition and return it
122  * @piter: iterator of interest
123  *
124  * Proceed @piter to the next partition and return it.
125  *
126  * CONTEXT:
127  * Don't care.
128  */
129 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
130 {
131 	struct disk_part_tbl *ptbl;
132 	int inc, end;
133 
134 	/* put the last partition */
135 	disk_put_part(piter->part);
136 	piter->part = NULL;
137 
138 	/* get part_tbl */
139 	rcu_read_lock();
140 	ptbl = rcu_dereference(piter->disk->part_tbl);
141 
142 	/* determine iteration parameters */
143 	if (piter->flags & DISK_PITER_REVERSE) {
144 		inc = -1;
145 		if (piter->flags & (DISK_PITER_INCL_PART0 |
146 				    DISK_PITER_INCL_EMPTY_PART0))
147 			end = -1;
148 		else
149 			end = 0;
150 	} else {
151 		inc = 1;
152 		end = ptbl->len;
153 	}
154 
155 	/* iterate to the next partition */
156 	for (; piter->idx != end; piter->idx += inc) {
157 		struct hd_struct *part;
158 
159 		part = rcu_dereference(ptbl->part[piter->idx]);
160 		if (!part)
161 			continue;
162 		if (!part_nr_sects_read(part) &&
163 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
164 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
165 		      piter->idx == 0))
166 			continue;
167 
168 		get_device(part_to_dev(part));
169 		piter->part = part;
170 		piter->idx += inc;
171 		break;
172 	}
173 
174 	rcu_read_unlock();
175 
176 	return piter->part;
177 }
178 EXPORT_SYMBOL_GPL(disk_part_iter_next);
179 
180 /**
181  * disk_part_iter_exit - finish up partition iteration
182  * @piter: iter of interest
183  *
184  * Called when iteration is over.  Cleans up @piter.
185  *
186  * CONTEXT:
187  * Don't care.
188  */
189 void disk_part_iter_exit(struct disk_part_iter *piter)
190 {
191 	disk_put_part(piter->part);
192 	piter->part = NULL;
193 }
194 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
195 
196 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
197 {
198 	return part->start_sect <= sector &&
199 		sector < part->start_sect + part_nr_sects_read(part);
200 }
201 
202 /**
203  * disk_map_sector_rcu - map sector to partition
204  * @disk: gendisk of interest
205  * @sector: sector to map
206  *
207  * Find out which partition @sector maps to on @disk.  This is
208  * primarily used for stats accounting.
209  *
210  * CONTEXT:
211  * RCU read locked.  The returned partition pointer is valid only
212  * while preemption is disabled.
213  *
214  * RETURNS:
215  * Found partition on success, part0 is returned if no partition matches
216  */
217 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
218 {
219 	struct disk_part_tbl *ptbl;
220 	struct hd_struct *part;
221 	int i;
222 
223 	ptbl = rcu_dereference(disk->part_tbl);
224 
225 	part = rcu_dereference(ptbl->last_lookup);
226 	if (part && sector_in_part(part, sector))
227 		return part;
228 
229 	for (i = 1; i < ptbl->len; i++) {
230 		part = rcu_dereference(ptbl->part[i]);
231 
232 		if (part && sector_in_part(part, sector)) {
233 			rcu_assign_pointer(ptbl->last_lookup, part);
234 			return part;
235 		}
236 	}
237 	return &disk->part0;
238 }
239 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
240 
241 /*
242  * Can be deleted altogether. Later.
243  *
244  */
245 static struct blk_major_name {
246 	struct blk_major_name *next;
247 	int major;
248 	char name[16];
249 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
250 
251 /* index in the above - for now: assume no multimajor ranges */
252 static inline int major_to_index(unsigned major)
253 {
254 	return major % BLKDEV_MAJOR_HASH_SIZE;
255 }
256 
257 #ifdef CONFIG_PROC_FS
258 void blkdev_show(struct seq_file *seqf, off_t offset)
259 {
260 	struct blk_major_name *dp;
261 
262 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
263 		mutex_lock(&block_class_lock);
264 		for (dp = major_names[offset]; dp; dp = dp->next)
265 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
266 		mutex_unlock(&block_class_lock);
267 	}
268 }
269 #endif /* CONFIG_PROC_FS */
270 
271 /**
272  * register_blkdev - register a new block device
273  *
274  * @major: the requested major device number [1..255]. If @major=0, try to
275  *         allocate any unused major number.
276  * @name: the name of the new block device as a zero terminated string
277  *
278  * The @name must be unique within the system.
279  *
280  * The return value depends on the @major input parameter.
281  *  - if a major device number was requested in range [1..255] then the
282  *    function returns zero on success, or a negative error code
283  *  - if any unused major number was requested with @major=0 parameter
284  *    then the return value is the allocated major number in range
285  *    [1..255] or a negative error code otherwise
286  */
287 int register_blkdev(unsigned int major, const char *name)
288 {
289 	struct blk_major_name **n, *p;
290 	int index, ret = 0;
291 
292 	mutex_lock(&block_class_lock);
293 
294 	/* temporary */
295 	if (major == 0) {
296 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
297 			if (major_names[index] == NULL)
298 				break;
299 		}
300 
301 		if (index == 0) {
302 			printk("register_blkdev: failed to get major for %s\n",
303 			       name);
304 			ret = -EBUSY;
305 			goto out;
306 		}
307 		major = index;
308 		ret = major;
309 	}
310 
311 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
312 	if (p == NULL) {
313 		ret = -ENOMEM;
314 		goto out;
315 	}
316 
317 	p->major = major;
318 	strlcpy(p->name, name, sizeof(p->name));
319 	p->next = NULL;
320 	index = major_to_index(major);
321 
322 	for (n = &major_names[index]; *n; n = &(*n)->next) {
323 		if ((*n)->major == major)
324 			break;
325 	}
326 	if (!*n)
327 		*n = p;
328 	else
329 		ret = -EBUSY;
330 
331 	if (ret < 0) {
332 		printk("register_blkdev: cannot get major %d for %s\n",
333 		       major, name);
334 		kfree(p);
335 	}
336 out:
337 	mutex_unlock(&block_class_lock);
338 	return ret;
339 }
340 
341 EXPORT_SYMBOL(register_blkdev);
342 
343 void unregister_blkdev(unsigned int major, const char *name)
344 {
345 	struct blk_major_name **n;
346 	struct blk_major_name *p = NULL;
347 	int index = major_to_index(major);
348 
349 	mutex_lock(&block_class_lock);
350 	for (n = &major_names[index]; *n; n = &(*n)->next)
351 		if ((*n)->major == major)
352 			break;
353 	if (!*n || strcmp((*n)->name, name)) {
354 		WARN_ON(1);
355 	} else {
356 		p = *n;
357 		*n = p->next;
358 	}
359 	mutex_unlock(&block_class_lock);
360 	kfree(p);
361 }
362 
363 EXPORT_SYMBOL(unregister_blkdev);
364 
365 static struct kobj_map *bdev_map;
366 
367 /**
368  * blk_mangle_minor - scatter minor numbers apart
369  * @minor: minor number to mangle
370  *
371  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
372  * is enabled.  Mangling twice gives the original value.
373  *
374  * RETURNS:
375  * Mangled value.
376  *
377  * CONTEXT:
378  * Don't care.
379  */
380 static int blk_mangle_minor(int minor)
381 {
382 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
383 	int i;
384 
385 	for (i = 0; i < MINORBITS / 2; i++) {
386 		int low = minor & (1 << i);
387 		int high = minor & (1 << (MINORBITS - 1 - i));
388 		int distance = MINORBITS - 1 - 2 * i;
389 
390 		minor ^= low | high;	/* clear both bits */
391 		low <<= distance;	/* swap the positions */
392 		high >>= distance;
393 		minor |= low | high;	/* and set */
394 	}
395 #endif
396 	return minor;
397 }
398 
399 /**
400  * blk_alloc_devt - allocate a dev_t for a partition
401  * @part: partition to allocate dev_t for
402  * @devt: out parameter for resulting dev_t
403  *
404  * Allocate a dev_t for block device.
405  *
406  * RETURNS:
407  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
408  * failure.
409  *
410  * CONTEXT:
411  * Might sleep.
412  */
413 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
414 {
415 	struct gendisk *disk = part_to_disk(part);
416 	int idx;
417 
418 	/* in consecutive minor range? */
419 	if (part->partno < disk->minors) {
420 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
421 		return 0;
422 	}
423 
424 	/* allocate ext devt */
425 	idr_preload(GFP_KERNEL);
426 
427 	spin_lock_bh(&ext_devt_lock);
428 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
429 	spin_unlock_bh(&ext_devt_lock);
430 
431 	idr_preload_end();
432 	if (idx < 0)
433 		return idx == -ENOSPC ? -EBUSY : idx;
434 
435 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
436 	return 0;
437 }
438 
439 /**
440  * blk_free_devt - free a dev_t
441  * @devt: dev_t to free
442  *
443  * Free @devt which was allocated using blk_alloc_devt().
444  *
445  * CONTEXT:
446  * Might sleep.
447  */
448 void blk_free_devt(dev_t devt)
449 {
450 	if (devt == MKDEV(0, 0))
451 		return;
452 
453 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
454 		spin_lock_bh(&ext_devt_lock);
455 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
456 		spin_unlock_bh(&ext_devt_lock);
457 	}
458 }
459 
460 static char *bdevt_str(dev_t devt, char *buf)
461 {
462 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
463 		char tbuf[BDEVT_SIZE];
464 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
465 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
466 	} else
467 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
468 
469 	return buf;
470 }
471 
472 /*
473  * Register device numbers dev..(dev+range-1)
474  * range must be nonzero
475  * The hash chain is sorted on range, so that subranges can override.
476  */
477 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
478 			 struct kobject *(*probe)(dev_t, int *, void *),
479 			 int (*lock)(dev_t, void *), void *data)
480 {
481 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
482 }
483 
484 EXPORT_SYMBOL(blk_register_region);
485 
486 void blk_unregister_region(dev_t devt, unsigned long range)
487 {
488 	kobj_unmap(bdev_map, devt, range);
489 }
490 
491 EXPORT_SYMBOL(blk_unregister_region);
492 
493 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
494 {
495 	struct gendisk *p = data;
496 
497 	return &disk_to_dev(p)->kobj;
498 }
499 
500 static int exact_lock(dev_t devt, void *data)
501 {
502 	struct gendisk *p = data;
503 
504 	if (!get_disk(p))
505 		return -1;
506 	return 0;
507 }
508 
509 static void register_disk(struct gendisk *disk)
510 {
511 	struct device *ddev = disk_to_dev(disk);
512 	struct block_device *bdev;
513 	struct disk_part_iter piter;
514 	struct hd_struct *part;
515 	int err;
516 
517 	ddev->parent = disk->driverfs_dev;
518 
519 	dev_set_name(ddev, "%s", disk->disk_name);
520 
521 	/* delay uevents, until we scanned partition table */
522 	dev_set_uevent_suppress(ddev, 1);
523 
524 	if (device_add(ddev))
525 		return;
526 	if (!sysfs_deprecated) {
527 		err = sysfs_create_link(block_depr, &ddev->kobj,
528 					kobject_name(&ddev->kobj));
529 		if (err) {
530 			device_del(ddev);
531 			return;
532 		}
533 	}
534 
535 	/*
536 	 * avoid probable deadlock caused by allocating memory with
537 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
538 	 * devices
539 	 */
540 	pm_runtime_set_memalloc_noio(ddev, true);
541 
542 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
543 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
544 
545 	/* No minors to use for partitions */
546 	if (!disk_part_scan_enabled(disk))
547 		goto exit;
548 
549 	/* No such device (e.g., media were just removed) */
550 	if (!get_capacity(disk))
551 		goto exit;
552 
553 	bdev = bdget_disk(disk, 0);
554 	if (!bdev)
555 		goto exit;
556 
557 	bdev->bd_invalidated = 1;
558 	err = blkdev_get(bdev, FMODE_READ, NULL);
559 	if (err < 0)
560 		goto exit;
561 	blkdev_put(bdev, FMODE_READ);
562 
563 exit:
564 	/* announce disk after possible partitions are created */
565 	dev_set_uevent_suppress(ddev, 0);
566 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
567 
568 	/* announce possible partitions */
569 	disk_part_iter_init(&piter, disk, 0);
570 	while ((part = disk_part_iter_next(&piter)))
571 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
572 	disk_part_iter_exit(&piter);
573 }
574 
575 /**
576  * add_disk - add partitioning information to kernel list
577  * @disk: per-device partitioning information
578  *
579  * This function registers the partitioning information in @disk
580  * with the kernel.
581  *
582  * FIXME: error handling
583  */
584 void add_disk(struct gendisk *disk)
585 {
586 	struct backing_dev_info *bdi;
587 	dev_t devt;
588 	int retval;
589 
590 	/* minors == 0 indicates to use ext devt from part0 and should
591 	 * be accompanied with EXT_DEVT flag.  Make sure all
592 	 * parameters make sense.
593 	 */
594 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
595 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
596 
597 	disk->flags |= GENHD_FL_UP;
598 
599 	retval = blk_alloc_devt(&disk->part0, &devt);
600 	if (retval) {
601 		WARN_ON(1);
602 		return;
603 	}
604 	disk_to_dev(disk)->devt = devt;
605 
606 	/* ->major and ->first_minor aren't supposed to be
607 	 * dereferenced from here on, but set them just in case.
608 	 */
609 	disk->major = MAJOR(devt);
610 	disk->first_minor = MINOR(devt);
611 
612 	disk_alloc_events(disk);
613 
614 	/* Register BDI before referencing it from bdev */
615 	bdi = &disk->queue->backing_dev_info;
616 	bdi_register_dev(bdi, disk_devt(disk));
617 
618 	blk_register_region(disk_devt(disk), disk->minors, NULL,
619 			    exact_match, exact_lock, disk);
620 	register_disk(disk);
621 	blk_register_queue(disk);
622 
623 	/*
624 	 * Take an extra ref on queue which will be put on disk_release()
625 	 * so that it sticks around as long as @disk is there.
626 	 */
627 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
628 
629 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
630 				   "bdi");
631 	WARN_ON(retval);
632 
633 	disk_add_events(disk);
634 	blk_integrity_add(disk);
635 }
636 EXPORT_SYMBOL(add_disk);
637 
638 void del_gendisk(struct gendisk *disk)
639 {
640 	struct disk_part_iter piter;
641 	struct hd_struct *part;
642 
643 	blk_integrity_del(disk);
644 	disk_del_events(disk);
645 
646 	/* invalidate stuff */
647 	disk_part_iter_init(&piter, disk,
648 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
649 	while ((part = disk_part_iter_next(&piter))) {
650 		invalidate_partition(disk, part->partno);
651 		delete_partition(disk, part->partno);
652 	}
653 	disk_part_iter_exit(&piter);
654 
655 	invalidate_partition(disk, 0);
656 	set_capacity(disk, 0);
657 	disk->flags &= ~GENHD_FL_UP;
658 
659 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
660 	blk_unregister_queue(disk);
661 	blk_unregister_region(disk_devt(disk), disk->minors);
662 
663 	part_stat_set_all(&disk->part0, 0);
664 	disk->part0.stamp = 0;
665 
666 	kobject_put(disk->part0.holder_dir);
667 	kobject_put(disk->slave_dir);
668 	if (!sysfs_deprecated)
669 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
670 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
671 	device_del(disk_to_dev(disk));
672 }
673 EXPORT_SYMBOL(del_gendisk);
674 
675 /* sysfs access to bad-blocks list. */
676 static ssize_t disk_badblocks_show(struct device *dev,
677 					struct device_attribute *attr,
678 					char *page)
679 {
680 	struct gendisk *disk = dev_to_disk(dev);
681 
682 	if (!disk->bb)
683 		return sprintf(page, "\n");
684 
685 	return badblocks_show(disk->bb, page, 0);
686 }
687 
688 static ssize_t disk_badblocks_store(struct device *dev,
689 					struct device_attribute *attr,
690 					const char *page, size_t len)
691 {
692 	struct gendisk *disk = dev_to_disk(dev);
693 
694 	if (!disk->bb)
695 		return -ENXIO;
696 
697 	return badblocks_store(disk->bb, page, len, 0);
698 }
699 
700 /**
701  * get_gendisk - get partitioning information for a given device
702  * @devt: device to get partitioning information for
703  * @partno: returned partition index
704  *
705  * This function gets the structure containing partitioning
706  * information for the given device @devt.
707  */
708 struct gendisk *get_gendisk(dev_t devt, int *partno)
709 {
710 	struct gendisk *disk = NULL;
711 
712 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
713 		struct kobject *kobj;
714 
715 		kobj = kobj_lookup(bdev_map, devt, partno);
716 		if (kobj)
717 			disk = dev_to_disk(kobj_to_dev(kobj));
718 	} else {
719 		struct hd_struct *part;
720 
721 		spin_lock_bh(&ext_devt_lock);
722 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
723 		if (part && get_disk(part_to_disk(part))) {
724 			*partno = part->partno;
725 			disk = part_to_disk(part);
726 		}
727 		spin_unlock_bh(&ext_devt_lock);
728 	}
729 
730 	return disk;
731 }
732 EXPORT_SYMBOL(get_gendisk);
733 
734 /**
735  * bdget_disk - do bdget() by gendisk and partition number
736  * @disk: gendisk of interest
737  * @partno: partition number
738  *
739  * Find partition @partno from @disk, do bdget() on it.
740  *
741  * CONTEXT:
742  * Don't care.
743  *
744  * RETURNS:
745  * Resulting block_device on success, NULL on failure.
746  */
747 struct block_device *bdget_disk(struct gendisk *disk, int partno)
748 {
749 	struct hd_struct *part;
750 	struct block_device *bdev = NULL;
751 
752 	part = disk_get_part(disk, partno);
753 	if (part)
754 		bdev = bdget(part_devt(part));
755 	disk_put_part(part);
756 
757 	return bdev;
758 }
759 EXPORT_SYMBOL(bdget_disk);
760 
761 /*
762  * print a full list of all partitions - intended for places where the root
763  * filesystem can't be mounted and thus to give the victim some idea of what
764  * went wrong
765  */
766 void __init printk_all_partitions(void)
767 {
768 	struct class_dev_iter iter;
769 	struct device *dev;
770 
771 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
772 	while ((dev = class_dev_iter_next(&iter))) {
773 		struct gendisk *disk = dev_to_disk(dev);
774 		struct disk_part_iter piter;
775 		struct hd_struct *part;
776 		char name_buf[BDEVNAME_SIZE];
777 		char devt_buf[BDEVT_SIZE];
778 
779 		/*
780 		 * Don't show empty devices or things that have been
781 		 * suppressed
782 		 */
783 		if (get_capacity(disk) == 0 ||
784 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
785 			continue;
786 
787 		/*
788 		 * Note, unlike /proc/partitions, I am showing the
789 		 * numbers in hex - the same format as the root=
790 		 * option takes.
791 		 */
792 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
793 		while ((part = disk_part_iter_next(&piter))) {
794 			bool is_part0 = part == &disk->part0;
795 
796 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
797 			       bdevt_str(part_devt(part), devt_buf),
798 			       (unsigned long long)part_nr_sects_read(part) >> 1
799 			       , disk_name(disk, part->partno, name_buf),
800 			       part->info ? part->info->uuid : "");
801 			if (is_part0) {
802 				if (disk->driverfs_dev != NULL &&
803 				    disk->driverfs_dev->driver != NULL)
804 					printk(" driver: %s\n",
805 					      disk->driverfs_dev->driver->name);
806 				else
807 					printk(" (driver?)\n");
808 			} else
809 				printk("\n");
810 		}
811 		disk_part_iter_exit(&piter);
812 	}
813 	class_dev_iter_exit(&iter);
814 }
815 
816 #ifdef CONFIG_PROC_FS
817 /* iterator */
818 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
819 {
820 	loff_t skip = *pos;
821 	struct class_dev_iter *iter;
822 	struct device *dev;
823 
824 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
825 	if (!iter)
826 		return ERR_PTR(-ENOMEM);
827 
828 	seqf->private = iter;
829 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
830 	do {
831 		dev = class_dev_iter_next(iter);
832 		if (!dev)
833 			return NULL;
834 	} while (skip--);
835 
836 	return dev_to_disk(dev);
837 }
838 
839 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
840 {
841 	struct device *dev;
842 
843 	(*pos)++;
844 	dev = class_dev_iter_next(seqf->private);
845 	if (dev)
846 		return dev_to_disk(dev);
847 
848 	return NULL;
849 }
850 
851 static void disk_seqf_stop(struct seq_file *seqf, void *v)
852 {
853 	struct class_dev_iter *iter = seqf->private;
854 
855 	/* stop is called even after start failed :-( */
856 	if (iter) {
857 		class_dev_iter_exit(iter);
858 		kfree(iter);
859 	}
860 }
861 
862 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
863 {
864 	void *p;
865 
866 	p = disk_seqf_start(seqf, pos);
867 	if (!IS_ERR_OR_NULL(p) && !*pos)
868 		seq_puts(seqf, "major minor  #blocks  name\n\n");
869 	return p;
870 }
871 
872 static int show_partition(struct seq_file *seqf, void *v)
873 {
874 	struct gendisk *sgp = v;
875 	struct disk_part_iter piter;
876 	struct hd_struct *part;
877 	char buf[BDEVNAME_SIZE];
878 
879 	/* Don't show non-partitionable removeable devices or empty devices */
880 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
881 				   (sgp->flags & GENHD_FL_REMOVABLE)))
882 		return 0;
883 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
884 		return 0;
885 
886 	/* show the full disk and all non-0 size partitions of it */
887 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
888 	while ((part = disk_part_iter_next(&piter)))
889 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
890 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
891 			   (unsigned long long)part_nr_sects_read(part) >> 1,
892 			   disk_name(sgp, part->partno, buf));
893 	disk_part_iter_exit(&piter);
894 
895 	return 0;
896 }
897 
898 static const struct seq_operations partitions_op = {
899 	.start	= show_partition_start,
900 	.next	= disk_seqf_next,
901 	.stop	= disk_seqf_stop,
902 	.show	= show_partition
903 };
904 
905 static int partitions_open(struct inode *inode, struct file *file)
906 {
907 	return seq_open(file, &partitions_op);
908 }
909 
910 static const struct file_operations proc_partitions_operations = {
911 	.open		= partitions_open,
912 	.read		= seq_read,
913 	.llseek		= seq_lseek,
914 	.release	= seq_release,
915 };
916 #endif
917 
918 
919 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
920 {
921 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
922 		/* Make old-style 2.4 aliases work */
923 		request_module("block-major-%d", MAJOR(devt));
924 	return NULL;
925 }
926 
927 static int __init genhd_device_init(void)
928 {
929 	int error;
930 
931 	block_class.dev_kobj = sysfs_dev_block_kobj;
932 	error = class_register(&block_class);
933 	if (unlikely(error))
934 		return error;
935 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
936 	blk_dev_init();
937 
938 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
939 
940 	/* create top-level block dir */
941 	if (!sysfs_deprecated)
942 		block_depr = kobject_create_and_add("block", NULL);
943 	return 0;
944 }
945 
946 subsys_initcall(genhd_device_init);
947 
948 static ssize_t disk_range_show(struct device *dev,
949 			       struct device_attribute *attr, char *buf)
950 {
951 	struct gendisk *disk = dev_to_disk(dev);
952 
953 	return sprintf(buf, "%d\n", disk->minors);
954 }
955 
956 static ssize_t disk_ext_range_show(struct device *dev,
957 				   struct device_attribute *attr, char *buf)
958 {
959 	struct gendisk *disk = dev_to_disk(dev);
960 
961 	return sprintf(buf, "%d\n", disk_max_parts(disk));
962 }
963 
964 static ssize_t disk_removable_show(struct device *dev,
965 				   struct device_attribute *attr, char *buf)
966 {
967 	struct gendisk *disk = dev_to_disk(dev);
968 
969 	return sprintf(buf, "%d\n",
970 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
971 }
972 
973 static ssize_t disk_ro_show(struct device *dev,
974 				   struct device_attribute *attr, char *buf)
975 {
976 	struct gendisk *disk = dev_to_disk(dev);
977 
978 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
979 }
980 
981 static ssize_t disk_capability_show(struct device *dev,
982 				    struct device_attribute *attr, char *buf)
983 {
984 	struct gendisk *disk = dev_to_disk(dev);
985 
986 	return sprintf(buf, "%x\n", disk->flags);
987 }
988 
989 static ssize_t disk_alignment_offset_show(struct device *dev,
990 					  struct device_attribute *attr,
991 					  char *buf)
992 {
993 	struct gendisk *disk = dev_to_disk(dev);
994 
995 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
996 }
997 
998 static ssize_t disk_discard_alignment_show(struct device *dev,
999 					   struct device_attribute *attr,
1000 					   char *buf)
1001 {
1002 	struct gendisk *disk = dev_to_disk(dev);
1003 
1004 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1005 }
1006 
1007 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1008 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1009 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1010 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1011 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1012 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1013 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1014 		   NULL);
1015 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1016 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1017 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1018 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1019 		disk_badblocks_store);
1020 #ifdef CONFIG_FAIL_MAKE_REQUEST
1021 static struct device_attribute dev_attr_fail =
1022 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1023 #endif
1024 #ifdef CONFIG_FAIL_IO_TIMEOUT
1025 static struct device_attribute dev_attr_fail_timeout =
1026 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1027 		part_timeout_store);
1028 #endif
1029 
1030 static struct attribute *disk_attrs[] = {
1031 	&dev_attr_range.attr,
1032 	&dev_attr_ext_range.attr,
1033 	&dev_attr_removable.attr,
1034 	&dev_attr_ro.attr,
1035 	&dev_attr_size.attr,
1036 	&dev_attr_alignment_offset.attr,
1037 	&dev_attr_discard_alignment.attr,
1038 	&dev_attr_capability.attr,
1039 	&dev_attr_stat.attr,
1040 	&dev_attr_inflight.attr,
1041 	&dev_attr_badblocks.attr,
1042 #ifdef CONFIG_FAIL_MAKE_REQUEST
1043 	&dev_attr_fail.attr,
1044 #endif
1045 #ifdef CONFIG_FAIL_IO_TIMEOUT
1046 	&dev_attr_fail_timeout.attr,
1047 #endif
1048 	NULL
1049 };
1050 
1051 static struct attribute_group disk_attr_group = {
1052 	.attrs = disk_attrs,
1053 };
1054 
1055 static const struct attribute_group *disk_attr_groups[] = {
1056 	&disk_attr_group,
1057 	NULL
1058 };
1059 
1060 /**
1061  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1062  * @disk: disk to replace part_tbl for
1063  * @new_ptbl: new part_tbl to install
1064  *
1065  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1066  * original ptbl is freed using RCU callback.
1067  *
1068  * LOCKING:
1069  * Matching bd_mutx locked.
1070  */
1071 static void disk_replace_part_tbl(struct gendisk *disk,
1072 				  struct disk_part_tbl *new_ptbl)
1073 {
1074 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1075 
1076 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1077 
1078 	if (old_ptbl) {
1079 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1080 		kfree_rcu(old_ptbl, rcu_head);
1081 	}
1082 }
1083 
1084 /**
1085  * disk_expand_part_tbl - expand disk->part_tbl
1086  * @disk: disk to expand part_tbl for
1087  * @partno: expand such that this partno can fit in
1088  *
1089  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1090  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1091  *
1092  * LOCKING:
1093  * Matching bd_mutex locked, might sleep.
1094  *
1095  * RETURNS:
1096  * 0 on success, -errno on failure.
1097  */
1098 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1099 {
1100 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1101 	struct disk_part_tbl *new_ptbl;
1102 	int len = old_ptbl ? old_ptbl->len : 0;
1103 	int i, target;
1104 	size_t size;
1105 
1106 	/*
1107 	 * check for int overflow, since we can get here from blkpg_ioctl()
1108 	 * with a user passed 'partno'.
1109 	 */
1110 	target = partno + 1;
1111 	if (target < 0)
1112 		return -EINVAL;
1113 
1114 	/* disk_max_parts() is zero during initialization, ignore if so */
1115 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1116 		return -EINVAL;
1117 
1118 	if (target <= len)
1119 		return 0;
1120 
1121 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1122 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1123 	if (!new_ptbl)
1124 		return -ENOMEM;
1125 
1126 	new_ptbl->len = target;
1127 
1128 	for (i = 0; i < len; i++)
1129 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1130 
1131 	disk_replace_part_tbl(disk, new_ptbl);
1132 	return 0;
1133 }
1134 
1135 static void disk_release(struct device *dev)
1136 {
1137 	struct gendisk *disk = dev_to_disk(dev);
1138 
1139 	blk_free_devt(dev->devt);
1140 	disk_release_events(disk);
1141 	kfree(disk->random);
1142 	disk_replace_part_tbl(disk, NULL);
1143 	hd_free_part(&disk->part0);
1144 	if (disk->queue)
1145 		blk_put_queue(disk->queue);
1146 	kfree(disk);
1147 }
1148 struct class block_class = {
1149 	.name		= "block",
1150 };
1151 
1152 static char *block_devnode(struct device *dev, umode_t *mode,
1153 			   kuid_t *uid, kgid_t *gid)
1154 {
1155 	struct gendisk *disk = dev_to_disk(dev);
1156 
1157 	if (disk->devnode)
1158 		return disk->devnode(disk, mode);
1159 	return NULL;
1160 }
1161 
1162 static struct device_type disk_type = {
1163 	.name		= "disk",
1164 	.groups		= disk_attr_groups,
1165 	.release	= disk_release,
1166 	.devnode	= block_devnode,
1167 };
1168 
1169 #ifdef CONFIG_PROC_FS
1170 /*
1171  * aggregate disk stat collector.  Uses the same stats that the sysfs
1172  * entries do, above, but makes them available through one seq_file.
1173  *
1174  * The output looks suspiciously like /proc/partitions with a bunch of
1175  * extra fields.
1176  */
1177 static int diskstats_show(struct seq_file *seqf, void *v)
1178 {
1179 	struct gendisk *gp = v;
1180 	struct disk_part_iter piter;
1181 	struct hd_struct *hd;
1182 	char buf[BDEVNAME_SIZE];
1183 	int cpu;
1184 
1185 	/*
1186 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1187 		seq_puts(seqf,	"major minor name"
1188 				"     rio rmerge rsect ruse wio wmerge "
1189 				"wsect wuse running use aveq"
1190 				"\n\n");
1191 	*/
1192 
1193 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1194 	while ((hd = disk_part_iter_next(&piter))) {
1195 		cpu = part_stat_lock();
1196 		part_round_stats(cpu, hd);
1197 		part_stat_unlock();
1198 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1199 			   "%u %lu %lu %lu %u %u %u %u\n",
1200 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1201 			   disk_name(gp, hd->partno, buf),
1202 			   part_stat_read(hd, ios[READ]),
1203 			   part_stat_read(hd, merges[READ]),
1204 			   part_stat_read(hd, sectors[READ]),
1205 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1206 			   part_stat_read(hd, ios[WRITE]),
1207 			   part_stat_read(hd, merges[WRITE]),
1208 			   part_stat_read(hd, sectors[WRITE]),
1209 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1210 			   part_in_flight(hd),
1211 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1212 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1213 			);
1214 	}
1215 	disk_part_iter_exit(&piter);
1216 
1217 	return 0;
1218 }
1219 
1220 static const struct seq_operations diskstats_op = {
1221 	.start	= disk_seqf_start,
1222 	.next	= disk_seqf_next,
1223 	.stop	= disk_seqf_stop,
1224 	.show	= diskstats_show
1225 };
1226 
1227 static int diskstats_open(struct inode *inode, struct file *file)
1228 {
1229 	return seq_open(file, &diskstats_op);
1230 }
1231 
1232 static const struct file_operations proc_diskstats_operations = {
1233 	.open		= diskstats_open,
1234 	.read		= seq_read,
1235 	.llseek		= seq_lseek,
1236 	.release	= seq_release,
1237 };
1238 
1239 static int __init proc_genhd_init(void)
1240 {
1241 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1242 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1243 	return 0;
1244 }
1245 module_init(proc_genhd_init);
1246 #endif /* CONFIG_PROC_FS */
1247 
1248 dev_t blk_lookup_devt(const char *name, int partno)
1249 {
1250 	dev_t devt = MKDEV(0, 0);
1251 	struct class_dev_iter iter;
1252 	struct device *dev;
1253 
1254 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1255 	while ((dev = class_dev_iter_next(&iter))) {
1256 		struct gendisk *disk = dev_to_disk(dev);
1257 		struct hd_struct *part;
1258 
1259 		if (strcmp(dev_name(dev), name))
1260 			continue;
1261 
1262 		if (partno < disk->minors) {
1263 			/* We need to return the right devno, even
1264 			 * if the partition doesn't exist yet.
1265 			 */
1266 			devt = MKDEV(MAJOR(dev->devt),
1267 				     MINOR(dev->devt) + partno);
1268 			break;
1269 		}
1270 		part = disk_get_part(disk, partno);
1271 		if (part) {
1272 			devt = part_devt(part);
1273 			disk_put_part(part);
1274 			break;
1275 		}
1276 		disk_put_part(part);
1277 	}
1278 	class_dev_iter_exit(&iter);
1279 	return devt;
1280 }
1281 EXPORT_SYMBOL(blk_lookup_devt);
1282 
1283 struct gendisk *alloc_disk(int minors)
1284 {
1285 	return alloc_disk_node(minors, NUMA_NO_NODE);
1286 }
1287 EXPORT_SYMBOL(alloc_disk);
1288 
1289 struct gendisk *alloc_disk_node(int minors, int node_id)
1290 {
1291 	struct gendisk *disk;
1292 
1293 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1294 	if (disk) {
1295 		if (!init_part_stats(&disk->part0)) {
1296 			kfree(disk);
1297 			return NULL;
1298 		}
1299 		disk->node_id = node_id;
1300 		if (disk_expand_part_tbl(disk, 0)) {
1301 			free_part_stats(&disk->part0);
1302 			kfree(disk);
1303 			return NULL;
1304 		}
1305 		disk->part_tbl->part[0] = &disk->part0;
1306 
1307 		/*
1308 		 * set_capacity() and get_capacity() currently don't use
1309 		 * seqcounter to read/update the part0->nr_sects. Still init
1310 		 * the counter as we can read the sectors in IO submission
1311 		 * patch using seqence counters.
1312 		 *
1313 		 * TODO: Ideally set_capacity() and get_capacity() should be
1314 		 * converted to make use of bd_mutex and sequence counters.
1315 		 */
1316 		seqcount_init(&disk->part0.nr_sects_seq);
1317 		if (hd_ref_init(&disk->part0)) {
1318 			hd_free_part(&disk->part0);
1319 			kfree(disk);
1320 			return NULL;
1321 		}
1322 
1323 		disk->minors = minors;
1324 		rand_initialize_disk(disk);
1325 		disk_to_dev(disk)->class = &block_class;
1326 		disk_to_dev(disk)->type = &disk_type;
1327 		device_initialize(disk_to_dev(disk));
1328 	}
1329 	return disk;
1330 }
1331 EXPORT_SYMBOL(alloc_disk_node);
1332 
1333 struct kobject *get_disk(struct gendisk *disk)
1334 {
1335 	struct module *owner;
1336 	struct kobject *kobj;
1337 
1338 	if (!disk->fops)
1339 		return NULL;
1340 	owner = disk->fops->owner;
1341 	if (owner && !try_module_get(owner))
1342 		return NULL;
1343 	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1344 	if (kobj == NULL) {
1345 		module_put(owner);
1346 		return NULL;
1347 	}
1348 	return kobj;
1349 
1350 }
1351 
1352 EXPORT_SYMBOL(get_disk);
1353 
1354 void put_disk(struct gendisk *disk)
1355 {
1356 	if (disk)
1357 		kobject_put(&disk_to_dev(disk)->kobj);
1358 }
1359 
1360 EXPORT_SYMBOL(put_disk);
1361 
1362 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1363 {
1364 	char event[] = "DISK_RO=1";
1365 	char *envp[] = { event, NULL };
1366 
1367 	if (!ro)
1368 		event[8] = '0';
1369 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1370 }
1371 
1372 void set_device_ro(struct block_device *bdev, int flag)
1373 {
1374 	bdev->bd_part->policy = flag;
1375 }
1376 
1377 EXPORT_SYMBOL(set_device_ro);
1378 
1379 void set_disk_ro(struct gendisk *disk, int flag)
1380 {
1381 	struct disk_part_iter piter;
1382 	struct hd_struct *part;
1383 
1384 	if (disk->part0.policy != flag) {
1385 		set_disk_ro_uevent(disk, flag);
1386 		disk->part0.policy = flag;
1387 	}
1388 
1389 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1390 	while ((part = disk_part_iter_next(&piter)))
1391 		part->policy = flag;
1392 	disk_part_iter_exit(&piter);
1393 }
1394 
1395 EXPORT_SYMBOL(set_disk_ro);
1396 
1397 int bdev_read_only(struct block_device *bdev)
1398 {
1399 	if (!bdev)
1400 		return 0;
1401 	return bdev->bd_part->policy;
1402 }
1403 
1404 EXPORT_SYMBOL(bdev_read_only);
1405 
1406 int invalidate_partition(struct gendisk *disk, int partno)
1407 {
1408 	int res = 0;
1409 	struct block_device *bdev = bdget_disk(disk, partno);
1410 	if (bdev) {
1411 		fsync_bdev(bdev);
1412 		res = __invalidate_device(bdev, true);
1413 		bdput(bdev);
1414 	}
1415 	return res;
1416 }
1417 
1418 EXPORT_SYMBOL(invalidate_partition);
1419 
1420 /*
1421  * Disk events - monitor disk events like media change and eject request.
1422  */
1423 struct disk_events {
1424 	struct list_head	node;		/* all disk_event's */
1425 	struct gendisk		*disk;		/* the associated disk */
1426 	spinlock_t		lock;
1427 
1428 	struct mutex		block_mutex;	/* protects blocking */
1429 	int			block;		/* event blocking depth */
1430 	unsigned int		pending;	/* events already sent out */
1431 	unsigned int		clearing;	/* events being cleared */
1432 
1433 	long			poll_msecs;	/* interval, -1 for default */
1434 	struct delayed_work	dwork;
1435 };
1436 
1437 static const char *disk_events_strs[] = {
1438 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1439 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1440 };
1441 
1442 static char *disk_uevents[] = {
1443 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1444 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1445 };
1446 
1447 /* list of all disk_events */
1448 static DEFINE_MUTEX(disk_events_mutex);
1449 static LIST_HEAD(disk_events);
1450 
1451 /* disable in-kernel polling by default */
1452 static unsigned long disk_events_dfl_poll_msecs;
1453 
1454 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1455 {
1456 	struct disk_events *ev = disk->ev;
1457 	long intv_msecs = 0;
1458 
1459 	/*
1460 	 * If device-specific poll interval is set, always use it.  If
1461 	 * the default is being used, poll iff there are events which
1462 	 * can't be monitored asynchronously.
1463 	 */
1464 	if (ev->poll_msecs >= 0)
1465 		intv_msecs = ev->poll_msecs;
1466 	else if (disk->events & ~disk->async_events)
1467 		intv_msecs = disk_events_dfl_poll_msecs;
1468 
1469 	return msecs_to_jiffies(intv_msecs);
1470 }
1471 
1472 /**
1473  * disk_block_events - block and flush disk event checking
1474  * @disk: disk to block events for
1475  *
1476  * On return from this function, it is guaranteed that event checking
1477  * isn't in progress and won't happen until unblocked by
1478  * disk_unblock_events().  Events blocking is counted and the actual
1479  * unblocking happens after the matching number of unblocks are done.
1480  *
1481  * Note that this intentionally does not block event checking from
1482  * disk_clear_events().
1483  *
1484  * CONTEXT:
1485  * Might sleep.
1486  */
1487 void disk_block_events(struct gendisk *disk)
1488 {
1489 	struct disk_events *ev = disk->ev;
1490 	unsigned long flags;
1491 	bool cancel;
1492 
1493 	if (!ev)
1494 		return;
1495 
1496 	/*
1497 	 * Outer mutex ensures that the first blocker completes canceling
1498 	 * the event work before further blockers are allowed to finish.
1499 	 */
1500 	mutex_lock(&ev->block_mutex);
1501 
1502 	spin_lock_irqsave(&ev->lock, flags);
1503 	cancel = !ev->block++;
1504 	spin_unlock_irqrestore(&ev->lock, flags);
1505 
1506 	if (cancel)
1507 		cancel_delayed_work_sync(&disk->ev->dwork);
1508 
1509 	mutex_unlock(&ev->block_mutex);
1510 }
1511 
1512 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1513 {
1514 	struct disk_events *ev = disk->ev;
1515 	unsigned long intv;
1516 	unsigned long flags;
1517 
1518 	spin_lock_irqsave(&ev->lock, flags);
1519 
1520 	if (WARN_ON_ONCE(ev->block <= 0))
1521 		goto out_unlock;
1522 
1523 	if (--ev->block)
1524 		goto out_unlock;
1525 
1526 	/*
1527 	 * Not exactly a latency critical operation, set poll timer
1528 	 * slack to 25% and kick event check.
1529 	 */
1530 	intv = disk_events_poll_jiffies(disk);
1531 	set_timer_slack(&ev->dwork.timer, intv / 4);
1532 	if (check_now)
1533 		queue_delayed_work(system_freezable_power_efficient_wq,
1534 				&ev->dwork, 0);
1535 	else if (intv)
1536 		queue_delayed_work(system_freezable_power_efficient_wq,
1537 				&ev->dwork, intv);
1538 out_unlock:
1539 	spin_unlock_irqrestore(&ev->lock, flags);
1540 }
1541 
1542 /**
1543  * disk_unblock_events - unblock disk event checking
1544  * @disk: disk to unblock events for
1545  *
1546  * Undo disk_block_events().  When the block count reaches zero, it
1547  * starts events polling if configured.
1548  *
1549  * CONTEXT:
1550  * Don't care.  Safe to call from irq context.
1551  */
1552 void disk_unblock_events(struct gendisk *disk)
1553 {
1554 	if (disk->ev)
1555 		__disk_unblock_events(disk, false);
1556 }
1557 
1558 /**
1559  * disk_flush_events - schedule immediate event checking and flushing
1560  * @disk: disk to check and flush events for
1561  * @mask: events to flush
1562  *
1563  * Schedule immediate event checking on @disk if not blocked.  Events in
1564  * @mask are scheduled to be cleared from the driver.  Note that this
1565  * doesn't clear the events from @disk->ev.
1566  *
1567  * CONTEXT:
1568  * If @mask is non-zero must be called with bdev->bd_mutex held.
1569  */
1570 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1571 {
1572 	struct disk_events *ev = disk->ev;
1573 
1574 	if (!ev)
1575 		return;
1576 
1577 	spin_lock_irq(&ev->lock);
1578 	ev->clearing |= mask;
1579 	if (!ev->block)
1580 		mod_delayed_work(system_freezable_power_efficient_wq,
1581 				&ev->dwork, 0);
1582 	spin_unlock_irq(&ev->lock);
1583 }
1584 
1585 /**
1586  * disk_clear_events - synchronously check, clear and return pending events
1587  * @disk: disk to fetch and clear events from
1588  * @mask: mask of events to be fetched and cleared
1589  *
1590  * Disk events are synchronously checked and pending events in @mask
1591  * are cleared and returned.  This ignores the block count.
1592  *
1593  * CONTEXT:
1594  * Might sleep.
1595  */
1596 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1597 {
1598 	const struct block_device_operations *bdops = disk->fops;
1599 	struct disk_events *ev = disk->ev;
1600 	unsigned int pending;
1601 	unsigned int clearing = mask;
1602 
1603 	if (!ev) {
1604 		/* for drivers still using the old ->media_changed method */
1605 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1606 		    bdops->media_changed && bdops->media_changed(disk))
1607 			return DISK_EVENT_MEDIA_CHANGE;
1608 		return 0;
1609 	}
1610 
1611 	disk_block_events(disk);
1612 
1613 	/*
1614 	 * store the union of mask and ev->clearing on the stack so that the
1615 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1616 	 * can still be modified even if events are blocked).
1617 	 */
1618 	spin_lock_irq(&ev->lock);
1619 	clearing |= ev->clearing;
1620 	ev->clearing = 0;
1621 	spin_unlock_irq(&ev->lock);
1622 
1623 	disk_check_events(ev, &clearing);
1624 	/*
1625 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1626 	 * middle of this function, so we want to run the workfn without delay.
1627 	 */
1628 	__disk_unblock_events(disk, ev->clearing ? true : false);
1629 
1630 	/* then, fetch and clear pending events */
1631 	spin_lock_irq(&ev->lock);
1632 	pending = ev->pending & mask;
1633 	ev->pending &= ~mask;
1634 	spin_unlock_irq(&ev->lock);
1635 	WARN_ON_ONCE(clearing & mask);
1636 
1637 	return pending;
1638 }
1639 
1640 /*
1641  * Separate this part out so that a different pointer for clearing_ptr can be
1642  * passed in for disk_clear_events.
1643  */
1644 static void disk_events_workfn(struct work_struct *work)
1645 {
1646 	struct delayed_work *dwork = to_delayed_work(work);
1647 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1648 
1649 	disk_check_events(ev, &ev->clearing);
1650 }
1651 
1652 static void disk_check_events(struct disk_events *ev,
1653 			      unsigned int *clearing_ptr)
1654 {
1655 	struct gendisk *disk = ev->disk;
1656 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1657 	unsigned int clearing = *clearing_ptr;
1658 	unsigned int events;
1659 	unsigned long intv;
1660 	int nr_events = 0, i;
1661 
1662 	/* check events */
1663 	events = disk->fops->check_events(disk, clearing);
1664 
1665 	/* accumulate pending events and schedule next poll if necessary */
1666 	spin_lock_irq(&ev->lock);
1667 
1668 	events &= ~ev->pending;
1669 	ev->pending |= events;
1670 	*clearing_ptr &= ~clearing;
1671 
1672 	intv = disk_events_poll_jiffies(disk);
1673 	if (!ev->block && intv)
1674 		queue_delayed_work(system_freezable_power_efficient_wq,
1675 				&ev->dwork, intv);
1676 
1677 	spin_unlock_irq(&ev->lock);
1678 
1679 	/*
1680 	 * Tell userland about new events.  Only the events listed in
1681 	 * @disk->events are reported.  Unlisted events are processed the
1682 	 * same internally but never get reported to userland.
1683 	 */
1684 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1685 		if (events & disk->events & (1 << i))
1686 			envp[nr_events++] = disk_uevents[i];
1687 
1688 	if (nr_events)
1689 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1690 }
1691 
1692 /*
1693  * A disk events enabled device has the following sysfs nodes under
1694  * its /sys/block/X/ directory.
1695  *
1696  * events		: list of all supported events
1697  * events_async		: list of events which can be detected w/o polling
1698  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1699  */
1700 static ssize_t __disk_events_show(unsigned int events, char *buf)
1701 {
1702 	const char *delim = "";
1703 	ssize_t pos = 0;
1704 	int i;
1705 
1706 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1707 		if (events & (1 << i)) {
1708 			pos += sprintf(buf + pos, "%s%s",
1709 				       delim, disk_events_strs[i]);
1710 			delim = " ";
1711 		}
1712 	if (pos)
1713 		pos += sprintf(buf + pos, "\n");
1714 	return pos;
1715 }
1716 
1717 static ssize_t disk_events_show(struct device *dev,
1718 				struct device_attribute *attr, char *buf)
1719 {
1720 	struct gendisk *disk = dev_to_disk(dev);
1721 
1722 	return __disk_events_show(disk->events, buf);
1723 }
1724 
1725 static ssize_t disk_events_async_show(struct device *dev,
1726 				      struct device_attribute *attr, char *buf)
1727 {
1728 	struct gendisk *disk = dev_to_disk(dev);
1729 
1730 	return __disk_events_show(disk->async_events, buf);
1731 }
1732 
1733 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1734 					   struct device_attribute *attr,
1735 					   char *buf)
1736 {
1737 	struct gendisk *disk = dev_to_disk(dev);
1738 
1739 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1740 }
1741 
1742 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1743 					    struct device_attribute *attr,
1744 					    const char *buf, size_t count)
1745 {
1746 	struct gendisk *disk = dev_to_disk(dev);
1747 	long intv;
1748 
1749 	if (!count || !sscanf(buf, "%ld", &intv))
1750 		return -EINVAL;
1751 
1752 	if (intv < 0 && intv != -1)
1753 		return -EINVAL;
1754 
1755 	disk_block_events(disk);
1756 	disk->ev->poll_msecs = intv;
1757 	__disk_unblock_events(disk, true);
1758 
1759 	return count;
1760 }
1761 
1762 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1763 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1764 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1765 			 disk_events_poll_msecs_show,
1766 			 disk_events_poll_msecs_store);
1767 
1768 static const struct attribute *disk_events_attrs[] = {
1769 	&dev_attr_events.attr,
1770 	&dev_attr_events_async.attr,
1771 	&dev_attr_events_poll_msecs.attr,
1772 	NULL,
1773 };
1774 
1775 /*
1776  * The default polling interval can be specified by the kernel
1777  * parameter block.events_dfl_poll_msecs which defaults to 0
1778  * (disable).  This can also be modified runtime by writing to
1779  * /sys/module/block/events_dfl_poll_msecs.
1780  */
1781 static int disk_events_set_dfl_poll_msecs(const char *val,
1782 					  const struct kernel_param *kp)
1783 {
1784 	struct disk_events *ev;
1785 	int ret;
1786 
1787 	ret = param_set_ulong(val, kp);
1788 	if (ret < 0)
1789 		return ret;
1790 
1791 	mutex_lock(&disk_events_mutex);
1792 
1793 	list_for_each_entry(ev, &disk_events, node)
1794 		disk_flush_events(ev->disk, 0);
1795 
1796 	mutex_unlock(&disk_events_mutex);
1797 
1798 	return 0;
1799 }
1800 
1801 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1802 	.set	= disk_events_set_dfl_poll_msecs,
1803 	.get	= param_get_ulong,
1804 };
1805 
1806 #undef MODULE_PARAM_PREFIX
1807 #define MODULE_PARAM_PREFIX	"block."
1808 
1809 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1810 		&disk_events_dfl_poll_msecs, 0644);
1811 
1812 /*
1813  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1814  */
1815 static void disk_alloc_events(struct gendisk *disk)
1816 {
1817 	struct disk_events *ev;
1818 
1819 	if (!disk->fops->check_events)
1820 		return;
1821 
1822 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1823 	if (!ev) {
1824 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1825 		return;
1826 	}
1827 
1828 	INIT_LIST_HEAD(&ev->node);
1829 	ev->disk = disk;
1830 	spin_lock_init(&ev->lock);
1831 	mutex_init(&ev->block_mutex);
1832 	ev->block = 1;
1833 	ev->poll_msecs = -1;
1834 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1835 
1836 	disk->ev = ev;
1837 }
1838 
1839 static void disk_add_events(struct gendisk *disk)
1840 {
1841 	if (!disk->ev)
1842 		return;
1843 
1844 	/* FIXME: error handling */
1845 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1846 		pr_warn("%s: failed to create sysfs files for events\n",
1847 			disk->disk_name);
1848 
1849 	mutex_lock(&disk_events_mutex);
1850 	list_add_tail(&disk->ev->node, &disk_events);
1851 	mutex_unlock(&disk_events_mutex);
1852 
1853 	/*
1854 	 * Block count is initialized to 1 and the following initial
1855 	 * unblock kicks it into action.
1856 	 */
1857 	__disk_unblock_events(disk, true);
1858 }
1859 
1860 static void disk_del_events(struct gendisk *disk)
1861 {
1862 	if (!disk->ev)
1863 		return;
1864 
1865 	disk_block_events(disk);
1866 
1867 	mutex_lock(&disk_events_mutex);
1868 	list_del_init(&disk->ev->node);
1869 	mutex_unlock(&disk_events_mutex);
1870 
1871 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1872 }
1873 
1874 static void disk_release_events(struct gendisk *disk)
1875 {
1876 	/* the block count should be 1 from disk_del_events() */
1877 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1878 	kfree(disk->ev);
1879 }
1880