1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * gendisk handling 4 */ 5 6 #include <linux/module.h> 7 #include <linux/ctype.h> 8 #include <linux/fs.h> 9 #include <linux/genhd.h> 10 #include <linux/kdev_t.h> 11 #include <linux/kernel.h> 12 #include <linux/blkdev.h> 13 #include <linux/backing-dev.h> 14 #include <linux/init.h> 15 #include <linux/spinlock.h> 16 #include <linux/proc_fs.h> 17 #include <linux/seq_file.h> 18 #include <linux/slab.h> 19 #include <linux/kmod.h> 20 #include <linux/kobj_map.h> 21 #include <linux/mutex.h> 22 #include <linux/idr.h> 23 #include <linux/log2.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/badblocks.h> 26 27 #include "blk.h" 28 29 static DEFINE_MUTEX(block_class_lock); 30 static struct kobject *block_depr; 31 32 /* for extended dynamic devt allocation, currently only one major is used */ 33 #define NR_EXT_DEVT (1 << MINORBITS) 34 35 /* For extended devt allocation. ext_devt_lock prevents look up 36 * results from going away underneath its user. 37 */ 38 static DEFINE_SPINLOCK(ext_devt_lock); 39 static DEFINE_IDR(ext_devt_idr); 40 41 static const struct device_type disk_type; 42 43 static void disk_check_events(struct disk_events *ev, 44 unsigned int *clearing_ptr); 45 static void disk_alloc_events(struct gendisk *disk); 46 static void disk_add_events(struct gendisk *disk); 47 static void disk_del_events(struct gendisk *disk); 48 static void disk_release_events(struct gendisk *disk); 49 50 /* 51 * Set disk capacity and notify if the size is not currently 52 * zero and will not be set to zero 53 */ 54 void set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size, 55 bool revalidate) 56 { 57 sector_t capacity = get_capacity(disk); 58 59 set_capacity(disk, size); 60 61 if (revalidate) 62 revalidate_disk(disk); 63 64 if (capacity != size && capacity != 0 && size != 0) { 65 char *envp[] = { "RESIZE=1", NULL }; 66 67 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 68 } 69 } 70 71 EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify); 72 73 /* 74 * Format the device name of the indicated disk into the supplied buffer and 75 * return a pointer to that same buffer for convenience. 76 */ 77 char *disk_name(struct gendisk *hd, int partno, char *buf) 78 { 79 if (!partno) 80 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name); 81 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1])) 82 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno); 83 else 84 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno); 85 86 return buf; 87 } 88 89 const char *bdevname(struct block_device *bdev, char *buf) 90 { 91 return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf); 92 } 93 EXPORT_SYMBOL(bdevname); 94 95 static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat) 96 { 97 int cpu; 98 99 memset(stat, 0, sizeof(struct disk_stats)); 100 for_each_possible_cpu(cpu) { 101 struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu); 102 int group; 103 104 for (group = 0; group < NR_STAT_GROUPS; group++) { 105 stat->nsecs[group] += ptr->nsecs[group]; 106 stat->sectors[group] += ptr->sectors[group]; 107 stat->ios[group] += ptr->ios[group]; 108 stat->merges[group] += ptr->merges[group]; 109 } 110 111 stat->io_ticks += ptr->io_ticks; 112 } 113 } 114 115 static unsigned int part_in_flight(struct request_queue *q, 116 struct hd_struct *part) 117 { 118 unsigned int inflight = 0; 119 int cpu; 120 121 for_each_possible_cpu(cpu) { 122 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) + 123 part_stat_local_read_cpu(part, in_flight[1], cpu); 124 } 125 if ((int)inflight < 0) 126 inflight = 0; 127 128 return inflight; 129 } 130 131 static void part_in_flight_rw(struct request_queue *q, struct hd_struct *part, 132 unsigned int inflight[2]) 133 { 134 int cpu; 135 136 inflight[0] = 0; 137 inflight[1] = 0; 138 for_each_possible_cpu(cpu) { 139 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu); 140 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu); 141 } 142 if ((int)inflight[0] < 0) 143 inflight[0] = 0; 144 if ((int)inflight[1] < 0) 145 inflight[1] = 0; 146 } 147 148 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno) 149 { 150 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl); 151 152 if (unlikely(partno < 0 || partno >= ptbl->len)) 153 return NULL; 154 return rcu_dereference(ptbl->part[partno]); 155 } 156 157 /** 158 * disk_get_part - get partition 159 * @disk: disk to look partition from 160 * @partno: partition number 161 * 162 * Look for partition @partno from @disk. If found, increment 163 * reference count and return it. 164 * 165 * CONTEXT: 166 * Don't care. 167 * 168 * RETURNS: 169 * Pointer to the found partition on success, NULL if not found. 170 */ 171 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 172 { 173 struct hd_struct *part; 174 175 rcu_read_lock(); 176 part = __disk_get_part(disk, partno); 177 if (part) 178 get_device(part_to_dev(part)); 179 rcu_read_unlock(); 180 181 return part; 182 } 183 184 /** 185 * disk_part_iter_init - initialize partition iterator 186 * @piter: iterator to initialize 187 * @disk: disk to iterate over 188 * @flags: DISK_PITER_* flags 189 * 190 * Initialize @piter so that it iterates over partitions of @disk. 191 * 192 * CONTEXT: 193 * Don't care. 194 */ 195 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 196 unsigned int flags) 197 { 198 struct disk_part_tbl *ptbl; 199 200 rcu_read_lock(); 201 ptbl = rcu_dereference(disk->part_tbl); 202 203 piter->disk = disk; 204 piter->part = NULL; 205 206 if (flags & DISK_PITER_REVERSE) 207 piter->idx = ptbl->len - 1; 208 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 209 piter->idx = 0; 210 else 211 piter->idx = 1; 212 213 piter->flags = flags; 214 215 rcu_read_unlock(); 216 } 217 EXPORT_SYMBOL_GPL(disk_part_iter_init); 218 219 /** 220 * disk_part_iter_next - proceed iterator to the next partition and return it 221 * @piter: iterator of interest 222 * 223 * Proceed @piter to the next partition and return it. 224 * 225 * CONTEXT: 226 * Don't care. 227 */ 228 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 229 { 230 struct disk_part_tbl *ptbl; 231 int inc, end; 232 233 /* put the last partition */ 234 disk_put_part(piter->part); 235 piter->part = NULL; 236 237 /* get part_tbl */ 238 rcu_read_lock(); 239 ptbl = rcu_dereference(piter->disk->part_tbl); 240 241 /* determine iteration parameters */ 242 if (piter->flags & DISK_PITER_REVERSE) { 243 inc = -1; 244 if (piter->flags & (DISK_PITER_INCL_PART0 | 245 DISK_PITER_INCL_EMPTY_PART0)) 246 end = -1; 247 else 248 end = 0; 249 } else { 250 inc = 1; 251 end = ptbl->len; 252 } 253 254 /* iterate to the next partition */ 255 for (; piter->idx != end; piter->idx += inc) { 256 struct hd_struct *part; 257 258 part = rcu_dereference(ptbl->part[piter->idx]); 259 if (!part) 260 continue; 261 if (!part_nr_sects_read(part) && 262 !(piter->flags & DISK_PITER_INCL_EMPTY) && 263 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 264 piter->idx == 0)) 265 continue; 266 267 get_device(part_to_dev(part)); 268 piter->part = part; 269 piter->idx += inc; 270 break; 271 } 272 273 rcu_read_unlock(); 274 275 return piter->part; 276 } 277 EXPORT_SYMBOL_GPL(disk_part_iter_next); 278 279 /** 280 * disk_part_iter_exit - finish up partition iteration 281 * @piter: iter of interest 282 * 283 * Called when iteration is over. Cleans up @piter. 284 * 285 * CONTEXT: 286 * Don't care. 287 */ 288 void disk_part_iter_exit(struct disk_part_iter *piter) 289 { 290 disk_put_part(piter->part); 291 piter->part = NULL; 292 } 293 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 294 295 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 296 { 297 return part->start_sect <= sector && 298 sector < part->start_sect + part_nr_sects_read(part); 299 } 300 301 /** 302 * disk_map_sector_rcu - map sector to partition 303 * @disk: gendisk of interest 304 * @sector: sector to map 305 * 306 * Find out which partition @sector maps to on @disk. This is 307 * primarily used for stats accounting. 308 * 309 * CONTEXT: 310 * RCU read locked. The returned partition pointer is always valid 311 * because its refcount is grabbed except for part0, which lifetime 312 * is same with the disk. 313 * 314 * RETURNS: 315 * Found partition on success, part0 is returned if no partition matches 316 * or the matched partition is being deleted. 317 */ 318 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 319 { 320 struct disk_part_tbl *ptbl; 321 struct hd_struct *part; 322 int i; 323 324 rcu_read_lock(); 325 ptbl = rcu_dereference(disk->part_tbl); 326 327 part = rcu_dereference(ptbl->last_lookup); 328 if (part && sector_in_part(part, sector) && hd_struct_try_get(part)) 329 goto out_unlock; 330 331 for (i = 1; i < ptbl->len; i++) { 332 part = rcu_dereference(ptbl->part[i]); 333 334 if (part && sector_in_part(part, sector)) { 335 /* 336 * only live partition can be cached for lookup, 337 * so use-after-free on cached & deleting partition 338 * can be avoided 339 */ 340 if (!hd_struct_try_get(part)) 341 break; 342 rcu_assign_pointer(ptbl->last_lookup, part); 343 goto out_unlock; 344 } 345 } 346 347 part = &disk->part0; 348 out_unlock: 349 rcu_read_unlock(); 350 return part; 351 } 352 353 /** 354 * disk_has_partitions 355 * @disk: gendisk of interest 356 * 357 * Walk through the partition table and check if valid partition exists. 358 * 359 * CONTEXT: 360 * Don't care. 361 * 362 * RETURNS: 363 * True if the gendisk has at least one valid non-zero size partition. 364 * Otherwise false. 365 */ 366 bool disk_has_partitions(struct gendisk *disk) 367 { 368 struct disk_part_tbl *ptbl; 369 int i; 370 bool ret = false; 371 372 rcu_read_lock(); 373 ptbl = rcu_dereference(disk->part_tbl); 374 375 /* Iterate partitions skipping the whole device at index 0 */ 376 for (i = 1; i < ptbl->len; i++) { 377 if (rcu_dereference(ptbl->part[i])) { 378 ret = true; 379 break; 380 } 381 } 382 383 rcu_read_unlock(); 384 385 return ret; 386 } 387 EXPORT_SYMBOL_GPL(disk_has_partitions); 388 389 /* 390 * Can be deleted altogether. Later. 391 * 392 */ 393 #define BLKDEV_MAJOR_HASH_SIZE 255 394 static struct blk_major_name { 395 struct blk_major_name *next; 396 int major; 397 char name[16]; 398 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 399 400 /* index in the above - for now: assume no multimajor ranges */ 401 static inline int major_to_index(unsigned major) 402 { 403 return major % BLKDEV_MAJOR_HASH_SIZE; 404 } 405 406 #ifdef CONFIG_PROC_FS 407 void blkdev_show(struct seq_file *seqf, off_t offset) 408 { 409 struct blk_major_name *dp; 410 411 mutex_lock(&block_class_lock); 412 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) 413 if (dp->major == offset) 414 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 415 mutex_unlock(&block_class_lock); 416 } 417 #endif /* CONFIG_PROC_FS */ 418 419 /** 420 * register_blkdev - register a new block device 421 * 422 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If 423 * @major = 0, try to allocate any unused major number. 424 * @name: the name of the new block device as a zero terminated string 425 * 426 * The @name must be unique within the system. 427 * 428 * The return value depends on the @major input parameter: 429 * 430 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] 431 * then the function returns zero on success, or a negative error code 432 * - if any unused major number was requested with @major = 0 parameter 433 * then the return value is the allocated major number in range 434 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise 435 * 436 * See Documentation/admin-guide/devices.txt for the list of allocated 437 * major numbers. 438 */ 439 int register_blkdev(unsigned int major, const char *name) 440 { 441 struct blk_major_name **n, *p; 442 int index, ret = 0; 443 444 mutex_lock(&block_class_lock); 445 446 /* temporary */ 447 if (major == 0) { 448 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 449 if (major_names[index] == NULL) 450 break; 451 } 452 453 if (index == 0) { 454 printk("%s: failed to get major for %s\n", 455 __func__, name); 456 ret = -EBUSY; 457 goto out; 458 } 459 major = index; 460 ret = major; 461 } 462 463 if (major >= BLKDEV_MAJOR_MAX) { 464 pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n", 465 __func__, major, BLKDEV_MAJOR_MAX-1, name); 466 467 ret = -EINVAL; 468 goto out; 469 } 470 471 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 472 if (p == NULL) { 473 ret = -ENOMEM; 474 goto out; 475 } 476 477 p->major = major; 478 strlcpy(p->name, name, sizeof(p->name)); 479 p->next = NULL; 480 index = major_to_index(major); 481 482 for (n = &major_names[index]; *n; n = &(*n)->next) { 483 if ((*n)->major == major) 484 break; 485 } 486 if (!*n) 487 *n = p; 488 else 489 ret = -EBUSY; 490 491 if (ret < 0) { 492 printk("register_blkdev: cannot get major %u for %s\n", 493 major, name); 494 kfree(p); 495 } 496 out: 497 mutex_unlock(&block_class_lock); 498 return ret; 499 } 500 501 EXPORT_SYMBOL(register_blkdev); 502 503 void unregister_blkdev(unsigned int major, const char *name) 504 { 505 struct blk_major_name **n; 506 struct blk_major_name *p = NULL; 507 int index = major_to_index(major); 508 509 mutex_lock(&block_class_lock); 510 for (n = &major_names[index]; *n; n = &(*n)->next) 511 if ((*n)->major == major) 512 break; 513 if (!*n || strcmp((*n)->name, name)) { 514 WARN_ON(1); 515 } else { 516 p = *n; 517 *n = p->next; 518 } 519 mutex_unlock(&block_class_lock); 520 kfree(p); 521 } 522 523 EXPORT_SYMBOL(unregister_blkdev); 524 525 static struct kobj_map *bdev_map; 526 527 /** 528 * blk_mangle_minor - scatter minor numbers apart 529 * @minor: minor number to mangle 530 * 531 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 532 * is enabled. Mangling twice gives the original value. 533 * 534 * RETURNS: 535 * Mangled value. 536 * 537 * CONTEXT: 538 * Don't care. 539 */ 540 static int blk_mangle_minor(int minor) 541 { 542 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 543 int i; 544 545 for (i = 0; i < MINORBITS / 2; i++) { 546 int low = minor & (1 << i); 547 int high = minor & (1 << (MINORBITS - 1 - i)); 548 int distance = MINORBITS - 1 - 2 * i; 549 550 minor ^= low | high; /* clear both bits */ 551 low <<= distance; /* swap the positions */ 552 high >>= distance; 553 minor |= low | high; /* and set */ 554 } 555 #endif 556 return minor; 557 } 558 559 /** 560 * blk_alloc_devt - allocate a dev_t for a partition 561 * @part: partition to allocate dev_t for 562 * @devt: out parameter for resulting dev_t 563 * 564 * Allocate a dev_t for block device. 565 * 566 * RETURNS: 567 * 0 on success, allocated dev_t is returned in *@devt. -errno on 568 * failure. 569 * 570 * CONTEXT: 571 * Might sleep. 572 */ 573 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 574 { 575 struct gendisk *disk = part_to_disk(part); 576 int idx; 577 578 /* in consecutive minor range? */ 579 if (part->partno < disk->minors) { 580 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 581 return 0; 582 } 583 584 /* allocate ext devt */ 585 idr_preload(GFP_KERNEL); 586 587 spin_lock_bh(&ext_devt_lock); 588 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 589 spin_unlock_bh(&ext_devt_lock); 590 591 idr_preload_end(); 592 if (idx < 0) 593 return idx == -ENOSPC ? -EBUSY : idx; 594 595 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 596 return 0; 597 } 598 599 /** 600 * blk_free_devt - free a dev_t 601 * @devt: dev_t to free 602 * 603 * Free @devt which was allocated using blk_alloc_devt(). 604 * 605 * CONTEXT: 606 * Might sleep. 607 */ 608 void blk_free_devt(dev_t devt) 609 { 610 if (devt == MKDEV(0, 0)) 611 return; 612 613 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 614 spin_lock_bh(&ext_devt_lock); 615 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 616 spin_unlock_bh(&ext_devt_lock); 617 } 618 } 619 620 /* 621 * We invalidate devt by assigning NULL pointer for devt in idr. 622 */ 623 void blk_invalidate_devt(dev_t devt) 624 { 625 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 626 spin_lock_bh(&ext_devt_lock); 627 idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt))); 628 spin_unlock_bh(&ext_devt_lock); 629 } 630 } 631 632 static char *bdevt_str(dev_t devt, char *buf) 633 { 634 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 635 char tbuf[BDEVT_SIZE]; 636 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 637 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 638 } else 639 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 640 641 return buf; 642 } 643 644 /* 645 * Register device numbers dev..(dev+range-1) 646 * range must be nonzero 647 * The hash chain is sorted on range, so that subranges can override. 648 */ 649 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 650 struct kobject *(*probe)(dev_t, int *, void *), 651 int (*lock)(dev_t, void *), void *data) 652 { 653 kobj_map(bdev_map, devt, range, module, probe, lock, data); 654 } 655 656 EXPORT_SYMBOL(blk_register_region); 657 658 void blk_unregister_region(dev_t devt, unsigned long range) 659 { 660 kobj_unmap(bdev_map, devt, range); 661 } 662 663 EXPORT_SYMBOL(blk_unregister_region); 664 665 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 666 { 667 struct gendisk *p = data; 668 669 return &disk_to_dev(p)->kobj; 670 } 671 672 static int exact_lock(dev_t devt, void *data) 673 { 674 struct gendisk *p = data; 675 676 if (!get_disk_and_module(p)) 677 return -1; 678 return 0; 679 } 680 681 static void register_disk(struct device *parent, struct gendisk *disk, 682 const struct attribute_group **groups) 683 { 684 struct device *ddev = disk_to_dev(disk); 685 struct block_device *bdev; 686 struct disk_part_iter piter; 687 struct hd_struct *part; 688 int err; 689 690 ddev->parent = parent; 691 692 dev_set_name(ddev, "%s", disk->disk_name); 693 694 /* delay uevents, until we scanned partition table */ 695 dev_set_uevent_suppress(ddev, 1); 696 697 if (groups) { 698 WARN_ON(ddev->groups); 699 ddev->groups = groups; 700 } 701 if (device_add(ddev)) 702 return; 703 if (!sysfs_deprecated) { 704 err = sysfs_create_link(block_depr, &ddev->kobj, 705 kobject_name(&ddev->kobj)); 706 if (err) { 707 device_del(ddev); 708 return; 709 } 710 } 711 712 /* 713 * avoid probable deadlock caused by allocating memory with 714 * GFP_KERNEL in runtime_resume callback of its all ancestor 715 * devices 716 */ 717 pm_runtime_set_memalloc_noio(ddev, true); 718 719 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 720 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 721 722 if (disk->flags & GENHD_FL_HIDDEN) { 723 dev_set_uevent_suppress(ddev, 0); 724 return; 725 } 726 727 /* No minors to use for partitions */ 728 if (!disk_part_scan_enabled(disk)) 729 goto exit; 730 731 /* No such device (e.g., media were just removed) */ 732 if (!get_capacity(disk)) 733 goto exit; 734 735 bdev = bdget_disk(disk, 0); 736 if (!bdev) 737 goto exit; 738 739 bdev->bd_invalidated = 1; 740 err = blkdev_get(bdev, FMODE_READ, NULL); 741 if (err < 0) 742 goto exit; 743 blkdev_put(bdev, FMODE_READ); 744 745 exit: 746 /* announce disk after possible partitions are created */ 747 dev_set_uevent_suppress(ddev, 0); 748 kobject_uevent(&ddev->kobj, KOBJ_ADD); 749 750 /* announce possible partitions */ 751 disk_part_iter_init(&piter, disk, 0); 752 while ((part = disk_part_iter_next(&piter))) 753 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 754 disk_part_iter_exit(&piter); 755 756 if (disk->queue->backing_dev_info->dev) { 757 err = sysfs_create_link(&ddev->kobj, 758 &disk->queue->backing_dev_info->dev->kobj, 759 "bdi"); 760 WARN_ON(err); 761 } 762 } 763 764 /** 765 * __device_add_disk - add disk information to kernel list 766 * @parent: parent device for the disk 767 * @disk: per-device partitioning information 768 * @groups: Additional per-device sysfs groups 769 * @register_queue: register the queue if set to true 770 * 771 * This function registers the partitioning information in @disk 772 * with the kernel. 773 * 774 * FIXME: error handling 775 */ 776 static void __device_add_disk(struct device *parent, struct gendisk *disk, 777 const struct attribute_group **groups, 778 bool register_queue) 779 { 780 dev_t devt; 781 int retval; 782 783 /* 784 * The disk queue should now be all set with enough information about 785 * the device for the elevator code to pick an adequate default 786 * elevator if one is needed, that is, for devices requesting queue 787 * registration. 788 */ 789 if (register_queue) 790 elevator_init_mq(disk->queue); 791 792 /* minors == 0 indicates to use ext devt from part0 and should 793 * be accompanied with EXT_DEVT flag. Make sure all 794 * parameters make sense. 795 */ 796 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 797 WARN_ON(!disk->minors && 798 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN))); 799 800 disk->flags |= GENHD_FL_UP; 801 802 retval = blk_alloc_devt(&disk->part0, &devt); 803 if (retval) { 804 WARN_ON(1); 805 return; 806 } 807 disk->major = MAJOR(devt); 808 disk->first_minor = MINOR(devt); 809 810 disk_alloc_events(disk); 811 812 if (disk->flags & GENHD_FL_HIDDEN) { 813 /* 814 * Don't let hidden disks show up in /proc/partitions, 815 * and don't bother scanning for partitions either. 816 */ 817 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 818 disk->flags |= GENHD_FL_NO_PART_SCAN; 819 } else { 820 struct backing_dev_info *bdi = disk->queue->backing_dev_info; 821 struct device *dev = disk_to_dev(disk); 822 int ret; 823 824 /* Register BDI before referencing it from bdev */ 825 dev->devt = devt; 826 ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt)); 827 WARN_ON(ret); 828 bdi_set_owner(bdi, dev); 829 blk_register_region(disk_devt(disk), disk->minors, NULL, 830 exact_match, exact_lock, disk); 831 } 832 register_disk(parent, disk, groups); 833 if (register_queue) 834 blk_register_queue(disk); 835 836 /* 837 * Take an extra ref on queue which will be put on disk_release() 838 * so that it sticks around as long as @disk is there. 839 */ 840 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 841 842 disk_add_events(disk); 843 blk_integrity_add(disk); 844 } 845 846 void device_add_disk(struct device *parent, struct gendisk *disk, 847 const struct attribute_group **groups) 848 849 { 850 __device_add_disk(parent, disk, groups, true); 851 } 852 EXPORT_SYMBOL(device_add_disk); 853 854 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk) 855 { 856 __device_add_disk(parent, disk, NULL, false); 857 } 858 EXPORT_SYMBOL(device_add_disk_no_queue_reg); 859 860 static void invalidate_partition(struct gendisk *disk, int partno) 861 { 862 struct block_device *bdev; 863 864 bdev = bdget_disk(disk, partno); 865 if (!bdev) 866 return; 867 868 fsync_bdev(bdev); 869 __invalidate_device(bdev, true); 870 871 /* 872 * Unhash the bdev inode for this device so that it gets evicted as soon 873 * as last inode reference is dropped. 874 */ 875 remove_inode_hash(bdev->bd_inode); 876 bdput(bdev); 877 } 878 879 void del_gendisk(struct gendisk *disk) 880 { 881 struct disk_part_iter piter; 882 struct hd_struct *part; 883 884 blk_integrity_del(disk); 885 disk_del_events(disk); 886 887 /* 888 * Block lookups of the disk until all bdevs are unhashed and the 889 * disk is marked as dead (GENHD_FL_UP cleared). 890 */ 891 down_write(&disk->lookup_sem); 892 /* invalidate stuff */ 893 disk_part_iter_init(&piter, disk, 894 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 895 while ((part = disk_part_iter_next(&piter))) { 896 invalidate_partition(disk, part->partno); 897 delete_partition(disk, part); 898 } 899 disk_part_iter_exit(&piter); 900 901 invalidate_partition(disk, 0); 902 set_capacity(disk, 0); 903 disk->flags &= ~GENHD_FL_UP; 904 up_write(&disk->lookup_sem); 905 906 if (!(disk->flags & GENHD_FL_HIDDEN)) 907 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 908 if (disk->queue) { 909 /* 910 * Unregister bdi before releasing device numbers (as they can 911 * get reused and we'd get clashes in sysfs). 912 */ 913 if (!(disk->flags & GENHD_FL_HIDDEN)) 914 bdi_unregister(disk->queue->backing_dev_info); 915 blk_unregister_queue(disk); 916 } else { 917 WARN_ON(1); 918 } 919 920 if (!(disk->flags & GENHD_FL_HIDDEN)) 921 blk_unregister_region(disk_devt(disk), disk->minors); 922 /* 923 * Remove gendisk pointer from idr so that it cannot be looked up 924 * while RCU period before freeing gendisk is running to prevent 925 * use-after-free issues. Note that the device number stays 926 * "in-use" until we really free the gendisk. 927 */ 928 blk_invalidate_devt(disk_devt(disk)); 929 930 kobject_put(disk->part0.holder_dir); 931 kobject_put(disk->slave_dir); 932 933 part_stat_set_all(&disk->part0, 0); 934 disk->part0.stamp = 0; 935 if (!sysfs_deprecated) 936 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 937 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 938 device_del(disk_to_dev(disk)); 939 } 940 EXPORT_SYMBOL(del_gendisk); 941 942 /* sysfs access to bad-blocks list. */ 943 static ssize_t disk_badblocks_show(struct device *dev, 944 struct device_attribute *attr, 945 char *page) 946 { 947 struct gendisk *disk = dev_to_disk(dev); 948 949 if (!disk->bb) 950 return sprintf(page, "\n"); 951 952 return badblocks_show(disk->bb, page, 0); 953 } 954 955 static ssize_t disk_badblocks_store(struct device *dev, 956 struct device_attribute *attr, 957 const char *page, size_t len) 958 { 959 struct gendisk *disk = dev_to_disk(dev); 960 961 if (!disk->bb) 962 return -ENXIO; 963 964 return badblocks_store(disk->bb, page, len, 0); 965 } 966 967 /** 968 * get_gendisk - get partitioning information for a given device 969 * @devt: device to get partitioning information for 970 * @partno: returned partition index 971 * 972 * This function gets the structure containing partitioning 973 * information for the given device @devt. 974 */ 975 struct gendisk *get_gendisk(dev_t devt, int *partno) 976 { 977 struct gendisk *disk = NULL; 978 979 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 980 struct kobject *kobj; 981 982 kobj = kobj_lookup(bdev_map, devt, partno); 983 if (kobj) 984 disk = dev_to_disk(kobj_to_dev(kobj)); 985 } else { 986 struct hd_struct *part; 987 988 spin_lock_bh(&ext_devt_lock); 989 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 990 if (part && get_disk_and_module(part_to_disk(part))) { 991 *partno = part->partno; 992 disk = part_to_disk(part); 993 } 994 spin_unlock_bh(&ext_devt_lock); 995 } 996 997 if (!disk) 998 return NULL; 999 1000 /* 1001 * Synchronize with del_gendisk() to not return disk that is being 1002 * destroyed. 1003 */ 1004 down_read(&disk->lookup_sem); 1005 if (unlikely((disk->flags & GENHD_FL_HIDDEN) || 1006 !(disk->flags & GENHD_FL_UP))) { 1007 up_read(&disk->lookup_sem); 1008 put_disk_and_module(disk); 1009 disk = NULL; 1010 } else { 1011 up_read(&disk->lookup_sem); 1012 } 1013 return disk; 1014 } 1015 1016 /** 1017 * bdget_disk - do bdget() by gendisk and partition number 1018 * @disk: gendisk of interest 1019 * @partno: partition number 1020 * 1021 * Find partition @partno from @disk, do bdget() on it. 1022 * 1023 * CONTEXT: 1024 * Don't care. 1025 * 1026 * RETURNS: 1027 * Resulting block_device on success, NULL on failure. 1028 */ 1029 struct block_device *bdget_disk(struct gendisk *disk, int partno) 1030 { 1031 struct hd_struct *part; 1032 struct block_device *bdev = NULL; 1033 1034 part = disk_get_part(disk, partno); 1035 if (part) 1036 bdev = bdget(part_devt(part)); 1037 disk_put_part(part); 1038 1039 return bdev; 1040 } 1041 EXPORT_SYMBOL(bdget_disk); 1042 1043 /* 1044 * print a full list of all partitions - intended for places where the root 1045 * filesystem can't be mounted and thus to give the victim some idea of what 1046 * went wrong 1047 */ 1048 void __init printk_all_partitions(void) 1049 { 1050 struct class_dev_iter iter; 1051 struct device *dev; 1052 1053 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1054 while ((dev = class_dev_iter_next(&iter))) { 1055 struct gendisk *disk = dev_to_disk(dev); 1056 struct disk_part_iter piter; 1057 struct hd_struct *part; 1058 char name_buf[BDEVNAME_SIZE]; 1059 char devt_buf[BDEVT_SIZE]; 1060 1061 /* 1062 * Don't show empty devices or things that have been 1063 * suppressed 1064 */ 1065 if (get_capacity(disk) == 0 || 1066 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 1067 continue; 1068 1069 /* 1070 * Note, unlike /proc/partitions, I am showing the 1071 * numbers in hex - the same format as the root= 1072 * option takes. 1073 */ 1074 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 1075 while ((part = disk_part_iter_next(&piter))) { 1076 bool is_part0 = part == &disk->part0; 1077 1078 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 1079 bdevt_str(part_devt(part), devt_buf), 1080 (unsigned long long)part_nr_sects_read(part) >> 1 1081 , disk_name(disk, part->partno, name_buf), 1082 part->info ? part->info->uuid : ""); 1083 if (is_part0) { 1084 if (dev->parent && dev->parent->driver) 1085 printk(" driver: %s\n", 1086 dev->parent->driver->name); 1087 else 1088 printk(" (driver?)\n"); 1089 } else 1090 printk("\n"); 1091 } 1092 disk_part_iter_exit(&piter); 1093 } 1094 class_dev_iter_exit(&iter); 1095 } 1096 1097 #ifdef CONFIG_PROC_FS 1098 /* iterator */ 1099 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 1100 { 1101 loff_t skip = *pos; 1102 struct class_dev_iter *iter; 1103 struct device *dev; 1104 1105 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 1106 if (!iter) 1107 return ERR_PTR(-ENOMEM); 1108 1109 seqf->private = iter; 1110 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 1111 do { 1112 dev = class_dev_iter_next(iter); 1113 if (!dev) 1114 return NULL; 1115 } while (skip--); 1116 1117 return dev_to_disk(dev); 1118 } 1119 1120 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 1121 { 1122 struct device *dev; 1123 1124 (*pos)++; 1125 dev = class_dev_iter_next(seqf->private); 1126 if (dev) 1127 return dev_to_disk(dev); 1128 1129 return NULL; 1130 } 1131 1132 static void disk_seqf_stop(struct seq_file *seqf, void *v) 1133 { 1134 struct class_dev_iter *iter = seqf->private; 1135 1136 /* stop is called even after start failed :-( */ 1137 if (iter) { 1138 class_dev_iter_exit(iter); 1139 kfree(iter); 1140 seqf->private = NULL; 1141 } 1142 } 1143 1144 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 1145 { 1146 void *p; 1147 1148 p = disk_seqf_start(seqf, pos); 1149 if (!IS_ERR_OR_NULL(p) && !*pos) 1150 seq_puts(seqf, "major minor #blocks name\n\n"); 1151 return p; 1152 } 1153 1154 static int show_partition(struct seq_file *seqf, void *v) 1155 { 1156 struct gendisk *sgp = v; 1157 struct disk_part_iter piter; 1158 struct hd_struct *part; 1159 char buf[BDEVNAME_SIZE]; 1160 1161 /* Don't show non-partitionable removeable devices or empty devices */ 1162 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 1163 (sgp->flags & GENHD_FL_REMOVABLE))) 1164 return 0; 1165 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 1166 return 0; 1167 1168 /* show the full disk and all non-0 size partitions of it */ 1169 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 1170 while ((part = disk_part_iter_next(&piter))) 1171 seq_printf(seqf, "%4d %7d %10llu %s\n", 1172 MAJOR(part_devt(part)), MINOR(part_devt(part)), 1173 (unsigned long long)part_nr_sects_read(part) >> 1, 1174 disk_name(sgp, part->partno, buf)); 1175 disk_part_iter_exit(&piter); 1176 1177 return 0; 1178 } 1179 1180 static const struct seq_operations partitions_op = { 1181 .start = show_partition_start, 1182 .next = disk_seqf_next, 1183 .stop = disk_seqf_stop, 1184 .show = show_partition 1185 }; 1186 #endif 1187 1188 1189 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 1190 { 1191 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 1192 /* Make old-style 2.4 aliases work */ 1193 request_module("block-major-%d", MAJOR(devt)); 1194 return NULL; 1195 } 1196 1197 static int __init genhd_device_init(void) 1198 { 1199 int error; 1200 1201 block_class.dev_kobj = sysfs_dev_block_kobj; 1202 error = class_register(&block_class); 1203 if (unlikely(error)) 1204 return error; 1205 bdev_map = kobj_map_init(base_probe, &block_class_lock); 1206 blk_dev_init(); 1207 1208 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 1209 1210 /* create top-level block dir */ 1211 if (!sysfs_deprecated) 1212 block_depr = kobject_create_and_add("block", NULL); 1213 return 0; 1214 } 1215 1216 subsys_initcall(genhd_device_init); 1217 1218 static ssize_t disk_range_show(struct device *dev, 1219 struct device_attribute *attr, char *buf) 1220 { 1221 struct gendisk *disk = dev_to_disk(dev); 1222 1223 return sprintf(buf, "%d\n", disk->minors); 1224 } 1225 1226 static ssize_t disk_ext_range_show(struct device *dev, 1227 struct device_attribute *attr, char *buf) 1228 { 1229 struct gendisk *disk = dev_to_disk(dev); 1230 1231 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1232 } 1233 1234 static ssize_t disk_removable_show(struct device *dev, 1235 struct device_attribute *attr, char *buf) 1236 { 1237 struct gendisk *disk = dev_to_disk(dev); 1238 1239 return sprintf(buf, "%d\n", 1240 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1241 } 1242 1243 static ssize_t disk_hidden_show(struct device *dev, 1244 struct device_attribute *attr, char *buf) 1245 { 1246 struct gendisk *disk = dev_to_disk(dev); 1247 1248 return sprintf(buf, "%d\n", 1249 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); 1250 } 1251 1252 static ssize_t disk_ro_show(struct device *dev, 1253 struct device_attribute *attr, char *buf) 1254 { 1255 struct gendisk *disk = dev_to_disk(dev); 1256 1257 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1258 } 1259 1260 ssize_t part_size_show(struct device *dev, 1261 struct device_attribute *attr, char *buf) 1262 { 1263 struct hd_struct *p = dev_to_part(dev); 1264 1265 return sprintf(buf, "%llu\n", 1266 (unsigned long long)part_nr_sects_read(p)); 1267 } 1268 1269 ssize_t part_stat_show(struct device *dev, 1270 struct device_attribute *attr, char *buf) 1271 { 1272 struct hd_struct *p = dev_to_part(dev); 1273 struct request_queue *q = part_to_disk(p)->queue; 1274 struct disk_stats stat; 1275 unsigned int inflight; 1276 1277 part_stat_read_all(p, &stat); 1278 if (queue_is_mq(q)) 1279 inflight = blk_mq_in_flight(q, p); 1280 else 1281 inflight = part_in_flight(q, p); 1282 1283 return sprintf(buf, 1284 "%8lu %8lu %8llu %8u " 1285 "%8lu %8lu %8llu %8u " 1286 "%8u %8u %8u " 1287 "%8lu %8lu %8llu %8u " 1288 "%8lu %8u" 1289 "\n", 1290 stat.ios[STAT_READ], 1291 stat.merges[STAT_READ], 1292 (unsigned long long)stat.sectors[STAT_READ], 1293 (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC), 1294 stat.ios[STAT_WRITE], 1295 stat.merges[STAT_WRITE], 1296 (unsigned long long)stat.sectors[STAT_WRITE], 1297 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC), 1298 inflight, 1299 jiffies_to_msecs(stat.io_ticks), 1300 (unsigned int)div_u64(stat.nsecs[STAT_READ] + 1301 stat.nsecs[STAT_WRITE] + 1302 stat.nsecs[STAT_DISCARD] + 1303 stat.nsecs[STAT_FLUSH], 1304 NSEC_PER_MSEC), 1305 stat.ios[STAT_DISCARD], 1306 stat.merges[STAT_DISCARD], 1307 (unsigned long long)stat.sectors[STAT_DISCARD], 1308 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC), 1309 stat.ios[STAT_FLUSH], 1310 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC)); 1311 } 1312 1313 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 1314 char *buf) 1315 { 1316 struct hd_struct *p = dev_to_part(dev); 1317 struct request_queue *q = part_to_disk(p)->queue; 1318 unsigned int inflight[2]; 1319 1320 if (queue_is_mq(q)) 1321 blk_mq_in_flight_rw(q, p, inflight); 1322 else 1323 part_in_flight_rw(q, p, inflight); 1324 1325 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]); 1326 } 1327 1328 static ssize_t disk_capability_show(struct device *dev, 1329 struct device_attribute *attr, char *buf) 1330 { 1331 struct gendisk *disk = dev_to_disk(dev); 1332 1333 return sprintf(buf, "%x\n", disk->flags); 1334 } 1335 1336 static ssize_t disk_alignment_offset_show(struct device *dev, 1337 struct device_attribute *attr, 1338 char *buf) 1339 { 1340 struct gendisk *disk = dev_to_disk(dev); 1341 1342 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1343 } 1344 1345 static ssize_t disk_discard_alignment_show(struct device *dev, 1346 struct device_attribute *attr, 1347 char *buf) 1348 { 1349 struct gendisk *disk = dev_to_disk(dev); 1350 1351 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1352 } 1353 1354 static DEVICE_ATTR(range, 0444, disk_range_show, NULL); 1355 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL); 1356 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL); 1357 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL); 1358 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL); 1359 static DEVICE_ATTR(size, 0444, part_size_show, NULL); 1360 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL); 1361 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL); 1362 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL); 1363 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); 1364 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); 1365 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store); 1366 1367 #ifdef CONFIG_FAIL_MAKE_REQUEST 1368 ssize_t part_fail_show(struct device *dev, 1369 struct device_attribute *attr, char *buf) 1370 { 1371 struct hd_struct *p = dev_to_part(dev); 1372 1373 return sprintf(buf, "%d\n", p->make_it_fail); 1374 } 1375 1376 ssize_t part_fail_store(struct device *dev, 1377 struct device_attribute *attr, 1378 const char *buf, size_t count) 1379 { 1380 struct hd_struct *p = dev_to_part(dev); 1381 int i; 1382 1383 if (count > 0 && sscanf(buf, "%d", &i) > 0) 1384 p->make_it_fail = (i == 0) ? 0 : 1; 1385 1386 return count; 1387 } 1388 1389 static struct device_attribute dev_attr_fail = 1390 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); 1391 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1392 1393 #ifdef CONFIG_FAIL_IO_TIMEOUT 1394 static struct device_attribute dev_attr_fail_timeout = 1395 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store); 1396 #endif 1397 1398 static struct attribute *disk_attrs[] = { 1399 &dev_attr_range.attr, 1400 &dev_attr_ext_range.attr, 1401 &dev_attr_removable.attr, 1402 &dev_attr_hidden.attr, 1403 &dev_attr_ro.attr, 1404 &dev_attr_size.attr, 1405 &dev_attr_alignment_offset.attr, 1406 &dev_attr_discard_alignment.attr, 1407 &dev_attr_capability.attr, 1408 &dev_attr_stat.attr, 1409 &dev_attr_inflight.attr, 1410 &dev_attr_badblocks.attr, 1411 #ifdef CONFIG_FAIL_MAKE_REQUEST 1412 &dev_attr_fail.attr, 1413 #endif 1414 #ifdef CONFIG_FAIL_IO_TIMEOUT 1415 &dev_attr_fail_timeout.attr, 1416 #endif 1417 NULL 1418 }; 1419 1420 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1421 { 1422 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1423 struct gendisk *disk = dev_to_disk(dev); 1424 1425 if (a == &dev_attr_badblocks.attr && !disk->bb) 1426 return 0; 1427 return a->mode; 1428 } 1429 1430 static struct attribute_group disk_attr_group = { 1431 .attrs = disk_attrs, 1432 .is_visible = disk_visible, 1433 }; 1434 1435 static const struct attribute_group *disk_attr_groups[] = { 1436 &disk_attr_group, 1437 NULL 1438 }; 1439 1440 /** 1441 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1442 * @disk: disk to replace part_tbl for 1443 * @new_ptbl: new part_tbl to install 1444 * 1445 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1446 * original ptbl is freed using RCU callback. 1447 * 1448 * LOCKING: 1449 * Matching bd_mutex locked or the caller is the only user of @disk. 1450 */ 1451 static void disk_replace_part_tbl(struct gendisk *disk, 1452 struct disk_part_tbl *new_ptbl) 1453 { 1454 struct disk_part_tbl *old_ptbl = 1455 rcu_dereference_protected(disk->part_tbl, 1); 1456 1457 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1458 1459 if (old_ptbl) { 1460 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1461 kfree_rcu(old_ptbl, rcu_head); 1462 } 1463 } 1464 1465 /** 1466 * disk_expand_part_tbl - expand disk->part_tbl 1467 * @disk: disk to expand part_tbl for 1468 * @partno: expand such that this partno can fit in 1469 * 1470 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1471 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1472 * 1473 * LOCKING: 1474 * Matching bd_mutex locked or the caller is the only user of @disk. 1475 * Might sleep. 1476 * 1477 * RETURNS: 1478 * 0 on success, -errno on failure. 1479 */ 1480 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1481 { 1482 struct disk_part_tbl *old_ptbl = 1483 rcu_dereference_protected(disk->part_tbl, 1); 1484 struct disk_part_tbl *new_ptbl; 1485 int len = old_ptbl ? old_ptbl->len : 0; 1486 int i, target; 1487 1488 /* 1489 * check for int overflow, since we can get here from blkpg_ioctl() 1490 * with a user passed 'partno'. 1491 */ 1492 target = partno + 1; 1493 if (target < 0) 1494 return -EINVAL; 1495 1496 /* disk_max_parts() is zero during initialization, ignore if so */ 1497 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1498 return -EINVAL; 1499 1500 if (target <= len) 1501 return 0; 1502 1503 new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL, 1504 disk->node_id); 1505 if (!new_ptbl) 1506 return -ENOMEM; 1507 1508 new_ptbl->len = target; 1509 1510 for (i = 0; i < len; i++) 1511 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1512 1513 disk_replace_part_tbl(disk, new_ptbl); 1514 return 0; 1515 } 1516 1517 static void disk_release(struct device *dev) 1518 { 1519 struct gendisk *disk = dev_to_disk(dev); 1520 1521 blk_free_devt(dev->devt); 1522 disk_release_events(disk); 1523 kfree(disk->random); 1524 disk_replace_part_tbl(disk, NULL); 1525 hd_free_part(&disk->part0); 1526 if (disk->queue) 1527 blk_put_queue(disk->queue); 1528 kfree(disk); 1529 } 1530 struct class block_class = { 1531 .name = "block", 1532 }; 1533 1534 static char *block_devnode(struct device *dev, umode_t *mode, 1535 kuid_t *uid, kgid_t *gid) 1536 { 1537 struct gendisk *disk = dev_to_disk(dev); 1538 1539 if (disk->fops->devnode) 1540 return disk->fops->devnode(disk, mode); 1541 return NULL; 1542 } 1543 1544 static const struct device_type disk_type = { 1545 .name = "disk", 1546 .groups = disk_attr_groups, 1547 .release = disk_release, 1548 .devnode = block_devnode, 1549 }; 1550 1551 #ifdef CONFIG_PROC_FS 1552 /* 1553 * aggregate disk stat collector. Uses the same stats that the sysfs 1554 * entries do, above, but makes them available through one seq_file. 1555 * 1556 * The output looks suspiciously like /proc/partitions with a bunch of 1557 * extra fields. 1558 */ 1559 static int diskstats_show(struct seq_file *seqf, void *v) 1560 { 1561 struct gendisk *gp = v; 1562 struct disk_part_iter piter; 1563 struct hd_struct *hd; 1564 char buf[BDEVNAME_SIZE]; 1565 unsigned int inflight; 1566 struct disk_stats stat; 1567 1568 /* 1569 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1570 seq_puts(seqf, "major minor name" 1571 " rio rmerge rsect ruse wio wmerge " 1572 "wsect wuse running use aveq" 1573 "\n\n"); 1574 */ 1575 1576 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1577 while ((hd = disk_part_iter_next(&piter))) { 1578 part_stat_read_all(hd, &stat); 1579 if (queue_is_mq(gp->queue)) 1580 inflight = blk_mq_in_flight(gp->queue, hd); 1581 else 1582 inflight = part_in_flight(gp->queue, hd); 1583 1584 seq_printf(seqf, "%4d %7d %s " 1585 "%lu %lu %lu %u " 1586 "%lu %lu %lu %u " 1587 "%u %u %u " 1588 "%lu %lu %lu %u " 1589 "%lu %u" 1590 "\n", 1591 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1592 disk_name(gp, hd->partno, buf), 1593 stat.ios[STAT_READ], 1594 stat.merges[STAT_READ], 1595 stat.sectors[STAT_READ], 1596 (unsigned int)div_u64(stat.nsecs[STAT_READ], 1597 NSEC_PER_MSEC), 1598 stat.ios[STAT_WRITE], 1599 stat.merges[STAT_WRITE], 1600 stat.sectors[STAT_WRITE], 1601 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], 1602 NSEC_PER_MSEC), 1603 inflight, 1604 jiffies_to_msecs(stat.io_ticks), 1605 (unsigned int)div_u64(stat.nsecs[STAT_READ] + 1606 stat.nsecs[STAT_WRITE] + 1607 stat.nsecs[STAT_DISCARD] + 1608 stat.nsecs[STAT_FLUSH], 1609 NSEC_PER_MSEC), 1610 stat.ios[STAT_DISCARD], 1611 stat.merges[STAT_DISCARD], 1612 stat.sectors[STAT_DISCARD], 1613 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], 1614 NSEC_PER_MSEC), 1615 stat.ios[STAT_FLUSH], 1616 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], 1617 NSEC_PER_MSEC) 1618 ); 1619 } 1620 disk_part_iter_exit(&piter); 1621 1622 return 0; 1623 } 1624 1625 static const struct seq_operations diskstats_op = { 1626 .start = disk_seqf_start, 1627 .next = disk_seqf_next, 1628 .stop = disk_seqf_stop, 1629 .show = diskstats_show 1630 }; 1631 1632 static int __init proc_genhd_init(void) 1633 { 1634 proc_create_seq("diskstats", 0, NULL, &diskstats_op); 1635 proc_create_seq("partitions", 0, NULL, &partitions_op); 1636 return 0; 1637 } 1638 module_init(proc_genhd_init); 1639 #endif /* CONFIG_PROC_FS */ 1640 1641 dev_t blk_lookup_devt(const char *name, int partno) 1642 { 1643 dev_t devt = MKDEV(0, 0); 1644 struct class_dev_iter iter; 1645 struct device *dev; 1646 1647 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1648 while ((dev = class_dev_iter_next(&iter))) { 1649 struct gendisk *disk = dev_to_disk(dev); 1650 struct hd_struct *part; 1651 1652 if (strcmp(dev_name(dev), name)) 1653 continue; 1654 1655 if (partno < disk->minors) { 1656 /* We need to return the right devno, even 1657 * if the partition doesn't exist yet. 1658 */ 1659 devt = MKDEV(MAJOR(dev->devt), 1660 MINOR(dev->devt) + partno); 1661 break; 1662 } 1663 part = disk_get_part(disk, partno); 1664 if (part) { 1665 devt = part_devt(part); 1666 disk_put_part(part); 1667 break; 1668 } 1669 disk_put_part(part); 1670 } 1671 class_dev_iter_exit(&iter); 1672 return devt; 1673 } 1674 1675 struct gendisk *__alloc_disk_node(int minors, int node_id) 1676 { 1677 struct gendisk *disk; 1678 struct disk_part_tbl *ptbl; 1679 1680 if (minors > DISK_MAX_PARTS) { 1681 printk(KERN_ERR 1682 "block: can't allocate more than %d partitions\n", 1683 DISK_MAX_PARTS); 1684 minors = DISK_MAX_PARTS; 1685 } 1686 1687 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1688 if (disk) { 1689 disk->part0.dkstats = alloc_percpu(struct disk_stats); 1690 if (!disk->part0.dkstats) { 1691 kfree(disk); 1692 return NULL; 1693 } 1694 init_rwsem(&disk->lookup_sem); 1695 disk->node_id = node_id; 1696 if (disk_expand_part_tbl(disk, 0)) { 1697 free_percpu(disk->part0.dkstats); 1698 kfree(disk); 1699 return NULL; 1700 } 1701 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 1702 rcu_assign_pointer(ptbl->part[0], &disk->part0); 1703 1704 /* 1705 * set_capacity() and get_capacity() currently don't use 1706 * seqcounter to read/update the part0->nr_sects. Still init 1707 * the counter as we can read the sectors in IO submission 1708 * patch using seqence counters. 1709 * 1710 * TODO: Ideally set_capacity() and get_capacity() should be 1711 * converted to make use of bd_mutex and sequence counters. 1712 */ 1713 hd_sects_seq_init(&disk->part0); 1714 if (hd_ref_init(&disk->part0)) { 1715 hd_free_part(&disk->part0); 1716 kfree(disk); 1717 return NULL; 1718 } 1719 1720 disk->minors = minors; 1721 rand_initialize_disk(disk); 1722 disk_to_dev(disk)->class = &block_class; 1723 disk_to_dev(disk)->type = &disk_type; 1724 device_initialize(disk_to_dev(disk)); 1725 } 1726 return disk; 1727 } 1728 EXPORT_SYMBOL(__alloc_disk_node); 1729 1730 struct kobject *get_disk_and_module(struct gendisk *disk) 1731 { 1732 struct module *owner; 1733 struct kobject *kobj; 1734 1735 if (!disk->fops) 1736 return NULL; 1737 owner = disk->fops->owner; 1738 if (owner && !try_module_get(owner)) 1739 return NULL; 1740 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1741 if (kobj == NULL) { 1742 module_put(owner); 1743 return NULL; 1744 } 1745 return kobj; 1746 1747 } 1748 EXPORT_SYMBOL(get_disk_and_module); 1749 1750 void put_disk(struct gendisk *disk) 1751 { 1752 if (disk) 1753 kobject_put(&disk_to_dev(disk)->kobj); 1754 } 1755 EXPORT_SYMBOL(put_disk); 1756 1757 /* 1758 * This is a counterpart of get_disk_and_module() and thus also of 1759 * get_gendisk(). 1760 */ 1761 void put_disk_and_module(struct gendisk *disk) 1762 { 1763 if (disk) { 1764 struct module *owner = disk->fops->owner; 1765 1766 put_disk(disk); 1767 module_put(owner); 1768 } 1769 } 1770 EXPORT_SYMBOL(put_disk_and_module); 1771 1772 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1773 { 1774 char event[] = "DISK_RO=1"; 1775 char *envp[] = { event, NULL }; 1776 1777 if (!ro) 1778 event[8] = '0'; 1779 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1780 } 1781 1782 void set_device_ro(struct block_device *bdev, int flag) 1783 { 1784 bdev->bd_part->policy = flag; 1785 } 1786 1787 EXPORT_SYMBOL(set_device_ro); 1788 1789 void set_disk_ro(struct gendisk *disk, int flag) 1790 { 1791 struct disk_part_iter piter; 1792 struct hd_struct *part; 1793 1794 if (disk->part0.policy != flag) { 1795 set_disk_ro_uevent(disk, flag); 1796 disk->part0.policy = flag; 1797 } 1798 1799 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1800 while ((part = disk_part_iter_next(&piter))) 1801 part->policy = flag; 1802 disk_part_iter_exit(&piter); 1803 } 1804 1805 EXPORT_SYMBOL(set_disk_ro); 1806 1807 int bdev_read_only(struct block_device *bdev) 1808 { 1809 if (!bdev) 1810 return 0; 1811 return bdev->bd_part->policy; 1812 } 1813 1814 EXPORT_SYMBOL(bdev_read_only); 1815 1816 /* 1817 * Disk events - monitor disk events like media change and eject request. 1818 */ 1819 struct disk_events { 1820 struct list_head node; /* all disk_event's */ 1821 struct gendisk *disk; /* the associated disk */ 1822 spinlock_t lock; 1823 1824 struct mutex block_mutex; /* protects blocking */ 1825 int block; /* event blocking depth */ 1826 unsigned int pending; /* events already sent out */ 1827 unsigned int clearing; /* events being cleared */ 1828 1829 long poll_msecs; /* interval, -1 for default */ 1830 struct delayed_work dwork; 1831 }; 1832 1833 static const char *disk_events_strs[] = { 1834 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1835 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1836 }; 1837 1838 static char *disk_uevents[] = { 1839 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1840 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1841 }; 1842 1843 /* list of all disk_events */ 1844 static DEFINE_MUTEX(disk_events_mutex); 1845 static LIST_HEAD(disk_events); 1846 1847 /* disable in-kernel polling by default */ 1848 static unsigned long disk_events_dfl_poll_msecs; 1849 1850 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1851 { 1852 struct disk_events *ev = disk->ev; 1853 long intv_msecs = 0; 1854 1855 /* 1856 * If device-specific poll interval is set, always use it. If 1857 * the default is being used, poll if the POLL flag is set. 1858 */ 1859 if (ev->poll_msecs >= 0) 1860 intv_msecs = ev->poll_msecs; 1861 else if (disk->event_flags & DISK_EVENT_FLAG_POLL) 1862 intv_msecs = disk_events_dfl_poll_msecs; 1863 1864 return msecs_to_jiffies(intv_msecs); 1865 } 1866 1867 /** 1868 * disk_block_events - block and flush disk event checking 1869 * @disk: disk to block events for 1870 * 1871 * On return from this function, it is guaranteed that event checking 1872 * isn't in progress and won't happen until unblocked by 1873 * disk_unblock_events(). Events blocking is counted and the actual 1874 * unblocking happens after the matching number of unblocks are done. 1875 * 1876 * Note that this intentionally does not block event checking from 1877 * disk_clear_events(). 1878 * 1879 * CONTEXT: 1880 * Might sleep. 1881 */ 1882 void disk_block_events(struct gendisk *disk) 1883 { 1884 struct disk_events *ev = disk->ev; 1885 unsigned long flags; 1886 bool cancel; 1887 1888 if (!ev) 1889 return; 1890 1891 /* 1892 * Outer mutex ensures that the first blocker completes canceling 1893 * the event work before further blockers are allowed to finish. 1894 */ 1895 mutex_lock(&ev->block_mutex); 1896 1897 spin_lock_irqsave(&ev->lock, flags); 1898 cancel = !ev->block++; 1899 spin_unlock_irqrestore(&ev->lock, flags); 1900 1901 if (cancel) 1902 cancel_delayed_work_sync(&disk->ev->dwork); 1903 1904 mutex_unlock(&ev->block_mutex); 1905 } 1906 1907 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1908 { 1909 struct disk_events *ev = disk->ev; 1910 unsigned long intv; 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(&ev->lock, flags); 1914 1915 if (WARN_ON_ONCE(ev->block <= 0)) 1916 goto out_unlock; 1917 1918 if (--ev->block) 1919 goto out_unlock; 1920 1921 intv = disk_events_poll_jiffies(disk); 1922 if (check_now) 1923 queue_delayed_work(system_freezable_power_efficient_wq, 1924 &ev->dwork, 0); 1925 else if (intv) 1926 queue_delayed_work(system_freezable_power_efficient_wq, 1927 &ev->dwork, intv); 1928 out_unlock: 1929 spin_unlock_irqrestore(&ev->lock, flags); 1930 } 1931 1932 /** 1933 * disk_unblock_events - unblock disk event checking 1934 * @disk: disk to unblock events for 1935 * 1936 * Undo disk_block_events(). When the block count reaches zero, it 1937 * starts events polling if configured. 1938 * 1939 * CONTEXT: 1940 * Don't care. Safe to call from irq context. 1941 */ 1942 void disk_unblock_events(struct gendisk *disk) 1943 { 1944 if (disk->ev) 1945 __disk_unblock_events(disk, false); 1946 } 1947 1948 /** 1949 * disk_flush_events - schedule immediate event checking and flushing 1950 * @disk: disk to check and flush events for 1951 * @mask: events to flush 1952 * 1953 * Schedule immediate event checking on @disk if not blocked. Events in 1954 * @mask are scheduled to be cleared from the driver. Note that this 1955 * doesn't clear the events from @disk->ev. 1956 * 1957 * CONTEXT: 1958 * If @mask is non-zero must be called with bdev->bd_mutex held. 1959 */ 1960 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1961 { 1962 struct disk_events *ev = disk->ev; 1963 1964 if (!ev) 1965 return; 1966 1967 spin_lock_irq(&ev->lock); 1968 ev->clearing |= mask; 1969 if (!ev->block) 1970 mod_delayed_work(system_freezable_power_efficient_wq, 1971 &ev->dwork, 0); 1972 spin_unlock_irq(&ev->lock); 1973 } 1974 1975 /** 1976 * disk_clear_events - synchronously check, clear and return pending events 1977 * @disk: disk to fetch and clear events from 1978 * @mask: mask of events to be fetched and cleared 1979 * 1980 * Disk events are synchronously checked and pending events in @mask 1981 * are cleared and returned. This ignores the block count. 1982 * 1983 * CONTEXT: 1984 * Might sleep. 1985 */ 1986 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1987 { 1988 const struct block_device_operations *bdops = disk->fops; 1989 struct disk_events *ev = disk->ev; 1990 unsigned int pending; 1991 unsigned int clearing = mask; 1992 1993 if (!ev) { 1994 /* for drivers still using the old ->media_changed method */ 1995 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1996 bdops->media_changed && bdops->media_changed(disk)) 1997 return DISK_EVENT_MEDIA_CHANGE; 1998 return 0; 1999 } 2000 2001 disk_block_events(disk); 2002 2003 /* 2004 * store the union of mask and ev->clearing on the stack so that the 2005 * race with disk_flush_events does not cause ambiguity (ev->clearing 2006 * can still be modified even if events are blocked). 2007 */ 2008 spin_lock_irq(&ev->lock); 2009 clearing |= ev->clearing; 2010 ev->clearing = 0; 2011 spin_unlock_irq(&ev->lock); 2012 2013 disk_check_events(ev, &clearing); 2014 /* 2015 * if ev->clearing is not 0, the disk_flush_events got called in the 2016 * middle of this function, so we want to run the workfn without delay. 2017 */ 2018 __disk_unblock_events(disk, ev->clearing ? true : false); 2019 2020 /* then, fetch and clear pending events */ 2021 spin_lock_irq(&ev->lock); 2022 pending = ev->pending & mask; 2023 ev->pending &= ~mask; 2024 spin_unlock_irq(&ev->lock); 2025 WARN_ON_ONCE(clearing & mask); 2026 2027 return pending; 2028 } 2029 2030 /* 2031 * Separate this part out so that a different pointer for clearing_ptr can be 2032 * passed in for disk_clear_events. 2033 */ 2034 static void disk_events_workfn(struct work_struct *work) 2035 { 2036 struct delayed_work *dwork = to_delayed_work(work); 2037 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 2038 2039 disk_check_events(ev, &ev->clearing); 2040 } 2041 2042 static void disk_check_events(struct disk_events *ev, 2043 unsigned int *clearing_ptr) 2044 { 2045 struct gendisk *disk = ev->disk; 2046 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 2047 unsigned int clearing = *clearing_ptr; 2048 unsigned int events; 2049 unsigned long intv; 2050 int nr_events = 0, i; 2051 2052 /* check events */ 2053 events = disk->fops->check_events(disk, clearing); 2054 2055 /* accumulate pending events and schedule next poll if necessary */ 2056 spin_lock_irq(&ev->lock); 2057 2058 events &= ~ev->pending; 2059 ev->pending |= events; 2060 *clearing_ptr &= ~clearing; 2061 2062 intv = disk_events_poll_jiffies(disk); 2063 if (!ev->block && intv) 2064 queue_delayed_work(system_freezable_power_efficient_wq, 2065 &ev->dwork, intv); 2066 2067 spin_unlock_irq(&ev->lock); 2068 2069 /* 2070 * Tell userland about new events. Only the events listed in 2071 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT 2072 * is set. Otherwise, events are processed internally but never 2073 * get reported to userland. 2074 */ 2075 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 2076 if ((events & disk->events & (1 << i)) && 2077 (disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 2078 envp[nr_events++] = disk_uevents[i]; 2079 2080 if (nr_events) 2081 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 2082 } 2083 2084 /* 2085 * A disk events enabled device has the following sysfs nodes under 2086 * its /sys/block/X/ directory. 2087 * 2088 * events : list of all supported events 2089 * events_async : list of events which can be detected w/o polling 2090 * (always empty, only for backwards compatibility) 2091 * events_poll_msecs : polling interval, 0: disable, -1: system default 2092 */ 2093 static ssize_t __disk_events_show(unsigned int events, char *buf) 2094 { 2095 const char *delim = ""; 2096 ssize_t pos = 0; 2097 int i; 2098 2099 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 2100 if (events & (1 << i)) { 2101 pos += sprintf(buf + pos, "%s%s", 2102 delim, disk_events_strs[i]); 2103 delim = " "; 2104 } 2105 if (pos) 2106 pos += sprintf(buf + pos, "\n"); 2107 return pos; 2108 } 2109 2110 static ssize_t disk_events_show(struct device *dev, 2111 struct device_attribute *attr, char *buf) 2112 { 2113 struct gendisk *disk = dev_to_disk(dev); 2114 2115 if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 2116 return 0; 2117 2118 return __disk_events_show(disk->events, buf); 2119 } 2120 2121 static ssize_t disk_events_async_show(struct device *dev, 2122 struct device_attribute *attr, char *buf) 2123 { 2124 return 0; 2125 } 2126 2127 static ssize_t disk_events_poll_msecs_show(struct device *dev, 2128 struct device_attribute *attr, 2129 char *buf) 2130 { 2131 struct gendisk *disk = dev_to_disk(dev); 2132 2133 if (!disk->ev) 2134 return sprintf(buf, "-1\n"); 2135 2136 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 2137 } 2138 2139 static ssize_t disk_events_poll_msecs_store(struct device *dev, 2140 struct device_attribute *attr, 2141 const char *buf, size_t count) 2142 { 2143 struct gendisk *disk = dev_to_disk(dev); 2144 long intv; 2145 2146 if (!count || !sscanf(buf, "%ld", &intv)) 2147 return -EINVAL; 2148 2149 if (intv < 0 && intv != -1) 2150 return -EINVAL; 2151 2152 if (!disk->ev) 2153 return -ENODEV; 2154 2155 disk_block_events(disk); 2156 disk->ev->poll_msecs = intv; 2157 __disk_unblock_events(disk, true); 2158 2159 return count; 2160 } 2161 2162 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL); 2163 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL); 2164 static const DEVICE_ATTR(events_poll_msecs, 0644, 2165 disk_events_poll_msecs_show, 2166 disk_events_poll_msecs_store); 2167 2168 static const struct attribute *disk_events_attrs[] = { 2169 &dev_attr_events.attr, 2170 &dev_attr_events_async.attr, 2171 &dev_attr_events_poll_msecs.attr, 2172 NULL, 2173 }; 2174 2175 /* 2176 * The default polling interval can be specified by the kernel 2177 * parameter block.events_dfl_poll_msecs which defaults to 0 2178 * (disable). This can also be modified runtime by writing to 2179 * /sys/module/block/parameters/events_dfl_poll_msecs. 2180 */ 2181 static int disk_events_set_dfl_poll_msecs(const char *val, 2182 const struct kernel_param *kp) 2183 { 2184 struct disk_events *ev; 2185 int ret; 2186 2187 ret = param_set_ulong(val, kp); 2188 if (ret < 0) 2189 return ret; 2190 2191 mutex_lock(&disk_events_mutex); 2192 2193 list_for_each_entry(ev, &disk_events, node) 2194 disk_flush_events(ev->disk, 0); 2195 2196 mutex_unlock(&disk_events_mutex); 2197 2198 return 0; 2199 } 2200 2201 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 2202 .set = disk_events_set_dfl_poll_msecs, 2203 .get = param_get_ulong, 2204 }; 2205 2206 #undef MODULE_PARAM_PREFIX 2207 #define MODULE_PARAM_PREFIX "block." 2208 2209 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 2210 &disk_events_dfl_poll_msecs, 0644); 2211 2212 /* 2213 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 2214 */ 2215 static void disk_alloc_events(struct gendisk *disk) 2216 { 2217 struct disk_events *ev; 2218 2219 if (!disk->fops->check_events || !disk->events) 2220 return; 2221 2222 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 2223 if (!ev) { 2224 pr_warn("%s: failed to initialize events\n", disk->disk_name); 2225 return; 2226 } 2227 2228 INIT_LIST_HEAD(&ev->node); 2229 ev->disk = disk; 2230 spin_lock_init(&ev->lock); 2231 mutex_init(&ev->block_mutex); 2232 ev->block = 1; 2233 ev->poll_msecs = -1; 2234 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 2235 2236 disk->ev = ev; 2237 } 2238 2239 static void disk_add_events(struct gendisk *disk) 2240 { 2241 /* FIXME: error handling */ 2242 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 2243 pr_warn("%s: failed to create sysfs files for events\n", 2244 disk->disk_name); 2245 2246 if (!disk->ev) 2247 return; 2248 2249 mutex_lock(&disk_events_mutex); 2250 list_add_tail(&disk->ev->node, &disk_events); 2251 mutex_unlock(&disk_events_mutex); 2252 2253 /* 2254 * Block count is initialized to 1 and the following initial 2255 * unblock kicks it into action. 2256 */ 2257 __disk_unblock_events(disk, true); 2258 } 2259 2260 static void disk_del_events(struct gendisk *disk) 2261 { 2262 if (disk->ev) { 2263 disk_block_events(disk); 2264 2265 mutex_lock(&disk_events_mutex); 2266 list_del_init(&disk->ev->node); 2267 mutex_unlock(&disk_events_mutex); 2268 } 2269 2270 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 2271 } 2272 2273 static void disk_release_events(struct gendisk *disk) 2274 { 2275 /* the block count should be 1 from disk_del_events() */ 2276 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 2277 kfree(disk->ev); 2278 } 2279