xref: /openbmc/linux/block/genhd.c (revision 861e10be)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/init.h>
12 #include <linux/spinlock.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/kobj_map.h>
18 #include <linux/mutex.h>
19 #include <linux/idr.h>
20 #include <linux/log2.h>
21 
22 #include "blk.h"
23 
24 static DEFINE_MUTEX(block_class_lock);
25 struct kobject *block_depr;
26 
27 /* for extended dynamic devt allocation, currently only one major is used */
28 #define MAX_EXT_DEVT		(1 << MINORBITS)
29 
30 /* For extended devt allocation.  ext_devt_mutex prevents look up
31  * results from going away underneath its user.
32  */
33 static DEFINE_MUTEX(ext_devt_mutex);
34 static DEFINE_IDR(ext_devt_idr);
35 
36 static struct device_type disk_type;
37 
38 static void disk_check_events(struct disk_events *ev,
39 			      unsigned int *clearing_ptr);
40 static void disk_alloc_events(struct gendisk *disk);
41 static void disk_add_events(struct gendisk *disk);
42 static void disk_del_events(struct gendisk *disk);
43 static void disk_release_events(struct gendisk *disk);
44 
45 /**
46  * disk_get_part - get partition
47  * @disk: disk to look partition from
48  * @partno: partition number
49  *
50  * Look for partition @partno from @disk.  If found, increment
51  * reference count and return it.
52  *
53  * CONTEXT:
54  * Don't care.
55  *
56  * RETURNS:
57  * Pointer to the found partition on success, NULL if not found.
58  */
59 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
60 {
61 	struct hd_struct *part = NULL;
62 	struct disk_part_tbl *ptbl;
63 
64 	if (unlikely(partno < 0))
65 		return NULL;
66 
67 	rcu_read_lock();
68 
69 	ptbl = rcu_dereference(disk->part_tbl);
70 	if (likely(partno < ptbl->len)) {
71 		part = rcu_dereference(ptbl->part[partno]);
72 		if (part)
73 			get_device(part_to_dev(part));
74 	}
75 
76 	rcu_read_unlock();
77 
78 	return part;
79 }
80 EXPORT_SYMBOL_GPL(disk_get_part);
81 
82 /**
83  * disk_part_iter_init - initialize partition iterator
84  * @piter: iterator to initialize
85  * @disk: disk to iterate over
86  * @flags: DISK_PITER_* flags
87  *
88  * Initialize @piter so that it iterates over partitions of @disk.
89  *
90  * CONTEXT:
91  * Don't care.
92  */
93 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
94 			  unsigned int flags)
95 {
96 	struct disk_part_tbl *ptbl;
97 
98 	rcu_read_lock();
99 	ptbl = rcu_dereference(disk->part_tbl);
100 
101 	piter->disk = disk;
102 	piter->part = NULL;
103 
104 	if (flags & DISK_PITER_REVERSE)
105 		piter->idx = ptbl->len - 1;
106 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
107 		piter->idx = 0;
108 	else
109 		piter->idx = 1;
110 
111 	piter->flags = flags;
112 
113 	rcu_read_unlock();
114 }
115 EXPORT_SYMBOL_GPL(disk_part_iter_init);
116 
117 /**
118  * disk_part_iter_next - proceed iterator to the next partition and return it
119  * @piter: iterator of interest
120  *
121  * Proceed @piter to the next partition and return it.
122  *
123  * CONTEXT:
124  * Don't care.
125  */
126 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
127 {
128 	struct disk_part_tbl *ptbl;
129 	int inc, end;
130 
131 	/* put the last partition */
132 	disk_put_part(piter->part);
133 	piter->part = NULL;
134 
135 	/* get part_tbl */
136 	rcu_read_lock();
137 	ptbl = rcu_dereference(piter->disk->part_tbl);
138 
139 	/* determine iteration parameters */
140 	if (piter->flags & DISK_PITER_REVERSE) {
141 		inc = -1;
142 		if (piter->flags & (DISK_PITER_INCL_PART0 |
143 				    DISK_PITER_INCL_EMPTY_PART0))
144 			end = -1;
145 		else
146 			end = 0;
147 	} else {
148 		inc = 1;
149 		end = ptbl->len;
150 	}
151 
152 	/* iterate to the next partition */
153 	for (; piter->idx != end; piter->idx += inc) {
154 		struct hd_struct *part;
155 
156 		part = rcu_dereference(ptbl->part[piter->idx]);
157 		if (!part)
158 			continue;
159 		if (!part_nr_sects_read(part) &&
160 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
161 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
162 		      piter->idx == 0))
163 			continue;
164 
165 		get_device(part_to_dev(part));
166 		piter->part = part;
167 		piter->idx += inc;
168 		break;
169 	}
170 
171 	rcu_read_unlock();
172 
173 	return piter->part;
174 }
175 EXPORT_SYMBOL_GPL(disk_part_iter_next);
176 
177 /**
178  * disk_part_iter_exit - finish up partition iteration
179  * @piter: iter of interest
180  *
181  * Called when iteration is over.  Cleans up @piter.
182  *
183  * CONTEXT:
184  * Don't care.
185  */
186 void disk_part_iter_exit(struct disk_part_iter *piter)
187 {
188 	disk_put_part(piter->part);
189 	piter->part = NULL;
190 }
191 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
192 
193 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
194 {
195 	return part->start_sect <= sector &&
196 		sector < part->start_sect + part_nr_sects_read(part);
197 }
198 
199 /**
200  * disk_map_sector_rcu - map sector to partition
201  * @disk: gendisk of interest
202  * @sector: sector to map
203  *
204  * Find out which partition @sector maps to on @disk.  This is
205  * primarily used for stats accounting.
206  *
207  * CONTEXT:
208  * RCU read locked.  The returned partition pointer is valid only
209  * while preemption is disabled.
210  *
211  * RETURNS:
212  * Found partition on success, part0 is returned if no partition matches
213  */
214 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
215 {
216 	struct disk_part_tbl *ptbl;
217 	struct hd_struct *part;
218 	int i;
219 
220 	ptbl = rcu_dereference(disk->part_tbl);
221 
222 	part = rcu_dereference(ptbl->last_lookup);
223 	if (part && sector_in_part(part, sector))
224 		return part;
225 
226 	for (i = 1; i < ptbl->len; i++) {
227 		part = rcu_dereference(ptbl->part[i]);
228 
229 		if (part && sector_in_part(part, sector)) {
230 			rcu_assign_pointer(ptbl->last_lookup, part);
231 			return part;
232 		}
233 	}
234 	return &disk->part0;
235 }
236 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
237 
238 /*
239  * Can be deleted altogether. Later.
240  *
241  */
242 static struct blk_major_name {
243 	struct blk_major_name *next;
244 	int major;
245 	char name[16];
246 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
247 
248 /* index in the above - for now: assume no multimajor ranges */
249 static inline int major_to_index(unsigned major)
250 {
251 	return major % BLKDEV_MAJOR_HASH_SIZE;
252 }
253 
254 #ifdef CONFIG_PROC_FS
255 void blkdev_show(struct seq_file *seqf, off_t offset)
256 {
257 	struct blk_major_name *dp;
258 
259 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
260 		mutex_lock(&block_class_lock);
261 		for (dp = major_names[offset]; dp; dp = dp->next)
262 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
263 		mutex_unlock(&block_class_lock);
264 	}
265 }
266 #endif /* CONFIG_PROC_FS */
267 
268 /**
269  * register_blkdev - register a new block device
270  *
271  * @major: the requested major device number [1..255]. If @major=0, try to
272  *         allocate any unused major number.
273  * @name: the name of the new block device as a zero terminated string
274  *
275  * The @name must be unique within the system.
276  *
277  * The return value depends on the @major input parameter.
278  *  - if a major device number was requested in range [1..255] then the
279  *    function returns zero on success, or a negative error code
280  *  - if any unused major number was requested with @major=0 parameter
281  *    then the return value is the allocated major number in range
282  *    [1..255] or a negative error code otherwise
283  */
284 int register_blkdev(unsigned int major, const char *name)
285 {
286 	struct blk_major_name **n, *p;
287 	int index, ret = 0;
288 
289 	mutex_lock(&block_class_lock);
290 
291 	/* temporary */
292 	if (major == 0) {
293 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
294 			if (major_names[index] == NULL)
295 				break;
296 		}
297 
298 		if (index == 0) {
299 			printk("register_blkdev: failed to get major for %s\n",
300 			       name);
301 			ret = -EBUSY;
302 			goto out;
303 		}
304 		major = index;
305 		ret = major;
306 	}
307 
308 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
309 	if (p == NULL) {
310 		ret = -ENOMEM;
311 		goto out;
312 	}
313 
314 	p->major = major;
315 	strlcpy(p->name, name, sizeof(p->name));
316 	p->next = NULL;
317 	index = major_to_index(major);
318 
319 	for (n = &major_names[index]; *n; n = &(*n)->next) {
320 		if ((*n)->major == major)
321 			break;
322 	}
323 	if (!*n)
324 		*n = p;
325 	else
326 		ret = -EBUSY;
327 
328 	if (ret < 0) {
329 		printk("register_blkdev: cannot get major %d for %s\n",
330 		       major, name);
331 		kfree(p);
332 	}
333 out:
334 	mutex_unlock(&block_class_lock);
335 	return ret;
336 }
337 
338 EXPORT_SYMBOL(register_blkdev);
339 
340 void unregister_blkdev(unsigned int major, const char *name)
341 {
342 	struct blk_major_name **n;
343 	struct blk_major_name *p = NULL;
344 	int index = major_to_index(major);
345 
346 	mutex_lock(&block_class_lock);
347 	for (n = &major_names[index]; *n; n = &(*n)->next)
348 		if ((*n)->major == major)
349 			break;
350 	if (!*n || strcmp((*n)->name, name)) {
351 		WARN_ON(1);
352 	} else {
353 		p = *n;
354 		*n = p->next;
355 	}
356 	mutex_unlock(&block_class_lock);
357 	kfree(p);
358 }
359 
360 EXPORT_SYMBOL(unregister_blkdev);
361 
362 static struct kobj_map *bdev_map;
363 
364 /**
365  * blk_mangle_minor - scatter minor numbers apart
366  * @minor: minor number to mangle
367  *
368  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
369  * is enabled.  Mangling twice gives the original value.
370  *
371  * RETURNS:
372  * Mangled value.
373  *
374  * CONTEXT:
375  * Don't care.
376  */
377 static int blk_mangle_minor(int minor)
378 {
379 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
380 	int i;
381 
382 	for (i = 0; i < MINORBITS / 2; i++) {
383 		int low = minor & (1 << i);
384 		int high = minor & (1 << (MINORBITS - 1 - i));
385 		int distance = MINORBITS - 1 - 2 * i;
386 
387 		minor ^= low | high;	/* clear both bits */
388 		low <<= distance;	/* swap the positions */
389 		high >>= distance;
390 		minor |= low | high;	/* and set */
391 	}
392 #endif
393 	return minor;
394 }
395 
396 /**
397  * blk_alloc_devt - allocate a dev_t for a partition
398  * @part: partition to allocate dev_t for
399  * @devt: out parameter for resulting dev_t
400  *
401  * Allocate a dev_t for block device.
402  *
403  * RETURNS:
404  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
405  * failure.
406  *
407  * CONTEXT:
408  * Might sleep.
409  */
410 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
411 {
412 	struct gendisk *disk = part_to_disk(part);
413 	int idx, rc;
414 
415 	/* in consecutive minor range? */
416 	if (part->partno < disk->minors) {
417 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
418 		return 0;
419 	}
420 
421 	/* allocate ext devt */
422 	do {
423 		if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL))
424 			return -ENOMEM;
425 		rc = idr_get_new(&ext_devt_idr, part, &idx);
426 	} while (rc == -EAGAIN);
427 
428 	if (rc)
429 		return rc;
430 
431 	if (idx > MAX_EXT_DEVT) {
432 		idr_remove(&ext_devt_idr, idx);
433 		return -EBUSY;
434 	}
435 
436 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
437 	return 0;
438 }
439 
440 /**
441  * blk_free_devt - free a dev_t
442  * @devt: dev_t to free
443  *
444  * Free @devt which was allocated using blk_alloc_devt().
445  *
446  * CONTEXT:
447  * Might sleep.
448  */
449 void blk_free_devt(dev_t devt)
450 {
451 	might_sleep();
452 
453 	if (devt == MKDEV(0, 0))
454 		return;
455 
456 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
457 		mutex_lock(&ext_devt_mutex);
458 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
459 		mutex_unlock(&ext_devt_mutex);
460 	}
461 }
462 
463 static char *bdevt_str(dev_t devt, char *buf)
464 {
465 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
466 		char tbuf[BDEVT_SIZE];
467 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
468 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
469 	} else
470 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
471 
472 	return buf;
473 }
474 
475 /*
476  * Register device numbers dev..(dev+range-1)
477  * range must be nonzero
478  * The hash chain is sorted on range, so that subranges can override.
479  */
480 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
481 			 struct kobject *(*probe)(dev_t, int *, void *),
482 			 int (*lock)(dev_t, void *), void *data)
483 {
484 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
485 }
486 
487 EXPORT_SYMBOL(blk_register_region);
488 
489 void blk_unregister_region(dev_t devt, unsigned long range)
490 {
491 	kobj_unmap(bdev_map, devt, range);
492 }
493 
494 EXPORT_SYMBOL(blk_unregister_region);
495 
496 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
497 {
498 	struct gendisk *p = data;
499 
500 	return &disk_to_dev(p)->kobj;
501 }
502 
503 static int exact_lock(dev_t devt, void *data)
504 {
505 	struct gendisk *p = data;
506 
507 	if (!get_disk(p))
508 		return -1;
509 	return 0;
510 }
511 
512 static void register_disk(struct gendisk *disk)
513 {
514 	struct device *ddev = disk_to_dev(disk);
515 	struct block_device *bdev;
516 	struct disk_part_iter piter;
517 	struct hd_struct *part;
518 	int err;
519 
520 	ddev->parent = disk->driverfs_dev;
521 
522 	dev_set_name(ddev, disk->disk_name);
523 
524 	/* delay uevents, until we scanned partition table */
525 	dev_set_uevent_suppress(ddev, 1);
526 
527 	if (device_add(ddev))
528 		return;
529 	if (!sysfs_deprecated) {
530 		err = sysfs_create_link(block_depr, &ddev->kobj,
531 					kobject_name(&ddev->kobj));
532 		if (err) {
533 			device_del(ddev);
534 			return;
535 		}
536 	}
537 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
538 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
539 
540 	/* No minors to use for partitions */
541 	if (!disk_part_scan_enabled(disk))
542 		goto exit;
543 
544 	/* No such device (e.g., media were just removed) */
545 	if (!get_capacity(disk))
546 		goto exit;
547 
548 	bdev = bdget_disk(disk, 0);
549 	if (!bdev)
550 		goto exit;
551 
552 	bdev->bd_invalidated = 1;
553 	err = blkdev_get(bdev, FMODE_READ, NULL);
554 	if (err < 0)
555 		goto exit;
556 	blkdev_put(bdev, FMODE_READ);
557 
558 exit:
559 	/* announce disk after possible partitions are created */
560 	dev_set_uevent_suppress(ddev, 0);
561 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
562 
563 	/* announce possible partitions */
564 	disk_part_iter_init(&piter, disk, 0);
565 	while ((part = disk_part_iter_next(&piter)))
566 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
567 	disk_part_iter_exit(&piter);
568 }
569 
570 /**
571  * add_disk - add partitioning information to kernel list
572  * @disk: per-device partitioning information
573  *
574  * This function registers the partitioning information in @disk
575  * with the kernel.
576  *
577  * FIXME: error handling
578  */
579 void add_disk(struct gendisk *disk)
580 {
581 	struct backing_dev_info *bdi;
582 	dev_t devt;
583 	int retval;
584 
585 	/* minors == 0 indicates to use ext devt from part0 and should
586 	 * be accompanied with EXT_DEVT flag.  Make sure all
587 	 * parameters make sense.
588 	 */
589 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
590 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
591 
592 	disk->flags |= GENHD_FL_UP;
593 
594 	retval = blk_alloc_devt(&disk->part0, &devt);
595 	if (retval) {
596 		WARN_ON(1);
597 		return;
598 	}
599 	disk_to_dev(disk)->devt = devt;
600 
601 	/* ->major and ->first_minor aren't supposed to be
602 	 * dereferenced from here on, but set them just in case.
603 	 */
604 	disk->major = MAJOR(devt);
605 	disk->first_minor = MINOR(devt);
606 
607 	disk_alloc_events(disk);
608 
609 	/* Register BDI before referencing it from bdev */
610 	bdi = &disk->queue->backing_dev_info;
611 	bdi_register_dev(bdi, disk_devt(disk));
612 
613 	blk_register_region(disk_devt(disk), disk->minors, NULL,
614 			    exact_match, exact_lock, disk);
615 	register_disk(disk);
616 	blk_register_queue(disk);
617 
618 	/*
619 	 * Take an extra ref on queue which will be put on disk_release()
620 	 * so that it sticks around as long as @disk is there.
621 	 */
622 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
623 
624 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
625 				   "bdi");
626 	WARN_ON(retval);
627 
628 	disk_add_events(disk);
629 }
630 EXPORT_SYMBOL(add_disk);
631 
632 void del_gendisk(struct gendisk *disk)
633 {
634 	struct disk_part_iter piter;
635 	struct hd_struct *part;
636 
637 	disk_del_events(disk);
638 
639 	/* invalidate stuff */
640 	disk_part_iter_init(&piter, disk,
641 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
642 	while ((part = disk_part_iter_next(&piter))) {
643 		invalidate_partition(disk, part->partno);
644 		delete_partition(disk, part->partno);
645 	}
646 	disk_part_iter_exit(&piter);
647 
648 	invalidate_partition(disk, 0);
649 	blk_free_devt(disk_to_dev(disk)->devt);
650 	set_capacity(disk, 0);
651 	disk->flags &= ~GENHD_FL_UP;
652 
653 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
654 	bdi_unregister(&disk->queue->backing_dev_info);
655 	blk_unregister_queue(disk);
656 	blk_unregister_region(disk_devt(disk), disk->minors);
657 
658 	part_stat_set_all(&disk->part0, 0);
659 	disk->part0.stamp = 0;
660 
661 	kobject_put(disk->part0.holder_dir);
662 	kobject_put(disk->slave_dir);
663 	disk->driverfs_dev = NULL;
664 	if (!sysfs_deprecated)
665 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
666 	device_del(disk_to_dev(disk));
667 }
668 EXPORT_SYMBOL(del_gendisk);
669 
670 /**
671  * get_gendisk - get partitioning information for a given device
672  * @devt: device to get partitioning information for
673  * @partno: returned partition index
674  *
675  * This function gets the structure containing partitioning
676  * information for the given device @devt.
677  */
678 struct gendisk *get_gendisk(dev_t devt, int *partno)
679 {
680 	struct gendisk *disk = NULL;
681 
682 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
683 		struct kobject *kobj;
684 
685 		kobj = kobj_lookup(bdev_map, devt, partno);
686 		if (kobj)
687 			disk = dev_to_disk(kobj_to_dev(kobj));
688 	} else {
689 		struct hd_struct *part;
690 
691 		mutex_lock(&ext_devt_mutex);
692 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
693 		if (part && get_disk(part_to_disk(part))) {
694 			*partno = part->partno;
695 			disk = part_to_disk(part);
696 		}
697 		mutex_unlock(&ext_devt_mutex);
698 	}
699 
700 	return disk;
701 }
702 EXPORT_SYMBOL(get_gendisk);
703 
704 /**
705  * bdget_disk - do bdget() by gendisk and partition number
706  * @disk: gendisk of interest
707  * @partno: partition number
708  *
709  * Find partition @partno from @disk, do bdget() on it.
710  *
711  * CONTEXT:
712  * Don't care.
713  *
714  * RETURNS:
715  * Resulting block_device on success, NULL on failure.
716  */
717 struct block_device *bdget_disk(struct gendisk *disk, int partno)
718 {
719 	struct hd_struct *part;
720 	struct block_device *bdev = NULL;
721 
722 	part = disk_get_part(disk, partno);
723 	if (part)
724 		bdev = bdget(part_devt(part));
725 	disk_put_part(part);
726 
727 	return bdev;
728 }
729 EXPORT_SYMBOL(bdget_disk);
730 
731 /*
732  * print a full list of all partitions - intended for places where the root
733  * filesystem can't be mounted and thus to give the victim some idea of what
734  * went wrong
735  */
736 void __init printk_all_partitions(void)
737 {
738 	struct class_dev_iter iter;
739 	struct device *dev;
740 
741 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
742 	while ((dev = class_dev_iter_next(&iter))) {
743 		struct gendisk *disk = dev_to_disk(dev);
744 		struct disk_part_iter piter;
745 		struct hd_struct *part;
746 		char name_buf[BDEVNAME_SIZE];
747 		char devt_buf[BDEVT_SIZE];
748 
749 		/*
750 		 * Don't show empty devices or things that have been
751 		 * suppressed
752 		 */
753 		if (get_capacity(disk) == 0 ||
754 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
755 			continue;
756 
757 		/*
758 		 * Note, unlike /proc/partitions, I am showing the
759 		 * numbers in hex - the same format as the root=
760 		 * option takes.
761 		 */
762 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
763 		while ((part = disk_part_iter_next(&piter))) {
764 			bool is_part0 = part == &disk->part0;
765 
766 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
767 			       bdevt_str(part_devt(part), devt_buf),
768 			       (unsigned long long)part_nr_sects_read(part) >> 1
769 			       , disk_name(disk, part->partno, name_buf),
770 			       part->info ? part->info->uuid : "");
771 			if (is_part0) {
772 				if (disk->driverfs_dev != NULL &&
773 				    disk->driverfs_dev->driver != NULL)
774 					printk(" driver: %s\n",
775 					      disk->driverfs_dev->driver->name);
776 				else
777 					printk(" (driver?)\n");
778 			} else
779 				printk("\n");
780 		}
781 		disk_part_iter_exit(&piter);
782 	}
783 	class_dev_iter_exit(&iter);
784 }
785 
786 #ifdef CONFIG_PROC_FS
787 /* iterator */
788 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
789 {
790 	loff_t skip = *pos;
791 	struct class_dev_iter *iter;
792 	struct device *dev;
793 
794 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
795 	if (!iter)
796 		return ERR_PTR(-ENOMEM);
797 
798 	seqf->private = iter;
799 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
800 	do {
801 		dev = class_dev_iter_next(iter);
802 		if (!dev)
803 			return NULL;
804 	} while (skip--);
805 
806 	return dev_to_disk(dev);
807 }
808 
809 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
810 {
811 	struct device *dev;
812 
813 	(*pos)++;
814 	dev = class_dev_iter_next(seqf->private);
815 	if (dev)
816 		return dev_to_disk(dev);
817 
818 	return NULL;
819 }
820 
821 static void disk_seqf_stop(struct seq_file *seqf, void *v)
822 {
823 	struct class_dev_iter *iter = seqf->private;
824 
825 	/* stop is called even after start failed :-( */
826 	if (iter) {
827 		class_dev_iter_exit(iter);
828 		kfree(iter);
829 	}
830 }
831 
832 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
833 {
834 	void *p;
835 
836 	p = disk_seqf_start(seqf, pos);
837 	if (!IS_ERR_OR_NULL(p) && !*pos)
838 		seq_puts(seqf, "major minor  #blocks  name\n\n");
839 	return p;
840 }
841 
842 static int show_partition(struct seq_file *seqf, void *v)
843 {
844 	struct gendisk *sgp = v;
845 	struct disk_part_iter piter;
846 	struct hd_struct *part;
847 	char buf[BDEVNAME_SIZE];
848 
849 	/* Don't show non-partitionable removeable devices or empty devices */
850 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
851 				   (sgp->flags & GENHD_FL_REMOVABLE)))
852 		return 0;
853 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
854 		return 0;
855 
856 	/* show the full disk and all non-0 size partitions of it */
857 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
858 	while ((part = disk_part_iter_next(&piter)))
859 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
860 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
861 			   (unsigned long long)part_nr_sects_read(part) >> 1,
862 			   disk_name(sgp, part->partno, buf));
863 	disk_part_iter_exit(&piter);
864 
865 	return 0;
866 }
867 
868 static const struct seq_operations partitions_op = {
869 	.start	= show_partition_start,
870 	.next	= disk_seqf_next,
871 	.stop	= disk_seqf_stop,
872 	.show	= show_partition
873 };
874 
875 static int partitions_open(struct inode *inode, struct file *file)
876 {
877 	return seq_open(file, &partitions_op);
878 }
879 
880 static const struct file_operations proc_partitions_operations = {
881 	.open		= partitions_open,
882 	.read		= seq_read,
883 	.llseek		= seq_lseek,
884 	.release	= seq_release,
885 };
886 #endif
887 
888 
889 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
890 {
891 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
892 		/* Make old-style 2.4 aliases work */
893 		request_module("block-major-%d", MAJOR(devt));
894 	return NULL;
895 }
896 
897 static int __init genhd_device_init(void)
898 {
899 	int error;
900 
901 	block_class.dev_kobj = sysfs_dev_block_kobj;
902 	error = class_register(&block_class);
903 	if (unlikely(error))
904 		return error;
905 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
906 	blk_dev_init();
907 
908 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
909 
910 	/* create top-level block dir */
911 	if (!sysfs_deprecated)
912 		block_depr = kobject_create_and_add("block", NULL);
913 	return 0;
914 }
915 
916 subsys_initcall(genhd_device_init);
917 
918 static ssize_t disk_range_show(struct device *dev,
919 			       struct device_attribute *attr, char *buf)
920 {
921 	struct gendisk *disk = dev_to_disk(dev);
922 
923 	return sprintf(buf, "%d\n", disk->minors);
924 }
925 
926 static ssize_t disk_ext_range_show(struct device *dev,
927 				   struct device_attribute *attr, char *buf)
928 {
929 	struct gendisk *disk = dev_to_disk(dev);
930 
931 	return sprintf(buf, "%d\n", disk_max_parts(disk));
932 }
933 
934 static ssize_t disk_removable_show(struct device *dev,
935 				   struct device_attribute *attr, char *buf)
936 {
937 	struct gendisk *disk = dev_to_disk(dev);
938 
939 	return sprintf(buf, "%d\n",
940 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
941 }
942 
943 static ssize_t disk_ro_show(struct device *dev,
944 				   struct device_attribute *attr, char *buf)
945 {
946 	struct gendisk *disk = dev_to_disk(dev);
947 
948 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
949 }
950 
951 static ssize_t disk_capability_show(struct device *dev,
952 				    struct device_attribute *attr, char *buf)
953 {
954 	struct gendisk *disk = dev_to_disk(dev);
955 
956 	return sprintf(buf, "%x\n", disk->flags);
957 }
958 
959 static ssize_t disk_alignment_offset_show(struct device *dev,
960 					  struct device_attribute *attr,
961 					  char *buf)
962 {
963 	struct gendisk *disk = dev_to_disk(dev);
964 
965 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
966 }
967 
968 static ssize_t disk_discard_alignment_show(struct device *dev,
969 					   struct device_attribute *attr,
970 					   char *buf)
971 {
972 	struct gendisk *disk = dev_to_disk(dev);
973 
974 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
975 }
976 
977 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
978 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
979 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
980 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
981 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
982 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
983 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
984 		   NULL);
985 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
986 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
987 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
988 #ifdef CONFIG_FAIL_MAKE_REQUEST
989 static struct device_attribute dev_attr_fail =
990 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
991 #endif
992 #ifdef CONFIG_FAIL_IO_TIMEOUT
993 static struct device_attribute dev_attr_fail_timeout =
994 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
995 		part_timeout_store);
996 #endif
997 
998 static struct attribute *disk_attrs[] = {
999 	&dev_attr_range.attr,
1000 	&dev_attr_ext_range.attr,
1001 	&dev_attr_removable.attr,
1002 	&dev_attr_ro.attr,
1003 	&dev_attr_size.attr,
1004 	&dev_attr_alignment_offset.attr,
1005 	&dev_attr_discard_alignment.attr,
1006 	&dev_attr_capability.attr,
1007 	&dev_attr_stat.attr,
1008 	&dev_attr_inflight.attr,
1009 #ifdef CONFIG_FAIL_MAKE_REQUEST
1010 	&dev_attr_fail.attr,
1011 #endif
1012 #ifdef CONFIG_FAIL_IO_TIMEOUT
1013 	&dev_attr_fail_timeout.attr,
1014 #endif
1015 	NULL
1016 };
1017 
1018 static struct attribute_group disk_attr_group = {
1019 	.attrs = disk_attrs,
1020 };
1021 
1022 static const struct attribute_group *disk_attr_groups[] = {
1023 	&disk_attr_group,
1024 	NULL
1025 };
1026 
1027 /**
1028  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1029  * @disk: disk to replace part_tbl for
1030  * @new_ptbl: new part_tbl to install
1031  *
1032  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1033  * original ptbl is freed using RCU callback.
1034  *
1035  * LOCKING:
1036  * Matching bd_mutx locked.
1037  */
1038 static void disk_replace_part_tbl(struct gendisk *disk,
1039 				  struct disk_part_tbl *new_ptbl)
1040 {
1041 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1042 
1043 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1044 
1045 	if (old_ptbl) {
1046 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1047 		kfree_rcu(old_ptbl, rcu_head);
1048 	}
1049 }
1050 
1051 /**
1052  * disk_expand_part_tbl - expand disk->part_tbl
1053  * @disk: disk to expand part_tbl for
1054  * @partno: expand such that this partno can fit in
1055  *
1056  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1057  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1058  *
1059  * LOCKING:
1060  * Matching bd_mutex locked, might sleep.
1061  *
1062  * RETURNS:
1063  * 0 on success, -errno on failure.
1064  */
1065 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1066 {
1067 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1068 	struct disk_part_tbl *new_ptbl;
1069 	int len = old_ptbl ? old_ptbl->len : 0;
1070 	int target = partno + 1;
1071 	size_t size;
1072 	int i;
1073 
1074 	/* disk_max_parts() is zero during initialization, ignore if so */
1075 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1076 		return -EINVAL;
1077 
1078 	if (target <= len)
1079 		return 0;
1080 
1081 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1082 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1083 	if (!new_ptbl)
1084 		return -ENOMEM;
1085 
1086 	new_ptbl->len = target;
1087 
1088 	for (i = 0; i < len; i++)
1089 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1090 
1091 	disk_replace_part_tbl(disk, new_ptbl);
1092 	return 0;
1093 }
1094 
1095 static void disk_release(struct device *dev)
1096 {
1097 	struct gendisk *disk = dev_to_disk(dev);
1098 
1099 	disk_release_events(disk);
1100 	kfree(disk->random);
1101 	disk_replace_part_tbl(disk, NULL);
1102 	free_part_stats(&disk->part0);
1103 	free_part_info(&disk->part0);
1104 	if (disk->queue)
1105 		blk_put_queue(disk->queue);
1106 	kfree(disk);
1107 }
1108 struct class block_class = {
1109 	.name		= "block",
1110 };
1111 
1112 static char *block_devnode(struct device *dev, umode_t *mode)
1113 {
1114 	struct gendisk *disk = dev_to_disk(dev);
1115 
1116 	if (disk->devnode)
1117 		return disk->devnode(disk, mode);
1118 	return NULL;
1119 }
1120 
1121 static struct device_type disk_type = {
1122 	.name		= "disk",
1123 	.groups		= disk_attr_groups,
1124 	.release	= disk_release,
1125 	.devnode	= block_devnode,
1126 };
1127 
1128 #ifdef CONFIG_PROC_FS
1129 /*
1130  * aggregate disk stat collector.  Uses the same stats that the sysfs
1131  * entries do, above, but makes them available through one seq_file.
1132  *
1133  * The output looks suspiciously like /proc/partitions with a bunch of
1134  * extra fields.
1135  */
1136 static int diskstats_show(struct seq_file *seqf, void *v)
1137 {
1138 	struct gendisk *gp = v;
1139 	struct disk_part_iter piter;
1140 	struct hd_struct *hd;
1141 	char buf[BDEVNAME_SIZE];
1142 	int cpu;
1143 
1144 	/*
1145 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1146 		seq_puts(seqf,	"major minor name"
1147 				"     rio rmerge rsect ruse wio wmerge "
1148 				"wsect wuse running use aveq"
1149 				"\n\n");
1150 	*/
1151 
1152 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1153 	while ((hd = disk_part_iter_next(&piter))) {
1154 		cpu = part_stat_lock();
1155 		part_round_stats(cpu, hd);
1156 		part_stat_unlock();
1157 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1158 			   "%u %lu %lu %lu %u %u %u %u\n",
1159 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1160 			   disk_name(gp, hd->partno, buf),
1161 			   part_stat_read(hd, ios[READ]),
1162 			   part_stat_read(hd, merges[READ]),
1163 			   part_stat_read(hd, sectors[READ]),
1164 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1165 			   part_stat_read(hd, ios[WRITE]),
1166 			   part_stat_read(hd, merges[WRITE]),
1167 			   part_stat_read(hd, sectors[WRITE]),
1168 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1169 			   part_in_flight(hd),
1170 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1171 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1172 			);
1173 	}
1174 	disk_part_iter_exit(&piter);
1175 
1176 	return 0;
1177 }
1178 
1179 static const struct seq_operations diskstats_op = {
1180 	.start	= disk_seqf_start,
1181 	.next	= disk_seqf_next,
1182 	.stop	= disk_seqf_stop,
1183 	.show	= diskstats_show
1184 };
1185 
1186 static int diskstats_open(struct inode *inode, struct file *file)
1187 {
1188 	return seq_open(file, &diskstats_op);
1189 }
1190 
1191 static const struct file_operations proc_diskstats_operations = {
1192 	.open		= diskstats_open,
1193 	.read		= seq_read,
1194 	.llseek		= seq_lseek,
1195 	.release	= seq_release,
1196 };
1197 
1198 static int __init proc_genhd_init(void)
1199 {
1200 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1201 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1202 	return 0;
1203 }
1204 module_init(proc_genhd_init);
1205 #endif /* CONFIG_PROC_FS */
1206 
1207 dev_t blk_lookup_devt(const char *name, int partno)
1208 {
1209 	dev_t devt = MKDEV(0, 0);
1210 	struct class_dev_iter iter;
1211 	struct device *dev;
1212 
1213 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1214 	while ((dev = class_dev_iter_next(&iter))) {
1215 		struct gendisk *disk = dev_to_disk(dev);
1216 		struct hd_struct *part;
1217 
1218 		if (strcmp(dev_name(dev), name))
1219 			continue;
1220 
1221 		if (partno < disk->minors) {
1222 			/* We need to return the right devno, even
1223 			 * if the partition doesn't exist yet.
1224 			 */
1225 			devt = MKDEV(MAJOR(dev->devt),
1226 				     MINOR(dev->devt) + partno);
1227 			break;
1228 		}
1229 		part = disk_get_part(disk, partno);
1230 		if (part) {
1231 			devt = part_devt(part);
1232 			disk_put_part(part);
1233 			break;
1234 		}
1235 		disk_put_part(part);
1236 	}
1237 	class_dev_iter_exit(&iter);
1238 	return devt;
1239 }
1240 EXPORT_SYMBOL(blk_lookup_devt);
1241 
1242 struct gendisk *alloc_disk(int minors)
1243 {
1244 	return alloc_disk_node(minors, NUMA_NO_NODE);
1245 }
1246 EXPORT_SYMBOL(alloc_disk);
1247 
1248 struct gendisk *alloc_disk_node(int minors, int node_id)
1249 {
1250 	struct gendisk *disk;
1251 
1252 	disk = kmalloc_node(sizeof(struct gendisk),
1253 				GFP_KERNEL | __GFP_ZERO, node_id);
1254 	if (disk) {
1255 		if (!init_part_stats(&disk->part0)) {
1256 			kfree(disk);
1257 			return NULL;
1258 		}
1259 		disk->node_id = node_id;
1260 		if (disk_expand_part_tbl(disk, 0)) {
1261 			free_part_stats(&disk->part0);
1262 			kfree(disk);
1263 			return NULL;
1264 		}
1265 		disk->part_tbl->part[0] = &disk->part0;
1266 
1267 		/*
1268 		 * set_capacity() and get_capacity() currently don't use
1269 		 * seqcounter to read/update the part0->nr_sects. Still init
1270 		 * the counter as we can read the sectors in IO submission
1271 		 * patch using seqence counters.
1272 		 *
1273 		 * TODO: Ideally set_capacity() and get_capacity() should be
1274 		 * converted to make use of bd_mutex and sequence counters.
1275 		 */
1276 		seqcount_init(&disk->part0.nr_sects_seq);
1277 		hd_ref_init(&disk->part0);
1278 
1279 		disk->minors = minors;
1280 		rand_initialize_disk(disk);
1281 		disk_to_dev(disk)->class = &block_class;
1282 		disk_to_dev(disk)->type = &disk_type;
1283 		device_initialize(disk_to_dev(disk));
1284 	}
1285 	return disk;
1286 }
1287 EXPORT_SYMBOL(alloc_disk_node);
1288 
1289 struct kobject *get_disk(struct gendisk *disk)
1290 {
1291 	struct module *owner;
1292 	struct kobject *kobj;
1293 
1294 	if (!disk->fops)
1295 		return NULL;
1296 	owner = disk->fops->owner;
1297 	if (owner && !try_module_get(owner))
1298 		return NULL;
1299 	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1300 	if (kobj == NULL) {
1301 		module_put(owner);
1302 		return NULL;
1303 	}
1304 	return kobj;
1305 
1306 }
1307 
1308 EXPORT_SYMBOL(get_disk);
1309 
1310 void put_disk(struct gendisk *disk)
1311 {
1312 	if (disk)
1313 		kobject_put(&disk_to_dev(disk)->kobj);
1314 }
1315 
1316 EXPORT_SYMBOL(put_disk);
1317 
1318 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1319 {
1320 	char event[] = "DISK_RO=1";
1321 	char *envp[] = { event, NULL };
1322 
1323 	if (!ro)
1324 		event[8] = '0';
1325 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1326 }
1327 
1328 void set_device_ro(struct block_device *bdev, int flag)
1329 {
1330 	bdev->bd_part->policy = flag;
1331 }
1332 
1333 EXPORT_SYMBOL(set_device_ro);
1334 
1335 void set_disk_ro(struct gendisk *disk, int flag)
1336 {
1337 	struct disk_part_iter piter;
1338 	struct hd_struct *part;
1339 
1340 	if (disk->part0.policy != flag) {
1341 		set_disk_ro_uevent(disk, flag);
1342 		disk->part0.policy = flag;
1343 	}
1344 
1345 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1346 	while ((part = disk_part_iter_next(&piter)))
1347 		part->policy = flag;
1348 	disk_part_iter_exit(&piter);
1349 }
1350 
1351 EXPORT_SYMBOL(set_disk_ro);
1352 
1353 int bdev_read_only(struct block_device *bdev)
1354 {
1355 	if (!bdev)
1356 		return 0;
1357 	return bdev->bd_part->policy;
1358 }
1359 
1360 EXPORT_SYMBOL(bdev_read_only);
1361 
1362 int invalidate_partition(struct gendisk *disk, int partno)
1363 {
1364 	int res = 0;
1365 	struct block_device *bdev = bdget_disk(disk, partno);
1366 	if (bdev) {
1367 		fsync_bdev(bdev);
1368 		res = __invalidate_device(bdev, true);
1369 		bdput(bdev);
1370 	}
1371 	return res;
1372 }
1373 
1374 EXPORT_SYMBOL(invalidate_partition);
1375 
1376 /*
1377  * Disk events - monitor disk events like media change and eject request.
1378  */
1379 struct disk_events {
1380 	struct list_head	node;		/* all disk_event's */
1381 	struct gendisk		*disk;		/* the associated disk */
1382 	spinlock_t		lock;
1383 
1384 	struct mutex		block_mutex;	/* protects blocking */
1385 	int			block;		/* event blocking depth */
1386 	unsigned int		pending;	/* events already sent out */
1387 	unsigned int		clearing;	/* events being cleared */
1388 
1389 	long			poll_msecs;	/* interval, -1 for default */
1390 	struct delayed_work	dwork;
1391 };
1392 
1393 static const char *disk_events_strs[] = {
1394 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1395 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1396 };
1397 
1398 static char *disk_uevents[] = {
1399 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1400 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1401 };
1402 
1403 /* list of all disk_events */
1404 static DEFINE_MUTEX(disk_events_mutex);
1405 static LIST_HEAD(disk_events);
1406 
1407 /* disable in-kernel polling by default */
1408 static unsigned long disk_events_dfl_poll_msecs	= 0;
1409 
1410 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1411 {
1412 	struct disk_events *ev = disk->ev;
1413 	long intv_msecs = 0;
1414 
1415 	/*
1416 	 * If device-specific poll interval is set, always use it.  If
1417 	 * the default is being used, poll iff there are events which
1418 	 * can't be monitored asynchronously.
1419 	 */
1420 	if (ev->poll_msecs >= 0)
1421 		intv_msecs = ev->poll_msecs;
1422 	else if (disk->events & ~disk->async_events)
1423 		intv_msecs = disk_events_dfl_poll_msecs;
1424 
1425 	return msecs_to_jiffies(intv_msecs);
1426 }
1427 
1428 /**
1429  * disk_block_events - block and flush disk event checking
1430  * @disk: disk to block events for
1431  *
1432  * On return from this function, it is guaranteed that event checking
1433  * isn't in progress and won't happen until unblocked by
1434  * disk_unblock_events().  Events blocking is counted and the actual
1435  * unblocking happens after the matching number of unblocks are done.
1436  *
1437  * Note that this intentionally does not block event checking from
1438  * disk_clear_events().
1439  *
1440  * CONTEXT:
1441  * Might sleep.
1442  */
1443 void disk_block_events(struct gendisk *disk)
1444 {
1445 	struct disk_events *ev = disk->ev;
1446 	unsigned long flags;
1447 	bool cancel;
1448 
1449 	if (!ev)
1450 		return;
1451 
1452 	/*
1453 	 * Outer mutex ensures that the first blocker completes canceling
1454 	 * the event work before further blockers are allowed to finish.
1455 	 */
1456 	mutex_lock(&ev->block_mutex);
1457 
1458 	spin_lock_irqsave(&ev->lock, flags);
1459 	cancel = !ev->block++;
1460 	spin_unlock_irqrestore(&ev->lock, flags);
1461 
1462 	if (cancel)
1463 		cancel_delayed_work_sync(&disk->ev->dwork);
1464 
1465 	mutex_unlock(&ev->block_mutex);
1466 }
1467 
1468 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1469 {
1470 	struct disk_events *ev = disk->ev;
1471 	unsigned long intv;
1472 	unsigned long flags;
1473 
1474 	spin_lock_irqsave(&ev->lock, flags);
1475 
1476 	if (WARN_ON_ONCE(ev->block <= 0))
1477 		goto out_unlock;
1478 
1479 	if (--ev->block)
1480 		goto out_unlock;
1481 
1482 	/*
1483 	 * Not exactly a latency critical operation, set poll timer
1484 	 * slack to 25% and kick event check.
1485 	 */
1486 	intv = disk_events_poll_jiffies(disk);
1487 	set_timer_slack(&ev->dwork.timer, intv / 4);
1488 	if (check_now)
1489 		queue_delayed_work(system_freezable_wq, &ev->dwork, 0);
1490 	else if (intv)
1491 		queue_delayed_work(system_freezable_wq, &ev->dwork, intv);
1492 out_unlock:
1493 	spin_unlock_irqrestore(&ev->lock, flags);
1494 }
1495 
1496 /**
1497  * disk_unblock_events - unblock disk event checking
1498  * @disk: disk to unblock events for
1499  *
1500  * Undo disk_block_events().  When the block count reaches zero, it
1501  * starts events polling if configured.
1502  *
1503  * CONTEXT:
1504  * Don't care.  Safe to call from irq context.
1505  */
1506 void disk_unblock_events(struct gendisk *disk)
1507 {
1508 	if (disk->ev)
1509 		__disk_unblock_events(disk, false);
1510 }
1511 
1512 /**
1513  * disk_flush_events - schedule immediate event checking and flushing
1514  * @disk: disk to check and flush events for
1515  * @mask: events to flush
1516  *
1517  * Schedule immediate event checking on @disk if not blocked.  Events in
1518  * @mask are scheduled to be cleared from the driver.  Note that this
1519  * doesn't clear the events from @disk->ev.
1520  *
1521  * CONTEXT:
1522  * If @mask is non-zero must be called with bdev->bd_mutex held.
1523  */
1524 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1525 {
1526 	struct disk_events *ev = disk->ev;
1527 
1528 	if (!ev)
1529 		return;
1530 
1531 	spin_lock_irq(&ev->lock);
1532 	ev->clearing |= mask;
1533 	if (!ev->block)
1534 		mod_delayed_work(system_freezable_wq, &ev->dwork, 0);
1535 	spin_unlock_irq(&ev->lock);
1536 }
1537 
1538 /**
1539  * disk_clear_events - synchronously check, clear and return pending events
1540  * @disk: disk to fetch and clear events from
1541  * @mask: mask of events to be fetched and clearted
1542  *
1543  * Disk events are synchronously checked and pending events in @mask
1544  * are cleared and returned.  This ignores the block count.
1545  *
1546  * CONTEXT:
1547  * Might sleep.
1548  */
1549 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1550 {
1551 	const struct block_device_operations *bdops = disk->fops;
1552 	struct disk_events *ev = disk->ev;
1553 	unsigned int pending;
1554 	unsigned int clearing = mask;
1555 
1556 	if (!ev) {
1557 		/* for drivers still using the old ->media_changed method */
1558 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1559 		    bdops->media_changed && bdops->media_changed(disk))
1560 			return DISK_EVENT_MEDIA_CHANGE;
1561 		return 0;
1562 	}
1563 
1564 	disk_block_events(disk);
1565 
1566 	/*
1567 	 * store the union of mask and ev->clearing on the stack so that the
1568 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1569 	 * can still be modified even if events are blocked).
1570 	 */
1571 	spin_lock_irq(&ev->lock);
1572 	clearing |= ev->clearing;
1573 	ev->clearing = 0;
1574 	spin_unlock_irq(&ev->lock);
1575 
1576 	disk_check_events(ev, &clearing);
1577 	/*
1578 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1579 	 * middle of this function, so we want to run the workfn without delay.
1580 	 */
1581 	__disk_unblock_events(disk, ev->clearing ? true : false);
1582 
1583 	/* then, fetch and clear pending events */
1584 	spin_lock_irq(&ev->lock);
1585 	pending = ev->pending & mask;
1586 	ev->pending &= ~mask;
1587 	spin_unlock_irq(&ev->lock);
1588 	WARN_ON_ONCE(clearing & mask);
1589 
1590 	return pending;
1591 }
1592 
1593 /*
1594  * Separate this part out so that a different pointer for clearing_ptr can be
1595  * passed in for disk_clear_events.
1596  */
1597 static void disk_events_workfn(struct work_struct *work)
1598 {
1599 	struct delayed_work *dwork = to_delayed_work(work);
1600 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1601 
1602 	disk_check_events(ev, &ev->clearing);
1603 }
1604 
1605 static void disk_check_events(struct disk_events *ev,
1606 			      unsigned int *clearing_ptr)
1607 {
1608 	struct gendisk *disk = ev->disk;
1609 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1610 	unsigned int clearing = *clearing_ptr;
1611 	unsigned int events;
1612 	unsigned long intv;
1613 	int nr_events = 0, i;
1614 
1615 	/* check events */
1616 	events = disk->fops->check_events(disk, clearing);
1617 
1618 	/* accumulate pending events and schedule next poll if necessary */
1619 	spin_lock_irq(&ev->lock);
1620 
1621 	events &= ~ev->pending;
1622 	ev->pending |= events;
1623 	*clearing_ptr &= ~clearing;
1624 
1625 	intv = disk_events_poll_jiffies(disk);
1626 	if (!ev->block && intv)
1627 		queue_delayed_work(system_freezable_wq, &ev->dwork, intv);
1628 
1629 	spin_unlock_irq(&ev->lock);
1630 
1631 	/*
1632 	 * Tell userland about new events.  Only the events listed in
1633 	 * @disk->events are reported.  Unlisted events are processed the
1634 	 * same internally but never get reported to userland.
1635 	 */
1636 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1637 		if (events & disk->events & (1 << i))
1638 			envp[nr_events++] = disk_uevents[i];
1639 
1640 	if (nr_events)
1641 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1642 }
1643 
1644 /*
1645  * A disk events enabled device has the following sysfs nodes under
1646  * its /sys/block/X/ directory.
1647  *
1648  * events		: list of all supported events
1649  * events_async		: list of events which can be detected w/o polling
1650  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1651  */
1652 static ssize_t __disk_events_show(unsigned int events, char *buf)
1653 {
1654 	const char *delim = "";
1655 	ssize_t pos = 0;
1656 	int i;
1657 
1658 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1659 		if (events & (1 << i)) {
1660 			pos += sprintf(buf + pos, "%s%s",
1661 				       delim, disk_events_strs[i]);
1662 			delim = " ";
1663 		}
1664 	if (pos)
1665 		pos += sprintf(buf + pos, "\n");
1666 	return pos;
1667 }
1668 
1669 static ssize_t disk_events_show(struct device *dev,
1670 				struct device_attribute *attr, char *buf)
1671 {
1672 	struct gendisk *disk = dev_to_disk(dev);
1673 
1674 	return __disk_events_show(disk->events, buf);
1675 }
1676 
1677 static ssize_t disk_events_async_show(struct device *dev,
1678 				      struct device_attribute *attr, char *buf)
1679 {
1680 	struct gendisk *disk = dev_to_disk(dev);
1681 
1682 	return __disk_events_show(disk->async_events, buf);
1683 }
1684 
1685 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1686 					   struct device_attribute *attr,
1687 					   char *buf)
1688 {
1689 	struct gendisk *disk = dev_to_disk(dev);
1690 
1691 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1692 }
1693 
1694 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1695 					    struct device_attribute *attr,
1696 					    const char *buf, size_t count)
1697 {
1698 	struct gendisk *disk = dev_to_disk(dev);
1699 	long intv;
1700 
1701 	if (!count || !sscanf(buf, "%ld", &intv))
1702 		return -EINVAL;
1703 
1704 	if (intv < 0 && intv != -1)
1705 		return -EINVAL;
1706 
1707 	disk_block_events(disk);
1708 	disk->ev->poll_msecs = intv;
1709 	__disk_unblock_events(disk, true);
1710 
1711 	return count;
1712 }
1713 
1714 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1715 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1716 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1717 			 disk_events_poll_msecs_show,
1718 			 disk_events_poll_msecs_store);
1719 
1720 static const struct attribute *disk_events_attrs[] = {
1721 	&dev_attr_events.attr,
1722 	&dev_attr_events_async.attr,
1723 	&dev_attr_events_poll_msecs.attr,
1724 	NULL,
1725 };
1726 
1727 /*
1728  * The default polling interval can be specified by the kernel
1729  * parameter block.events_dfl_poll_msecs which defaults to 0
1730  * (disable).  This can also be modified runtime by writing to
1731  * /sys/module/block/events_dfl_poll_msecs.
1732  */
1733 static int disk_events_set_dfl_poll_msecs(const char *val,
1734 					  const struct kernel_param *kp)
1735 {
1736 	struct disk_events *ev;
1737 	int ret;
1738 
1739 	ret = param_set_ulong(val, kp);
1740 	if (ret < 0)
1741 		return ret;
1742 
1743 	mutex_lock(&disk_events_mutex);
1744 
1745 	list_for_each_entry(ev, &disk_events, node)
1746 		disk_flush_events(ev->disk, 0);
1747 
1748 	mutex_unlock(&disk_events_mutex);
1749 
1750 	return 0;
1751 }
1752 
1753 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1754 	.set	= disk_events_set_dfl_poll_msecs,
1755 	.get	= param_get_ulong,
1756 };
1757 
1758 #undef MODULE_PARAM_PREFIX
1759 #define MODULE_PARAM_PREFIX	"block."
1760 
1761 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1762 		&disk_events_dfl_poll_msecs, 0644);
1763 
1764 /*
1765  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1766  */
1767 static void disk_alloc_events(struct gendisk *disk)
1768 {
1769 	struct disk_events *ev;
1770 
1771 	if (!disk->fops->check_events)
1772 		return;
1773 
1774 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1775 	if (!ev) {
1776 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1777 		return;
1778 	}
1779 
1780 	INIT_LIST_HEAD(&ev->node);
1781 	ev->disk = disk;
1782 	spin_lock_init(&ev->lock);
1783 	mutex_init(&ev->block_mutex);
1784 	ev->block = 1;
1785 	ev->poll_msecs = -1;
1786 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1787 
1788 	disk->ev = ev;
1789 }
1790 
1791 static void disk_add_events(struct gendisk *disk)
1792 {
1793 	if (!disk->ev)
1794 		return;
1795 
1796 	/* FIXME: error handling */
1797 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1798 		pr_warn("%s: failed to create sysfs files for events\n",
1799 			disk->disk_name);
1800 
1801 	mutex_lock(&disk_events_mutex);
1802 	list_add_tail(&disk->ev->node, &disk_events);
1803 	mutex_unlock(&disk_events_mutex);
1804 
1805 	/*
1806 	 * Block count is initialized to 1 and the following initial
1807 	 * unblock kicks it into action.
1808 	 */
1809 	__disk_unblock_events(disk, true);
1810 }
1811 
1812 static void disk_del_events(struct gendisk *disk)
1813 {
1814 	if (!disk->ev)
1815 		return;
1816 
1817 	disk_block_events(disk);
1818 
1819 	mutex_lock(&disk_events_mutex);
1820 	list_del_init(&disk->ev->node);
1821 	mutex_unlock(&disk_events_mutex);
1822 
1823 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1824 }
1825 
1826 static void disk_release_events(struct gendisk *disk)
1827 {
1828 	/* the block count should be 1 from disk_del_events() */
1829 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1830 	kfree(disk->ev);
1831 }
1832