1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * gendisk handling 4 */ 5 6 #include <linux/module.h> 7 #include <linux/ctype.h> 8 #include <linux/fs.h> 9 #include <linux/genhd.h> 10 #include <linux/kdev_t.h> 11 #include <linux/kernel.h> 12 #include <linux/blkdev.h> 13 #include <linux/backing-dev.h> 14 #include <linux/init.h> 15 #include <linux/spinlock.h> 16 #include <linux/proc_fs.h> 17 #include <linux/seq_file.h> 18 #include <linux/slab.h> 19 #include <linux/kmod.h> 20 #include <linux/mutex.h> 21 #include <linux/idr.h> 22 #include <linux/log2.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/badblocks.h> 25 26 #include "blk.h" 27 28 static struct kobject *block_depr; 29 30 DECLARE_RWSEM(bdev_lookup_sem); 31 32 /* for extended dynamic devt allocation, currently only one major is used */ 33 #define NR_EXT_DEVT (1 << MINORBITS) 34 static DEFINE_IDA(ext_devt_ida); 35 36 static void disk_check_events(struct disk_events *ev, 37 unsigned int *clearing_ptr); 38 static void disk_alloc_events(struct gendisk *disk); 39 static void disk_add_events(struct gendisk *disk); 40 static void disk_del_events(struct gendisk *disk); 41 static void disk_release_events(struct gendisk *disk); 42 43 void set_capacity(struct gendisk *disk, sector_t sectors) 44 { 45 struct block_device *bdev = disk->part0; 46 47 spin_lock(&bdev->bd_size_lock); 48 i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT); 49 spin_unlock(&bdev->bd_size_lock); 50 } 51 EXPORT_SYMBOL(set_capacity); 52 53 /* 54 * Set disk capacity and notify if the size is not currently zero and will not 55 * be set to zero. Returns true if a uevent was sent, otherwise false. 56 */ 57 bool set_capacity_and_notify(struct gendisk *disk, sector_t size) 58 { 59 sector_t capacity = get_capacity(disk); 60 char *envp[] = { "RESIZE=1", NULL }; 61 62 set_capacity(disk, size); 63 64 /* 65 * Only print a message and send a uevent if the gendisk is user visible 66 * and alive. This avoids spamming the log and udev when setting the 67 * initial capacity during probing. 68 */ 69 if (size == capacity || 70 (disk->flags & (GENHD_FL_UP | GENHD_FL_HIDDEN)) != GENHD_FL_UP) 71 return false; 72 73 pr_info("%s: detected capacity change from %lld to %lld\n", 74 disk->disk_name, size, capacity); 75 76 /* 77 * Historically we did not send a uevent for changes to/from an empty 78 * device. 79 */ 80 if (!capacity || !size) 81 return false; 82 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 83 return true; 84 } 85 EXPORT_SYMBOL_GPL(set_capacity_and_notify); 86 87 /* 88 * Format the device name of the indicated disk into the supplied buffer and 89 * return a pointer to that same buffer for convenience. 90 */ 91 char *disk_name(struct gendisk *hd, int partno, char *buf) 92 { 93 if (!partno) 94 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name); 95 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1])) 96 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno); 97 else 98 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno); 99 100 return buf; 101 } 102 103 const char *bdevname(struct block_device *bdev, char *buf) 104 { 105 return disk_name(bdev->bd_disk, bdev->bd_partno, buf); 106 } 107 EXPORT_SYMBOL(bdevname); 108 109 static void part_stat_read_all(struct block_device *part, 110 struct disk_stats *stat) 111 { 112 int cpu; 113 114 memset(stat, 0, sizeof(struct disk_stats)); 115 for_each_possible_cpu(cpu) { 116 struct disk_stats *ptr = per_cpu_ptr(part->bd_stats, cpu); 117 int group; 118 119 for (group = 0; group < NR_STAT_GROUPS; group++) { 120 stat->nsecs[group] += ptr->nsecs[group]; 121 stat->sectors[group] += ptr->sectors[group]; 122 stat->ios[group] += ptr->ios[group]; 123 stat->merges[group] += ptr->merges[group]; 124 } 125 126 stat->io_ticks += ptr->io_ticks; 127 } 128 } 129 130 static unsigned int part_in_flight(struct block_device *part) 131 { 132 unsigned int inflight = 0; 133 int cpu; 134 135 for_each_possible_cpu(cpu) { 136 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) + 137 part_stat_local_read_cpu(part, in_flight[1], cpu); 138 } 139 if ((int)inflight < 0) 140 inflight = 0; 141 142 return inflight; 143 } 144 145 static void part_in_flight_rw(struct block_device *part, 146 unsigned int inflight[2]) 147 { 148 int cpu; 149 150 inflight[0] = 0; 151 inflight[1] = 0; 152 for_each_possible_cpu(cpu) { 153 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu); 154 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu); 155 } 156 if ((int)inflight[0] < 0) 157 inflight[0] = 0; 158 if ((int)inflight[1] < 0) 159 inflight[1] = 0; 160 } 161 162 struct block_device *__disk_get_part(struct gendisk *disk, int partno) 163 { 164 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl); 165 166 if (unlikely(partno < 0 || partno >= ptbl->len)) 167 return NULL; 168 return rcu_dereference(ptbl->part[partno]); 169 } 170 171 /** 172 * disk_part_iter_init - initialize partition iterator 173 * @piter: iterator to initialize 174 * @disk: disk to iterate over 175 * @flags: DISK_PITER_* flags 176 * 177 * Initialize @piter so that it iterates over partitions of @disk. 178 * 179 * CONTEXT: 180 * Don't care. 181 */ 182 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 183 unsigned int flags) 184 { 185 struct disk_part_tbl *ptbl; 186 187 rcu_read_lock(); 188 ptbl = rcu_dereference(disk->part_tbl); 189 190 piter->disk = disk; 191 piter->part = NULL; 192 193 if (flags & DISK_PITER_REVERSE) 194 piter->idx = ptbl->len - 1; 195 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 196 piter->idx = 0; 197 else 198 piter->idx = 1; 199 200 piter->flags = flags; 201 202 rcu_read_unlock(); 203 } 204 EXPORT_SYMBOL_GPL(disk_part_iter_init); 205 206 /** 207 * disk_part_iter_next - proceed iterator to the next partition and return it 208 * @piter: iterator of interest 209 * 210 * Proceed @piter to the next partition and return it. 211 * 212 * CONTEXT: 213 * Don't care. 214 */ 215 struct block_device *disk_part_iter_next(struct disk_part_iter *piter) 216 { 217 struct disk_part_tbl *ptbl; 218 int inc, end; 219 220 /* put the last partition */ 221 disk_part_iter_exit(piter); 222 223 /* get part_tbl */ 224 rcu_read_lock(); 225 ptbl = rcu_dereference(piter->disk->part_tbl); 226 227 /* determine iteration parameters */ 228 if (piter->flags & DISK_PITER_REVERSE) { 229 inc = -1; 230 if (piter->flags & (DISK_PITER_INCL_PART0 | 231 DISK_PITER_INCL_EMPTY_PART0)) 232 end = -1; 233 else 234 end = 0; 235 } else { 236 inc = 1; 237 end = ptbl->len; 238 } 239 240 /* iterate to the next partition */ 241 for (; piter->idx != end; piter->idx += inc) { 242 struct block_device *part; 243 244 part = rcu_dereference(ptbl->part[piter->idx]); 245 if (!part) 246 continue; 247 if (!bdev_nr_sectors(part) && 248 !(piter->flags & DISK_PITER_INCL_EMPTY) && 249 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 250 piter->idx == 0)) 251 continue; 252 253 piter->part = bdgrab(part); 254 if (!piter->part) 255 continue; 256 piter->idx += inc; 257 break; 258 } 259 260 rcu_read_unlock(); 261 262 return piter->part; 263 } 264 EXPORT_SYMBOL_GPL(disk_part_iter_next); 265 266 /** 267 * disk_part_iter_exit - finish up partition iteration 268 * @piter: iter of interest 269 * 270 * Called when iteration is over. Cleans up @piter. 271 * 272 * CONTEXT: 273 * Don't care. 274 */ 275 void disk_part_iter_exit(struct disk_part_iter *piter) 276 { 277 if (piter->part) 278 bdput(piter->part); 279 piter->part = NULL; 280 } 281 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 282 283 static inline int sector_in_part(struct block_device *part, sector_t sector) 284 { 285 return part->bd_start_sect <= sector && 286 sector < part->bd_start_sect + bdev_nr_sectors(part); 287 } 288 289 /** 290 * disk_map_sector_rcu - map sector to partition 291 * @disk: gendisk of interest 292 * @sector: sector to map 293 * 294 * Find out which partition @sector maps to on @disk. This is 295 * primarily used for stats accounting. 296 * 297 * CONTEXT: 298 * RCU read locked. 299 * 300 * RETURNS: 301 * Found partition on success, part0 is returned if no partition matches 302 * or the matched partition is being deleted. 303 */ 304 struct block_device *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 305 { 306 struct disk_part_tbl *ptbl; 307 struct block_device *part; 308 int i; 309 310 rcu_read_lock(); 311 ptbl = rcu_dereference(disk->part_tbl); 312 313 part = rcu_dereference(ptbl->last_lookup); 314 if (part && sector_in_part(part, sector)) 315 goto out_unlock; 316 317 for (i = 1; i < ptbl->len; i++) { 318 part = rcu_dereference(ptbl->part[i]); 319 if (part && sector_in_part(part, sector)) { 320 rcu_assign_pointer(ptbl->last_lookup, part); 321 goto out_unlock; 322 } 323 } 324 325 part = disk->part0; 326 out_unlock: 327 rcu_read_unlock(); 328 return part; 329 } 330 331 /** 332 * disk_has_partitions 333 * @disk: gendisk of interest 334 * 335 * Walk through the partition table and check if valid partition exists. 336 * 337 * CONTEXT: 338 * Don't care. 339 * 340 * RETURNS: 341 * True if the gendisk has at least one valid non-zero size partition. 342 * Otherwise false. 343 */ 344 bool disk_has_partitions(struct gendisk *disk) 345 { 346 struct disk_part_tbl *ptbl; 347 int i; 348 bool ret = false; 349 350 rcu_read_lock(); 351 ptbl = rcu_dereference(disk->part_tbl); 352 353 /* Iterate partitions skipping the whole device at index 0 */ 354 for (i = 1; i < ptbl->len; i++) { 355 if (rcu_dereference(ptbl->part[i])) { 356 ret = true; 357 break; 358 } 359 } 360 361 rcu_read_unlock(); 362 363 return ret; 364 } 365 EXPORT_SYMBOL_GPL(disk_has_partitions); 366 367 /* 368 * Can be deleted altogether. Later. 369 * 370 */ 371 #define BLKDEV_MAJOR_HASH_SIZE 255 372 static struct blk_major_name { 373 struct blk_major_name *next; 374 int major; 375 char name[16]; 376 void (*probe)(dev_t devt); 377 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 378 static DEFINE_MUTEX(major_names_lock); 379 380 /* index in the above - for now: assume no multimajor ranges */ 381 static inline int major_to_index(unsigned major) 382 { 383 return major % BLKDEV_MAJOR_HASH_SIZE; 384 } 385 386 #ifdef CONFIG_PROC_FS 387 void blkdev_show(struct seq_file *seqf, off_t offset) 388 { 389 struct blk_major_name *dp; 390 391 mutex_lock(&major_names_lock); 392 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) 393 if (dp->major == offset) 394 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 395 mutex_unlock(&major_names_lock); 396 } 397 #endif /* CONFIG_PROC_FS */ 398 399 /** 400 * __register_blkdev - register a new block device 401 * 402 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If 403 * @major = 0, try to allocate any unused major number. 404 * @name: the name of the new block device as a zero terminated string 405 * @probe: allback that is called on access to any minor number of @major 406 * 407 * The @name must be unique within the system. 408 * 409 * The return value depends on the @major input parameter: 410 * 411 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] 412 * then the function returns zero on success, or a negative error code 413 * - if any unused major number was requested with @major = 0 parameter 414 * then the return value is the allocated major number in range 415 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise 416 * 417 * See Documentation/admin-guide/devices.txt for the list of allocated 418 * major numbers. 419 * 420 * Use register_blkdev instead for any new code. 421 */ 422 int __register_blkdev(unsigned int major, const char *name, 423 void (*probe)(dev_t devt)) 424 { 425 struct blk_major_name **n, *p; 426 int index, ret = 0; 427 428 mutex_lock(&major_names_lock); 429 430 /* temporary */ 431 if (major == 0) { 432 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 433 if (major_names[index] == NULL) 434 break; 435 } 436 437 if (index == 0) { 438 printk("%s: failed to get major for %s\n", 439 __func__, name); 440 ret = -EBUSY; 441 goto out; 442 } 443 major = index; 444 ret = major; 445 } 446 447 if (major >= BLKDEV_MAJOR_MAX) { 448 pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n", 449 __func__, major, BLKDEV_MAJOR_MAX-1, name); 450 451 ret = -EINVAL; 452 goto out; 453 } 454 455 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 456 if (p == NULL) { 457 ret = -ENOMEM; 458 goto out; 459 } 460 461 p->major = major; 462 p->probe = probe; 463 strlcpy(p->name, name, sizeof(p->name)); 464 p->next = NULL; 465 index = major_to_index(major); 466 467 for (n = &major_names[index]; *n; n = &(*n)->next) { 468 if ((*n)->major == major) 469 break; 470 } 471 if (!*n) 472 *n = p; 473 else 474 ret = -EBUSY; 475 476 if (ret < 0) { 477 printk("register_blkdev: cannot get major %u for %s\n", 478 major, name); 479 kfree(p); 480 } 481 out: 482 mutex_unlock(&major_names_lock); 483 return ret; 484 } 485 EXPORT_SYMBOL(__register_blkdev); 486 487 void unregister_blkdev(unsigned int major, const char *name) 488 { 489 struct blk_major_name **n; 490 struct blk_major_name *p = NULL; 491 int index = major_to_index(major); 492 493 mutex_lock(&major_names_lock); 494 for (n = &major_names[index]; *n; n = &(*n)->next) 495 if ((*n)->major == major) 496 break; 497 if (!*n || strcmp((*n)->name, name)) { 498 WARN_ON(1); 499 } else { 500 p = *n; 501 *n = p->next; 502 } 503 mutex_unlock(&major_names_lock); 504 kfree(p); 505 } 506 507 EXPORT_SYMBOL(unregister_blkdev); 508 509 /** 510 * blk_mangle_minor - scatter minor numbers apart 511 * @minor: minor number to mangle 512 * 513 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 514 * is enabled. Mangling twice gives the original value. 515 * 516 * RETURNS: 517 * Mangled value. 518 * 519 * CONTEXT: 520 * Don't care. 521 */ 522 static int blk_mangle_minor(int minor) 523 { 524 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 525 int i; 526 527 for (i = 0; i < MINORBITS / 2; i++) { 528 int low = minor & (1 << i); 529 int high = minor & (1 << (MINORBITS - 1 - i)); 530 int distance = MINORBITS - 1 - 2 * i; 531 532 minor ^= low | high; /* clear both bits */ 533 low <<= distance; /* swap the positions */ 534 high >>= distance; 535 minor |= low | high; /* and set */ 536 } 537 #endif 538 return minor; 539 } 540 541 /** 542 * blk_alloc_devt - allocate a dev_t for a block device 543 * @bdev: block device to allocate dev_t for 544 * @devt: out parameter for resulting dev_t 545 * 546 * Allocate a dev_t for block device. 547 * 548 * RETURNS: 549 * 0 on success, allocated dev_t is returned in *@devt. -errno on 550 * failure. 551 * 552 * CONTEXT: 553 * Might sleep. 554 */ 555 int blk_alloc_devt(struct block_device *bdev, dev_t *devt) 556 { 557 struct gendisk *disk = bdev->bd_disk; 558 int idx; 559 560 /* in consecutive minor range? */ 561 if (bdev->bd_partno < disk->minors) { 562 *devt = MKDEV(disk->major, disk->first_minor + bdev->bd_partno); 563 return 0; 564 } 565 566 idx = ida_alloc_range(&ext_devt_ida, 0, NR_EXT_DEVT, GFP_KERNEL); 567 if (idx < 0) 568 return idx == -ENOSPC ? -EBUSY : idx; 569 570 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 571 return 0; 572 } 573 574 /** 575 * blk_free_devt - free a dev_t 576 * @devt: dev_t to free 577 * 578 * Free @devt which was allocated using blk_alloc_devt(). 579 * 580 * CONTEXT: 581 * Might sleep. 582 */ 583 void blk_free_devt(dev_t devt) 584 { 585 if (MAJOR(devt) == BLOCK_EXT_MAJOR) 586 ida_free(&ext_devt_ida, blk_mangle_minor(MINOR(devt))); 587 } 588 589 static char *bdevt_str(dev_t devt, char *buf) 590 { 591 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 592 char tbuf[BDEVT_SIZE]; 593 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 594 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 595 } else 596 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 597 598 return buf; 599 } 600 601 static void disk_scan_partitions(struct gendisk *disk) 602 { 603 struct block_device *bdev; 604 605 if (!get_capacity(disk) || !disk_part_scan_enabled(disk)) 606 return; 607 608 set_bit(GD_NEED_PART_SCAN, &disk->state); 609 bdev = blkdev_get_by_dev(disk_devt(disk), FMODE_READ, NULL); 610 if (!IS_ERR(bdev)) 611 blkdev_put(bdev, FMODE_READ); 612 } 613 614 static void register_disk(struct device *parent, struct gendisk *disk, 615 const struct attribute_group **groups) 616 { 617 struct device *ddev = disk_to_dev(disk); 618 struct disk_part_iter piter; 619 struct block_device *part; 620 int err; 621 622 ddev->parent = parent; 623 624 dev_set_name(ddev, "%s", disk->disk_name); 625 626 /* delay uevents, until we scanned partition table */ 627 dev_set_uevent_suppress(ddev, 1); 628 629 if (groups) { 630 WARN_ON(ddev->groups); 631 ddev->groups = groups; 632 } 633 if (device_add(ddev)) 634 return; 635 if (!sysfs_deprecated) { 636 err = sysfs_create_link(block_depr, &ddev->kobj, 637 kobject_name(&ddev->kobj)); 638 if (err) { 639 device_del(ddev); 640 return; 641 } 642 } 643 644 /* 645 * avoid probable deadlock caused by allocating memory with 646 * GFP_KERNEL in runtime_resume callback of its all ancestor 647 * devices 648 */ 649 pm_runtime_set_memalloc_noio(ddev, true); 650 651 disk->part0->bd_holder_dir = 652 kobject_create_and_add("holders", &ddev->kobj); 653 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 654 655 if (disk->flags & GENHD_FL_HIDDEN) { 656 dev_set_uevent_suppress(ddev, 0); 657 return; 658 } 659 660 disk_scan_partitions(disk); 661 662 /* announce disk after possible partitions are created */ 663 dev_set_uevent_suppress(ddev, 0); 664 kobject_uevent(&ddev->kobj, KOBJ_ADD); 665 666 /* announce possible partitions */ 667 disk_part_iter_init(&piter, disk, 0); 668 while ((part = disk_part_iter_next(&piter))) 669 kobject_uevent(bdev_kobj(part), KOBJ_ADD); 670 disk_part_iter_exit(&piter); 671 672 if (disk->queue->backing_dev_info->dev) { 673 err = sysfs_create_link(&ddev->kobj, 674 &disk->queue->backing_dev_info->dev->kobj, 675 "bdi"); 676 WARN_ON(err); 677 } 678 } 679 680 /** 681 * __device_add_disk - add disk information to kernel list 682 * @parent: parent device for the disk 683 * @disk: per-device partitioning information 684 * @groups: Additional per-device sysfs groups 685 * @register_queue: register the queue if set to true 686 * 687 * This function registers the partitioning information in @disk 688 * with the kernel. 689 * 690 * FIXME: error handling 691 */ 692 static void __device_add_disk(struct device *parent, struct gendisk *disk, 693 const struct attribute_group **groups, 694 bool register_queue) 695 { 696 dev_t devt; 697 int retval; 698 699 /* 700 * The disk queue should now be all set with enough information about 701 * the device for the elevator code to pick an adequate default 702 * elevator if one is needed, that is, for devices requesting queue 703 * registration. 704 */ 705 if (register_queue) 706 elevator_init_mq(disk->queue); 707 708 /* minors == 0 indicates to use ext devt from part0 and should 709 * be accompanied with EXT_DEVT flag. Make sure all 710 * parameters make sense. 711 */ 712 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 713 WARN_ON(!disk->minors && 714 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN))); 715 716 disk->flags |= GENHD_FL_UP; 717 718 retval = blk_alloc_devt(disk->part0, &devt); 719 if (retval) { 720 WARN_ON(1); 721 return; 722 } 723 disk->major = MAJOR(devt); 724 disk->first_minor = MINOR(devt); 725 726 disk_alloc_events(disk); 727 728 if (disk->flags & GENHD_FL_HIDDEN) { 729 /* 730 * Don't let hidden disks show up in /proc/partitions, 731 * and don't bother scanning for partitions either. 732 */ 733 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 734 disk->flags |= GENHD_FL_NO_PART_SCAN; 735 } else { 736 struct backing_dev_info *bdi = disk->queue->backing_dev_info; 737 struct device *dev = disk_to_dev(disk); 738 int ret; 739 740 /* Register BDI before referencing it from bdev */ 741 dev->devt = devt; 742 ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt)); 743 WARN_ON(ret); 744 bdi_set_owner(bdi, dev); 745 bdev_add(disk->part0, devt); 746 } 747 register_disk(parent, disk, groups); 748 if (register_queue) 749 blk_register_queue(disk); 750 751 /* 752 * Take an extra ref on queue which will be put on disk_release() 753 * so that it sticks around as long as @disk is there. 754 */ 755 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 756 757 disk_add_events(disk); 758 blk_integrity_add(disk); 759 } 760 761 void device_add_disk(struct device *parent, struct gendisk *disk, 762 const struct attribute_group **groups) 763 764 { 765 __device_add_disk(parent, disk, groups, true); 766 } 767 EXPORT_SYMBOL(device_add_disk); 768 769 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk) 770 { 771 __device_add_disk(parent, disk, NULL, false); 772 } 773 EXPORT_SYMBOL(device_add_disk_no_queue_reg); 774 775 static void invalidate_partition(struct block_device *bdev) 776 { 777 fsync_bdev(bdev); 778 __invalidate_device(bdev, true); 779 780 /* 781 * Unhash the bdev inode for this device so that it can't be looked 782 * up any more even if openers still hold references to it. 783 */ 784 remove_inode_hash(bdev->bd_inode); 785 } 786 787 /** 788 * del_gendisk - remove the gendisk 789 * @disk: the struct gendisk to remove 790 * 791 * Removes the gendisk and all its associated resources. This deletes the 792 * partitions associated with the gendisk, and unregisters the associated 793 * request_queue. 794 * 795 * This is the counter to the respective __device_add_disk() call. 796 * 797 * The final removal of the struct gendisk happens when its refcount reaches 0 798 * with put_disk(), which should be called after del_gendisk(), if 799 * __device_add_disk() was used. 800 * 801 * Drivers exist which depend on the release of the gendisk to be synchronous, 802 * it should not be deferred. 803 * 804 * Context: can sleep 805 */ 806 void del_gendisk(struct gendisk *disk) 807 { 808 struct disk_part_iter piter; 809 struct block_device *part; 810 811 might_sleep(); 812 813 if (WARN_ON_ONCE(!disk->queue)) 814 return; 815 816 blk_integrity_del(disk); 817 disk_del_events(disk); 818 819 /* 820 * Block lookups of the disk until all bdevs are unhashed and the 821 * disk is marked as dead (GENHD_FL_UP cleared). 822 */ 823 down_write(&bdev_lookup_sem); 824 825 /* invalidate stuff */ 826 disk_part_iter_init(&piter, disk, 827 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 828 while ((part = disk_part_iter_next(&piter))) { 829 invalidate_partition(part); 830 delete_partition(part); 831 } 832 disk_part_iter_exit(&piter); 833 834 invalidate_partition(disk->part0); 835 set_capacity(disk, 0); 836 disk->flags &= ~GENHD_FL_UP; 837 up_write(&bdev_lookup_sem); 838 839 if (!(disk->flags & GENHD_FL_HIDDEN)) { 840 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 841 842 /* 843 * Unregister bdi before releasing device numbers (as they can 844 * get reused and we'd get clashes in sysfs). 845 */ 846 bdi_unregister(disk->queue->backing_dev_info); 847 } 848 849 blk_unregister_queue(disk); 850 851 kobject_put(disk->part0->bd_holder_dir); 852 kobject_put(disk->slave_dir); 853 854 part_stat_set_all(disk->part0, 0); 855 disk->part0->bd_stamp = 0; 856 if (!sysfs_deprecated) 857 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 858 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 859 device_del(disk_to_dev(disk)); 860 } 861 EXPORT_SYMBOL(del_gendisk); 862 863 /* sysfs access to bad-blocks list. */ 864 static ssize_t disk_badblocks_show(struct device *dev, 865 struct device_attribute *attr, 866 char *page) 867 { 868 struct gendisk *disk = dev_to_disk(dev); 869 870 if (!disk->bb) 871 return sprintf(page, "\n"); 872 873 return badblocks_show(disk->bb, page, 0); 874 } 875 876 static ssize_t disk_badblocks_store(struct device *dev, 877 struct device_attribute *attr, 878 const char *page, size_t len) 879 { 880 struct gendisk *disk = dev_to_disk(dev); 881 882 if (!disk->bb) 883 return -ENXIO; 884 885 return badblocks_store(disk->bb, page, len, 0); 886 } 887 888 void blk_request_module(dev_t devt) 889 { 890 unsigned int major = MAJOR(devt); 891 struct blk_major_name **n; 892 893 mutex_lock(&major_names_lock); 894 for (n = &major_names[major_to_index(major)]; *n; n = &(*n)->next) { 895 if ((*n)->major == major && (*n)->probe) { 896 (*n)->probe(devt); 897 mutex_unlock(&major_names_lock); 898 return; 899 } 900 } 901 mutex_unlock(&major_names_lock); 902 903 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 904 /* Make old-style 2.4 aliases work */ 905 request_module("block-major-%d", MAJOR(devt)); 906 } 907 908 /** 909 * bdget_disk - do bdget() by gendisk and partition number 910 * @disk: gendisk of interest 911 * @partno: partition number 912 * 913 * Find partition @partno from @disk, do bdget() on it. 914 * 915 * CONTEXT: 916 * Don't care. 917 * 918 * RETURNS: 919 * Resulting block_device on success, NULL on failure. 920 */ 921 struct block_device *bdget_disk(struct gendisk *disk, int partno) 922 { 923 struct block_device *bdev = NULL; 924 925 rcu_read_lock(); 926 bdev = __disk_get_part(disk, partno); 927 if (bdev && !bdgrab(bdev)) 928 bdev = NULL; 929 rcu_read_unlock(); 930 931 return bdev; 932 } 933 934 /* 935 * print a full list of all partitions - intended for places where the root 936 * filesystem can't be mounted and thus to give the victim some idea of what 937 * went wrong 938 */ 939 void __init printk_all_partitions(void) 940 { 941 struct class_dev_iter iter; 942 struct device *dev; 943 944 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 945 while ((dev = class_dev_iter_next(&iter))) { 946 struct gendisk *disk = dev_to_disk(dev); 947 struct disk_part_iter piter; 948 struct block_device *part; 949 char name_buf[BDEVNAME_SIZE]; 950 char devt_buf[BDEVT_SIZE]; 951 952 /* 953 * Don't show empty devices or things that have been 954 * suppressed 955 */ 956 if (get_capacity(disk) == 0 || 957 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 958 continue; 959 960 /* 961 * Note, unlike /proc/partitions, I am showing the 962 * numbers in hex - the same format as the root= 963 * option takes. 964 */ 965 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 966 while ((part = disk_part_iter_next(&piter))) { 967 bool is_part0 = part == disk->part0; 968 969 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 970 bdevt_str(part->bd_dev, devt_buf), 971 bdev_nr_sectors(part) >> 1, 972 disk_name(disk, part->bd_partno, name_buf), 973 part->bd_meta_info ? 974 part->bd_meta_info->uuid : ""); 975 if (is_part0) { 976 if (dev->parent && dev->parent->driver) 977 printk(" driver: %s\n", 978 dev->parent->driver->name); 979 else 980 printk(" (driver?)\n"); 981 } else 982 printk("\n"); 983 } 984 disk_part_iter_exit(&piter); 985 } 986 class_dev_iter_exit(&iter); 987 } 988 989 #ifdef CONFIG_PROC_FS 990 /* iterator */ 991 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 992 { 993 loff_t skip = *pos; 994 struct class_dev_iter *iter; 995 struct device *dev; 996 997 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 998 if (!iter) 999 return ERR_PTR(-ENOMEM); 1000 1001 seqf->private = iter; 1002 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 1003 do { 1004 dev = class_dev_iter_next(iter); 1005 if (!dev) 1006 return NULL; 1007 } while (skip--); 1008 1009 return dev_to_disk(dev); 1010 } 1011 1012 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 1013 { 1014 struct device *dev; 1015 1016 (*pos)++; 1017 dev = class_dev_iter_next(seqf->private); 1018 if (dev) 1019 return dev_to_disk(dev); 1020 1021 return NULL; 1022 } 1023 1024 static void disk_seqf_stop(struct seq_file *seqf, void *v) 1025 { 1026 struct class_dev_iter *iter = seqf->private; 1027 1028 /* stop is called even after start failed :-( */ 1029 if (iter) { 1030 class_dev_iter_exit(iter); 1031 kfree(iter); 1032 seqf->private = NULL; 1033 } 1034 } 1035 1036 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 1037 { 1038 void *p; 1039 1040 p = disk_seqf_start(seqf, pos); 1041 if (!IS_ERR_OR_NULL(p) && !*pos) 1042 seq_puts(seqf, "major minor #blocks name\n\n"); 1043 return p; 1044 } 1045 1046 static int show_partition(struct seq_file *seqf, void *v) 1047 { 1048 struct gendisk *sgp = v; 1049 struct disk_part_iter piter; 1050 struct block_device *part; 1051 char buf[BDEVNAME_SIZE]; 1052 1053 /* Don't show non-partitionable removeable devices or empty devices */ 1054 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 1055 (sgp->flags & GENHD_FL_REMOVABLE))) 1056 return 0; 1057 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 1058 return 0; 1059 1060 /* show the full disk and all non-0 size partitions of it */ 1061 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 1062 while ((part = disk_part_iter_next(&piter))) 1063 seq_printf(seqf, "%4d %7d %10llu %s\n", 1064 MAJOR(part->bd_dev), MINOR(part->bd_dev), 1065 bdev_nr_sectors(part) >> 1, 1066 disk_name(sgp, part->bd_partno, buf)); 1067 disk_part_iter_exit(&piter); 1068 1069 return 0; 1070 } 1071 1072 static const struct seq_operations partitions_op = { 1073 .start = show_partition_start, 1074 .next = disk_seqf_next, 1075 .stop = disk_seqf_stop, 1076 .show = show_partition 1077 }; 1078 #endif 1079 1080 static int __init genhd_device_init(void) 1081 { 1082 int error; 1083 1084 block_class.dev_kobj = sysfs_dev_block_kobj; 1085 error = class_register(&block_class); 1086 if (unlikely(error)) 1087 return error; 1088 blk_dev_init(); 1089 1090 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 1091 1092 /* create top-level block dir */ 1093 if (!sysfs_deprecated) 1094 block_depr = kobject_create_and_add("block", NULL); 1095 return 0; 1096 } 1097 1098 subsys_initcall(genhd_device_init); 1099 1100 static ssize_t disk_range_show(struct device *dev, 1101 struct device_attribute *attr, char *buf) 1102 { 1103 struct gendisk *disk = dev_to_disk(dev); 1104 1105 return sprintf(buf, "%d\n", disk->minors); 1106 } 1107 1108 static ssize_t disk_ext_range_show(struct device *dev, 1109 struct device_attribute *attr, char *buf) 1110 { 1111 struct gendisk *disk = dev_to_disk(dev); 1112 1113 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1114 } 1115 1116 static ssize_t disk_removable_show(struct device *dev, 1117 struct device_attribute *attr, char *buf) 1118 { 1119 struct gendisk *disk = dev_to_disk(dev); 1120 1121 return sprintf(buf, "%d\n", 1122 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1123 } 1124 1125 static ssize_t disk_hidden_show(struct device *dev, 1126 struct device_attribute *attr, char *buf) 1127 { 1128 struct gendisk *disk = dev_to_disk(dev); 1129 1130 return sprintf(buf, "%d\n", 1131 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); 1132 } 1133 1134 static ssize_t disk_ro_show(struct device *dev, 1135 struct device_attribute *attr, char *buf) 1136 { 1137 struct gendisk *disk = dev_to_disk(dev); 1138 1139 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1140 } 1141 1142 ssize_t part_size_show(struct device *dev, 1143 struct device_attribute *attr, char *buf) 1144 { 1145 return sprintf(buf, "%llu\n", bdev_nr_sectors(dev_to_bdev(dev))); 1146 } 1147 1148 ssize_t part_stat_show(struct device *dev, 1149 struct device_attribute *attr, char *buf) 1150 { 1151 struct block_device *bdev = dev_to_bdev(dev); 1152 struct request_queue *q = bdev->bd_disk->queue; 1153 struct disk_stats stat; 1154 unsigned int inflight; 1155 1156 part_stat_read_all(bdev, &stat); 1157 if (queue_is_mq(q)) 1158 inflight = blk_mq_in_flight(q, bdev); 1159 else 1160 inflight = part_in_flight(bdev); 1161 1162 return sprintf(buf, 1163 "%8lu %8lu %8llu %8u " 1164 "%8lu %8lu %8llu %8u " 1165 "%8u %8u %8u " 1166 "%8lu %8lu %8llu %8u " 1167 "%8lu %8u" 1168 "\n", 1169 stat.ios[STAT_READ], 1170 stat.merges[STAT_READ], 1171 (unsigned long long)stat.sectors[STAT_READ], 1172 (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC), 1173 stat.ios[STAT_WRITE], 1174 stat.merges[STAT_WRITE], 1175 (unsigned long long)stat.sectors[STAT_WRITE], 1176 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC), 1177 inflight, 1178 jiffies_to_msecs(stat.io_ticks), 1179 (unsigned int)div_u64(stat.nsecs[STAT_READ] + 1180 stat.nsecs[STAT_WRITE] + 1181 stat.nsecs[STAT_DISCARD] + 1182 stat.nsecs[STAT_FLUSH], 1183 NSEC_PER_MSEC), 1184 stat.ios[STAT_DISCARD], 1185 stat.merges[STAT_DISCARD], 1186 (unsigned long long)stat.sectors[STAT_DISCARD], 1187 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC), 1188 stat.ios[STAT_FLUSH], 1189 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC)); 1190 } 1191 1192 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 1193 char *buf) 1194 { 1195 struct block_device *bdev = dev_to_bdev(dev); 1196 struct request_queue *q = bdev->bd_disk->queue; 1197 unsigned int inflight[2]; 1198 1199 if (queue_is_mq(q)) 1200 blk_mq_in_flight_rw(q, bdev, inflight); 1201 else 1202 part_in_flight_rw(bdev, inflight); 1203 1204 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]); 1205 } 1206 1207 static ssize_t disk_capability_show(struct device *dev, 1208 struct device_attribute *attr, char *buf) 1209 { 1210 struct gendisk *disk = dev_to_disk(dev); 1211 1212 return sprintf(buf, "%x\n", disk->flags); 1213 } 1214 1215 static ssize_t disk_alignment_offset_show(struct device *dev, 1216 struct device_attribute *attr, 1217 char *buf) 1218 { 1219 struct gendisk *disk = dev_to_disk(dev); 1220 1221 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1222 } 1223 1224 static ssize_t disk_discard_alignment_show(struct device *dev, 1225 struct device_attribute *attr, 1226 char *buf) 1227 { 1228 struct gendisk *disk = dev_to_disk(dev); 1229 1230 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1231 } 1232 1233 static DEVICE_ATTR(range, 0444, disk_range_show, NULL); 1234 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL); 1235 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL); 1236 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL); 1237 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL); 1238 static DEVICE_ATTR(size, 0444, part_size_show, NULL); 1239 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL); 1240 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL); 1241 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL); 1242 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); 1243 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); 1244 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store); 1245 1246 #ifdef CONFIG_FAIL_MAKE_REQUEST 1247 ssize_t part_fail_show(struct device *dev, 1248 struct device_attribute *attr, char *buf) 1249 { 1250 return sprintf(buf, "%d\n", dev_to_bdev(dev)->bd_make_it_fail); 1251 } 1252 1253 ssize_t part_fail_store(struct device *dev, 1254 struct device_attribute *attr, 1255 const char *buf, size_t count) 1256 { 1257 int i; 1258 1259 if (count > 0 && sscanf(buf, "%d", &i) > 0) 1260 dev_to_bdev(dev)->bd_make_it_fail = i; 1261 1262 return count; 1263 } 1264 1265 static struct device_attribute dev_attr_fail = 1266 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); 1267 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1268 1269 #ifdef CONFIG_FAIL_IO_TIMEOUT 1270 static struct device_attribute dev_attr_fail_timeout = 1271 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store); 1272 #endif 1273 1274 static struct attribute *disk_attrs[] = { 1275 &dev_attr_range.attr, 1276 &dev_attr_ext_range.attr, 1277 &dev_attr_removable.attr, 1278 &dev_attr_hidden.attr, 1279 &dev_attr_ro.attr, 1280 &dev_attr_size.attr, 1281 &dev_attr_alignment_offset.attr, 1282 &dev_attr_discard_alignment.attr, 1283 &dev_attr_capability.attr, 1284 &dev_attr_stat.attr, 1285 &dev_attr_inflight.attr, 1286 &dev_attr_badblocks.attr, 1287 #ifdef CONFIG_FAIL_MAKE_REQUEST 1288 &dev_attr_fail.attr, 1289 #endif 1290 #ifdef CONFIG_FAIL_IO_TIMEOUT 1291 &dev_attr_fail_timeout.attr, 1292 #endif 1293 NULL 1294 }; 1295 1296 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1297 { 1298 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1299 struct gendisk *disk = dev_to_disk(dev); 1300 1301 if (a == &dev_attr_badblocks.attr && !disk->bb) 1302 return 0; 1303 return a->mode; 1304 } 1305 1306 static struct attribute_group disk_attr_group = { 1307 .attrs = disk_attrs, 1308 .is_visible = disk_visible, 1309 }; 1310 1311 static const struct attribute_group *disk_attr_groups[] = { 1312 &disk_attr_group, 1313 NULL 1314 }; 1315 1316 /** 1317 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1318 * @disk: disk to replace part_tbl for 1319 * @new_ptbl: new part_tbl to install 1320 * 1321 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1322 * original ptbl is freed using RCU callback. 1323 * 1324 * LOCKING: 1325 * Matching bd_mutex locked or the caller is the only user of @disk. 1326 */ 1327 static void disk_replace_part_tbl(struct gendisk *disk, 1328 struct disk_part_tbl *new_ptbl) 1329 { 1330 struct disk_part_tbl *old_ptbl = 1331 rcu_dereference_protected(disk->part_tbl, 1); 1332 1333 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1334 1335 if (old_ptbl) { 1336 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1337 kfree_rcu(old_ptbl, rcu_head); 1338 } 1339 } 1340 1341 /** 1342 * disk_expand_part_tbl - expand disk->part_tbl 1343 * @disk: disk to expand part_tbl for 1344 * @partno: expand such that this partno can fit in 1345 * 1346 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1347 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1348 * 1349 * LOCKING: 1350 * Matching bd_mutex locked or the caller is the only user of @disk. 1351 * Might sleep. 1352 * 1353 * RETURNS: 1354 * 0 on success, -errno on failure. 1355 */ 1356 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1357 { 1358 struct disk_part_tbl *old_ptbl = 1359 rcu_dereference_protected(disk->part_tbl, 1); 1360 struct disk_part_tbl *new_ptbl; 1361 int len = old_ptbl ? old_ptbl->len : 0; 1362 int i, target; 1363 1364 /* 1365 * check for int overflow, since we can get here from blkpg_ioctl() 1366 * with a user passed 'partno'. 1367 */ 1368 target = partno + 1; 1369 if (target < 0) 1370 return -EINVAL; 1371 1372 /* disk_max_parts() is zero during initialization, ignore if so */ 1373 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1374 return -EINVAL; 1375 1376 if (target <= len) 1377 return 0; 1378 1379 new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL, 1380 disk->node_id); 1381 if (!new_ptbl) 1382 return -ENOMEM; 1383 1384 new_ptbl->len = target; 1385 1386 for (i = 0; i < len; i++) 1387 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1388 1389 disk_replace_part_tbl(disk, new_ptbl); 1390 return 0; 1391 } 1392 1393 /** 1394 * disk_release - releases all allocated resources of the gendisk 1395 * @dev: the device representing this disk 1396 * 1397 * This function releases all allocated resources of the gendisk. 1398 * 1399 * Drivers which used __device_add_disk() have a gendisk with a request_queue 1400 * assigned. Since the request_queue sits on top of the gendisk for these 1401 * drivers we also call blk_put_queue() for them, and we expect the 1402 * request_queue refcount to reach 0 at this point, and so the request_queue 1403 * will also be freed prior to the disk. 1404 * 1405 * Context: can sleep 1406 */ 1407 static void disk_release(struct device *dev) 1408 { 1409 struct gendisk *disk = dev_to_disk(dev); 1410 1411 might_sleep(); 1412 1413 blk_free_devt(dev->devt); 1414 disk_release_events(disk); 1415 kfree(disk->random); 1416 disk_replace_part_tbl(disk, NULL); 1417 bdput(disk->part0); 1418 if (disk->queue) 1419 blk_put_queue(disk->queue); 1420 kfree(disk); 1421 } 1422 struct class block_class = { 1423 .name = "block", 1424 }; 1425 1426 static char *block_devnode(struct device *dev, umode_t *mode, 1427 kuid_t *uid, kgid_t *gid) 1428 { 1429 struct gendisk *disk = dev_to_disk(dev); 1430 1431 if (disk->fops->devnode) 1432 return disk->fops->devnode(disk, mode); 1433 return NULL; 1434 } 1435 1436 const struct device_type disk_type = { 1437 .name = "disk", 1438 .groups = disk_attr_groups, 1439 .release = disk_release, 1440 .devnode = block_devnode, 1441 }; 1442 1443 #ifdef CONFIG_PROC_FS 1444 /* 1445 * aggregate disk stat collector. Uses the same stats that the sysfs 1446 * entries do, above, but makes them available through one seq_file. 1447 * 1448 * The output looks suspiciously like /proc/partitions with a bunch of 1449 * extra fields. 1450 */ 1451 static int diskstats_show(struct seq_file *seqf, void *v) 1452 { 1453 struct gendisk *gp = v; 1454 struct disk_part_iter piter; 1455 struct block_device *hd; 1456 char buf[BDEVNAME_SIZE]; 1457 unsigned int inflight; 1458 struct disk_stats stat; 1459 1460 /* 1461 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1462 seq_puts(seqf, "major minor name" 1463 " rio rmerge rsect ruse wio wmerge " 1464 "wsect wuse running use aveq" 1465 "\n\n"); 1466 */ 1467 1468 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1469 while ((hd = disk_part_iter_next(&piter))) { 1470 part_stat_read_all(hd, &stat); 1471 if (queue_is_mq(gp->queue)) 1472 inflight = blk_mq_in_flight(gp->queue, hd); 1473 else 1474 inflight = part_in_flight(hd); 1475 1476 seq_printf(seqf, "%4d %7d %s " 1477 "%lu %lu %lu %u " 1478 "%lu %lu %lu %u " 1479 "%u %u %u " 1480 "%lu %lu %lu %u " 1481 "%lu %u" 1482 "\n", 1483 MAJOR(hd->bd_dev), MINOR(hd->bd_dev), 1484 disk_name(gp, hd->bd_partno, buf), 1485 stat.ios[STAT_READ], 1486 stat.merges[STAT_READ], 1487 stat.sectors[STAT_READ], 1488 (unsigned int)div_u64(stat.nsecs[STAT_READ], 1489 NSEC_PER_MSEC), 1490 stat.ios[STAT_WRITE], 1491 stat.merges[STAT_WRITE], 1492 stat.sectors[STAT_WRITE], 1493 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], 1494 NSEC_PER_MSEC), 1495 inflight, 1496 jiffies_to_msecs(stat.io_ticks), 1497 (unsigned int)div_u64(stat.nsecs[STAT_READ] + 1498 stat.nsecs[STAT_WRITE] + 1499 stat.nsecs[STAT_DISCARD] + 1500 stat.nsecs[STAT_FLUSH], 1501 NSEC_PER_MSEC), 1502 stat.ios[STAT_DISCARD], 1503 stat.merges[STAT_DISCARD], 1504 stat.sectors[STAT_DISCARD], 1505 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], 1506 NSEC_PER_MSEC), 1507 stat.ios[STAT_FLUSH], 1508 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], 1509 NSEC_PER_MSEC) 1510 ); 1511 } 1512 disk_part_iter_exit(&piter); 1513 1514 return 0; 1515 } 1516 1517 static const struct seq_operations diskstats_op = { 1518 .start = disk_seqf_start, 1519 .next = disk_seqf_next, 1520 .stop = disk_seqf_stop, 1521 .show = diskstats_show 1522 }; 1523 1524 static int __init proc_genhd_init(void) 1525 { 1526 proc_create_seq("diskstats", 0, NULL, &diskstats_op); 1527 proc_create_seq("partitions", 0, NULL, &partitions_op); 1528 return 0; 1529 } 1530 module_init(proc_genhd_init); 1531 #endif /* CONFIG_PROC_FS */ 1532 1533 dev_t blk_lookup_devt(const char *name, int partno) 1534 { 1535 dev_t devt = MKDEV(0, 0); 1536 struct class_dev_iter iter; 1537 struct device *dev; 1538 1539 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1540 while ((dev = class_dev_iter_next(&iter))) { 1541 struct gendisk *disk = dev_to_disk(dev); 1542 struct block_device *part; 1543 1544 if (strcmp(dev_name(dev), name)) 1545 continue; 1546 1547 if (partno < disk->minors) { 1548 /* We need to return the right devno, even 1549 * if the partition doesn't exist yet. 1550 */ 1551 devt = MKDEV(MAJOR(dev->devt), 1552 MINOR(dev->devt) + partno); 1553 break; 1554 } 1555 part = bdget_disk(disk, partno); 1556 if (part) { 1557 devt = part->bd_dev; 1558 bdput(part); 1559 break; 1560 } 1561 } 1562 class_dev_iter_exit(&iter); 1563 return devt; 1564 } 1565 1566 struct gendisk *__alloc_disk_node(int minors, int node_id) 1567 { 1568 struct gendisk *disk; 1569 struct disk_part_tbl *ptbl; 1570 1571 if (minors > DISK_MAX_PARTS) { 1572 printk(KERN_ERR 1573 "block: can't allocate more than %d partitions\n", 1574 DISK_MAX_PARTS); 1575 minors = DISK_MAX_PARTS; 1576 } 1577 1578 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1579 if (!disk) 1580 return NULL; 1581 1582 disk->part0 = bdev_alloc(disk, 0); 1583 if (!disk->part0) 1584 goto out_free_disk; 1585 1586 disk->node_id = node_id; 1587 if (disk_expand_part_tbl(disk, 0)) 1588 goto out_bdput; 1589 1590 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 1591 rcu_assign_pointer(ptbl->part[0], disk->part0); 1592 1593 disk->minors = minors; 1594 rand_initialize_disk(disk); 1595 disk_to_dev(disk)->class = &block_class; 1596 disk_to_dev(disk)->type = &disk_type; 1597 device_initialize(disk_to_dev(disk)); 1598 return disk; 1599 1600 out_bdput: 1601 bdput(disk->part0); 1602 out_free_disk: 1603 kfree(disk); 1604 return NULL; 1605 } 1606 EXPORT_SYMBOL(__alloc_disk_node); 1607 1608 /** 1609 * put_disk - decrements the gendisk refcount 1610 * @disk: the struct gendisk to decrement the refcount for 1611 * 1612 * This decrements the refcount for the struct gendisk. When this reaches 0 1613 * we'll have disk_release() called. 1614 * 1615 * Context: Any context, but the last reference must not be dropped from 1616 * atomic context. 1617 */ 1618 void put_disk(struct gendisk *disk) 1619 { 1620 if (disk) 1621 put_device(disk_to_dev(disk)); 1622 } 1623 EXPORT_SYMBOL(put_disk); 1624 1625 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1626 { 1627 char event[] = "DISK_RO=1"; 1628 char *envp[] = { event, NULL }; 1629 1630 if (!ro) 1631 event[8] = '0'; 1632 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1633 } 1634 1635 void set_disk_ro(struct gendisk *disk, int flag) 1636 { 1637 struct disk_part_iter piter; 1638 struct block_device *part; 1639 1640 if (disk->part0->bd_read_only != flag) { 1641 set_disk_ro_uevent(disk, flag); 1642 disk->part0->bd_read_only = flag; 1643 } 1644 1645 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1646 while ((part = disk_part_iter_next(&piter))) 1647 part->bd_read_only = flag; 1648 disk_part_iter_exit(&piter); 1649 } 1650 1651 EXPORT_SYMBOL(set_disk_ro); 1652 1653 int bdev_read_only(struct block_device *bdev) 1654 { 1655 if (!bdev) 1656 return 0; 1657 return bdev->bd_read_only; 1658 } 1659 1660 EXPORT_SYMBOL(bdev_read_only); 1661 1662 /* 1663 * Disk events - monitor disk events like media change and eject request. 1664 */ 1665 struct disk_events { 1666 struct list_head node; /* all disk_event's */ 1667 struct gendisk *disk; /* the associated disk */ 1668 spinlock_t lock; 1669 1670 struct mutex block_mutex; /* protects blocking */ 1671 int block; /* event blocking depth */ 1672 unsigned int pending; /* events already sent out */ 1673 unsigned int clearing; /* events being cleared */ 1674 1675 long poll_msecs; /* interval, -1 for default */ 1676 struct delayed_work dwork; 1677 }; 1678 1679 static const char *disk_events_strs[] = { 1680 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1681 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1682 }; 1683 1684 static char *disk_uevents[] = { 1685 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1686 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1687 }; 1688 1689 /* list of all disk_events */ 1690 static DEFINE_MUTEX(disk_events_mutex); 1691 static LIST_HEAD(disk_events); 1692 1693 /* disable in-kernel polling by default */ 1694 static unsigned long disk_events_dfl_poll_msecs; 1695 1696 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1697 { 1698 struct disk_events *ev = disk->ev; 1699 long intv_msecs = 0; 1700 1701 /* 1702 * If device-specific poll interval is set, always use it. If 1703 * the default is being used, poll if the POLL flag is set. 1704 */ 1705 if (ev->poll_msecs >= 0) 1706 intv_msecs = ev->poll_msecs; 1707 else if (disk->event_flags & DISK_EVENT_FLAG_POLL) 1708 intv_msecs = disk_events_dfl_poll_msecs; 1709 1710 return msecs_to_jiffies(intv_msecs); 1711 } 1712 1713 /** 1714 * disk_block_events - block and flush disk event checking 1715 * @disk: disk to block events for 1716 * 1717 * On return from this function, it is guaranteed that event checking 1718 * isn't in progress and won't happen until unblocked by 1719 * disk_unblock_events(). Events blocking is counted and the actual 1720 * unblocking happens after the matching number of unblocks are done. 1721 * 1722 * Note that this intentionally does not block event checking from 1723 * disk_clear_events(). 1724 * 1725 * CONTEXT: 1726 * Might sleep. 1727 */ 1728 void disk_block_events(struct gendisk *disk) 1729 { 1730 struct disk_events *ev = disk->ev; 1731 unsigned long flags; 1732 bool cancel; 1733 1734 if (!ev) 1735 return; 1736 1737 /* 1738 * Outer mutex ensures that the first blocker completes canceling 1739 * the event work before further blockers are allowed to finish. 1740 */ 1741 mutex_lock(&ev->block_mutex); 1742 1743 spin_lock_irqsave(&ev->lock, flags); 1744 cancel = !ev->block++; 1745 spin_unlock_irqrestore(&ev->lock, flags); 1746 1747 if (cancel) 1748 cancel_delayed_work_sync(&disk->ev->dwork); 1749 1750 mutex_unlock(&ev->block_mutex); 1751 } 1752 1753 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1754 { 1755 struct disk_events *ev = disk->ev; 1756 unsigned long intv; 1757 unsigned long flags; 1758 1759 spin_lock_irqsave(&ev->lock, flags); 1760 1761 if (WARN_ON_ONCE(ev->block <= 0)) 1762 goto out_unlock; 1763 1764 if (--ev->block) 1765 goto out_unlock; 1766 1767 intv = disk_events_poll_jiffies(disk); 1768 if (check_now) 1769 queue_delayed_work(system_freezable_power_efficient_wq, 1770 &ev->dwork, 0); 1771 else if (intv) 1772 queue_delayed_work(system_freezable_power_efficient_wq, 1773 &ev->dwork, intv); 1774 out_unlock: 1775 spin_unlock_irqrestore(&ev->lock, flags); 1776 } 1777 1778 /** 1779 * disk_unblock_events - unblock disk event checking 1780 * @disk: disk to unblock events for 1781 * 1782 * Undo disk_block_events(). When the block count reaches zero, it 1783 * starts events polling if configured. 1784 * 1785 * CONTEXT: 1786 * Don't care. Safe to call from irq context. 1787 */ 1788 void disk_unblock_events(struct gendisk *disk) 1789 { 1790 if (disk->ev) 1791 __disk_unblock_events(disk, false); 1792 } 1793 1794 /** 1795 * disk_flush_events - schedule immediate event checking and flushing 1796 * @disk: disk to check and flush events for 1797 * @mask: events to flush 1798 * 1799 * Schedule immediate event checking on @disk if not blocked. Events in 1800 * @mask are scheduled to be cleared from the driver. Note that this 1801 * doesn't clear the events from @disk->ev. 1802 * 1803 * CONTEXT: 1804 * If @mask is non-zero must be called with bdev->bd_mutex held. 1805 */ 1806 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1807 { 1808 struct disk_events *ev = disk->ev; 1809 1810 if (!ev) 1811 return; 1812 1813 spin_lock_irq(&ev->lock); 1814 ev->clearing |= mask; 1815 if (!ev->block) 1816 mod_delayed_work(system_freezable_power_efficient_wq, 1817 &ev->dwork, 0); 1818 spin_unlock_irq(&ev->lock); 1819 } 1820 1821 /** 1822 * disk_clear_events - synchronously check, clear and return pending events 1823 * @disk: disk to fetch and clear events from 1824 * @mask: mask of events to be fetched and cleared 1825 * 1826 * Disk events are synchronously checked and pending events in @mask 1827 * are cleared and returned. This ignores the block count. 1828 * 1829 * CONTEXT: 1830 * Might sleep. 1831 */ 1832 static unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1833 { 1834 struct disk_events *ev = disk->ev; 1835 unsigned int pending; 1836 unsigned int clearing = mask; 1837 1838 if (!ev) 1839 return 0; 1840 1841 disk_block_events(disk); 1842 1843 /* 1844 * store the union of mask and ev->clearing on the stack so that the 1845 * race with disk_flush_events does not cause ambiguity (ev->clearing 1846 * can still be modified even if events are blocked). 1847 */ 1848 spin_lock_irq(&ev->lock); 1849 clearing |= ev->clearing; 1850 ev->clearing = 0; 1851 spin_unlock_irq(&ev->lock); 1852 1853 disk_check_events(ev, &clearing); 1854 /* 1855 * if ev->clearing is not 0, the disk_flush_events got called in the 1856 * middle of this function, so we want to run the workfn without delay. 1857 */ 1858 __disk_unblock_events(disk, ev->clearing ? true : false); 1859 1860 /* then, fetch and clear pending events */ 1861 spin_lock_irq(&ev->lock); 1862 pending = ev->pending & mask; 1863 ev->pending &= ~mask; 1864 spin_unlock_irq(&ev->lock); 1865 WARN_ON_ONCE(clearing & mask); 1866 1867 return pending; 1868 } 1869 1870 /** 1871 * bdev_check_media_change - check if a removable media has been changed 1872 * @bdev: block device to check 1873 * 1874 * Check whether a removable media has been changed, and attempt to free all 1875 * dentries and inodes and invalidates all block device page cache entries in 1876 * that case. 1877 * 1878 * Returns %true if the block device changed, or %false if not. 1879 */ 1880 bool bdev_check_media_change(struct block_device *bdev) 1881 { 1882 unsigned int events; 1883 1884 events = disk_clear_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE | 1885 DISK_EVENT_EJECT_REQUEST); 1886 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1887 return false; 1888 1889 if (__invalidate_device(bdev, true)) 1890 pr_warn("VFS: busy inodes on changed media %s\n", 1891 bdev->bd_disk->disk_name); 1892 set_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1893 return true; 1894 } 1895 EXPORT_SYMBOL(bdev_check_media_change); 1896 1897 /* 1898 * Separate this part out so that a different pointer for clearing_ptr can be 1899 * passed in for disk_clear_events. 1900 */ 1901 static void disk_events_workfn(struct work_struct *work) 1902 { 1903 struct delayed_work *dwork = to_delayed_work(work); 1904 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1905 1906 disk_check_events(ev, &ev->clearing); 1907 } 1908 1909 static void disk_check_events(struct disk_events *ev, 1910 unsigned int *clearing_ptr) 1911 { 1912 struct gendisk *disk = ev->disk; 1913 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1914 unsigned int clearing = *clearing_ptr; 1915 unsigned int events; 1916 unsigned long intv; 1917 int nr_events = 0, i; 1918 1919 /* check events */ 1920 events = disk->fops->check_events(disk, clearing); 1921 1922 /* accumulate pending events and schedule next poll if necessary */ 1923 spin_lock_irq(&ev->lock); 1924 1925 events &= ~ev->pending; 1926 ev->pending |= events; 1927 *clearing_ptr &= ~clearing; 1928 1929 intv = disk_events_poll_jiffies(disk); 1930 if (!ev->block && intv) 1931 queue_delayed_work(system_freezable_power_efficient_wq, 1932 &ev->dwork, intv); 1933 1934 spin_unlock_irq(&ev->lock); 1935 1936 /* 1937 * Tell userland about new events. Only the events listed in 1938 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT 1939 * is set. Otherwise, events are processed internally but never 1940 * get reported to userland. 1941 */ 1942 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1943 if ((events & disk->events & (1 << i)) && 1944 (disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 1945 envp[nr_events++] = disk_uevents[i]; 1946 1947 if (nr_events) 1948 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1949 } 1950 1951 /* 1952 * A disk events enabled device has the following sysfs nodes under 1953 * its /sys/block/X/ directory. 1954 * 1955 * events : list of all supported events 1956 * events_async : list of events which can be detected w/o polling 1957 * (always empty, only for backwards compatibility) 1958 * events_poll_msecs : polling interval, 0: disable, -1: system default 1959 */ 1960 static ssize_t __disk_events_show(unsigned int events, char *buf) 1961 { 1962 const char *delim = ""; 1963 ssize_t pos = 0; 1964 int i; 1965 1966 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1967 if (events & (1 << i)) { 1968 pos += sprintf(buf + pos, "%s%s", 1969 delim, disk_events_strs[i]); 1970 delim = " "; 1971 } 1972 if (pos) 1973 pos += sprintf(buf + pos, "\n"); 1974 return pos; 1975 } 1976 1977 static ssize_t disk_events_show(struct device *dev, 1978 struct device_attribute *attr, char *buf) 1979 { 1980 struct gendisk *disk = dev_to_disk(dev); 1981 1982 if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 1983 return 0; 1984 1985 return __disk_events_show(disk->events, buf); 1986 } 1987 1988 static ssize_t disk_events_async_show(struct device *dev, 1989 struct device_attribute *attr, char *buf) 1990 { 1991 return 0; 1992 } 1993 1994 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1995 struct device_attribute *attr, 1996 char *buf) 1997 { 1998 struct gendisk *disk = dev_to_disk(dev); 1999 2000 if (!disk->ev) 2001 return sprintf(buf, "-1\n"); 2002 2003 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 2004 } 2005 2006 static ssize_t disk_events_poll_msecs_store(struct device *dev, 2007 struct device_attribute *attr, 2008 const char *buf, size_t count) 2009 { 2010 struct gendisk *disk = dev_to_disk(dev); 2011 long intv; 2012 2013 if (!count || !sscanf(buf, "%ld", &intv)) 2014 return -EINVAL; 2015 2016 if (intv < 0 && intv != -1) 2017 return -EINVAL; 2018 2019 if (!disk->ev) 2020 return -ENODEV; 2021 2022 disk_block_events(disk); 2023 disk->ev->poll_msecs = intv; 2024 __disk_unblock_events(disk, true); 2025 2026 return count; 2027 } 2028 2029 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL); 2030 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL); 2031 static const DEVICE_ATTR(events_poll_msecs, 0644, 2032 disk_events_poll_msecs_show, 2033 disk_events_poll_msecs_store); 2034 2035 static const struct attribute *disk_events_attrs[] = { 2036 &dev_attr_events.attr, 2037 &dev_attr_events_async.attr, 2038 &dev_attr_events_poll_msecs.attr, 2039 NULL, 2040 }; 2041 2042 /* 2043 * The default polling interval can be specified by the kernel 2044 * parameter block.events_dfl_poll_msecs which defaults to 0 2045 * (disable). This can also be modified runtime by writing to 2046 * /sys/module/block/parameters/events_dfl_poll_msecs. 2047 */ 2048 static int disk_events_set_dfl_poll_msecs(const char *val, 2049 const struct kernel_param *kp) 2050 { 2051 struct disk_events *ev; 2052 int ret; 2053 2054 ret = param_set_ulong(val, kp); 2055 if (ret < 0) 2056 return ret; 2057 2058 mutex_lock(&disk_events_mutex); 2059 2060 list_for_each_entry(ev, &disk_events, node) 2061 disk_flush_events(ev->disk, 0); 2062 2063 mutex_unlock(&disk_events_mutex); 2064 2065 return 0; 2066 } 2067 2068 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 2069 .set = disk_events_set_dfl_poll_msecs, 2070 .get = param_get_ulong, 2071 }; 2072 2073 #undef MODULE_PARAM_PREFIX 2074 #define MODULE_PARAM_PREFIX "block." 2075 2076 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 2077 &disk_events_dfl_poll_msecs, 0644); 2078 2079 /* 2080 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 2081 */ 2082 static void disk_alloc_events(struct gendisk *disk) 2083 { 2084 struct disk_events *ev; 2085 2086 if (!disk->fops->check_events || !disk->events) 2087 return; 2088 2089 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 2090 if (!ev) { 2091 pr_warn("%s: failed to initialize events\n", disk->disk_name); 2092 return; 2093 } 2094 2095 INIT_LIST_HEAD(&ev->node); 2096 ev->disk = disk; 2097 spin_lock_init(&ev->lock); 2098 mutex_init(&ev->block_mutex); 2099 ev->block = 1; 2100 ev->poll_msecs = -1; 2101 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 2102 2103 disk->ev = ev; 2104 } 2105 2106 static void disk_add_events(struct gendisk *disk) 2107 { 2108 /* FIXME: error handling */ 2109 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 2110 pr_warn("%s: failed to create sysfs files for events\n", 2111 disk->disk_name); 2112 2113 if (!disk->ev) 2114 return; 2115 2116 mutex_lock(&disk_events_mutex); 2117 list_add_tail(&disk->ev->node, &disk_events); 2118 mutex_unlock(&disk_events_mutex); 2119 2120 /* 2121 * Block count is initialized to 1 and the following initial 2122 * unblock kicks it into action. 2123 */ 2124 __disk_unblock_events(disk, true); 2125 } 2126 2127 static void disk_del_events(struct gendisk *disk) 2128 { 2129 if (disk->ev) { 2130 disk_block_events(disk); 2131 2132 mutex_lock(&disk_events_mutex); 2133 list_del_init(&disk->ev->node); 2134 mutex_unlock(&disk_events_mutex); 2135 } 2136 2137 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 2138 } 2139 2140 static void disk_release_events(struct gendisk *disk) 2141 { 2142 /* the block count should be 1 from disk_del_events() */ 2143 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 2144 kfree(disk->ev); 2145 } 2146