1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/backing-dev.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include <linux/slab.h> 17 #include <linux/kmod.h> 18 #include <linux/kobj_map.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/badblocks.h> 24 25 #include "blk.h" 26 27 static DEFINE_MUTEX(block_class_lock); 28 struct kobject *block_depr; 29 30 /* for extended dynamic devt allocation, currently only one major is used */ 31 #define NR_EXT_DEVT (1 << MINORBITS) 32 33 /* For extended devt allocation. ext_devt_lock prevents look up 34 * results from going away underneath its user. 35 */ 36 static DEFINE_SPINLOCK(ext_devt_lock); 37 static DEFINE_IDR(ext_devt_idr); 38 39 static const struct device_type disk_type; 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 49 { 50 if (q->mq_ops) 51 return; 52 53 atomic_inc(&part->in_flight[rw]); 54 if (part->partno) 55 atomic_inc(&part_to_disk(part)->part0.in_flight[rw]); 56 } 57 58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 59 { 60 if (q->mq_ops) 61 return; 62 63 atomic_dec(&part->in_flight[rw]); 64 if (part->partno) 65 atomic_dec(&part_to_disk(part)->part0.in_flight[rw]); 66 } 67 68 void part_in_flight(struct request_queue *q, struct hd_struct *part, 69 unsigned int inflight[2]) 70 { 71 if (q->mq_ops) { 72 blk_mq_in_flight(q, part, inflight); 73 return; 74 } 75 76 inflight[0] = atomic_read(&part->in_flight[0]) + 77 atomic_read(&part->in_flight[1]); 78 if (part->partno) { 79 part = &part_to_disk(part)->part0; 80 inflight[1] = atomic_read(&part->in_flight[0]) + 81 atomic_read(&part->in_flight[1]); 82 } 83 } 84 85 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno) 86 { 87 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl); 88 89 if (unlikely(partno < 0 || partno >= ptbl->len)) 90 return NULL; 91 return rcu_dereference(ptbl->part[partno]); 92 } 93 94 /** 95 * disk_get_part - get partition 96 * @disk: disk to look partition from 97 * @partno: partition number 98 * 99 * Look for partition @partno from @disk. If found, increment 100 * reference count and return it. 101 * 102 * CONTEXT: 103 * Don't care. 104 * 105 * RETURNS: 106 * Pointer to the found partition on success, NULL if not found. 107 */ 108 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 109 { 110 struct hd_struct *part; 111 112 rcu_read_lock(); 113 part = __disk_get_part(disk, partno); 114 if (part) 115 get_device(part_to_dev(part)); 116 rcu_read_unlock(); 117 118 return part; 119 } 120 EXPORT_SYMBOL_GPL(disk_get_part); 121 122 /** 123 * disk_part_iter_init - initialize partition iterator 124 * @piter: iterator to initialize 125 * @disk: disk to iterate over 126 * @flags: DISK_PITER_* flags 127 * 128 * Initialize @piter so that it iterates over partitions of @disk. 129 * 130 * CONTEXT: 131 * Don't care. 132 */ 133 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 134 unsigned int flags) 135 { 136 struct disk_part_tbl *ptbl; 137 138 rcu_read_lock(); 139 ptbl = rcu_dereference(disk->part_tbl); 140 141 piter->disk = disk; 142 piter->part = NULL; 143 144 if (flags & DISK_PITER_REVERSE) 145 piter->idx = ptbl->len - 1; 146 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 147 piter->idx = 0; 148 else 149 piter->idx = 1; 150 151 piter->flags = flags; 152 153 rcu_read_unlock(); 154 } 155 EXPORT_SYMBOL_GPL(disk_part_iter_init); 156 157 /** 158 * disk_part_iter_next - proceed iterator to the next partition and return it 159 * @piter: iterator of interest 160 * 161 * Proceed @piter to the next partition and return it. 162 * 163 * CONTEXT: 164 * Don't care. 165 */ 166 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 167 { 168 struct disk_part_tbl *ptbl; 169 int inc, end; 170 171 /* put the last partition */ 172 disk_put_part(piter->part); 173 piter->part = NULL; 174 175 /* get part_tbl */ 176 rcu_read_lock(); 177 ptbl = rcu_dereference(piter->disk->part_tbl); 178 179 /* determine iteration parameters */ 180 if (piter->flags & DISK_PITER_REVERSE) { 181 inc = -1; 182 if (piter->flags & (DISK_PITER_INCL_PART0 | 183 DISK_PITER_INCL_EMPTY_PART0)) 184 end = -1; 185 else 186 end = 0; 187 } else { 188 inc = 1; 189 end = ptbl->len; 190 } 191 192 /* iterate to the next partition */ 193 for (; piter->idx != end; piter->idx += inc) { 194 struct hd_struct *part; 195 196 part = rcu_dereference(ptbl->part[piter->idx]); 197 if (!part) 198 continue; 199 if (!part_nr_sects_read(part) && 200 !(piter->flags & DISK_PITER_INCL_EMPTY) && 201 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 202 piter->idx == 0)) 203 continue; 204 205 get_device(part_to_dev(part)); 206 piter->part = part; 207 piter->idx += inc; 208 break; 209 } 210 211 rcu_read_unlock(); 212 213 return piter->part; 214 } 215 EXPORT_SYMBOL_GPL(disk_part_iter_next); 216 217 /** 218 * disk_part_iter_exit - finish up partition iteration 219 * @piter: iter of interest 220 * 221 * Called when iteration is over. Cleans up @piter. 222 * 223 * CONTEXT: 224 * Don't care. 225 */ 226 void disk_part_iter_exit(struct disk_part_iter *piter) 227 { 228 disk_put_part(piter->part); 229 piter->part = NULL; 230 } 231 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 232 233 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 234 { 235 return part->start_sect <= sector && 236 sector < part->start_sect + part_nr_sects_read(part); 237 } 238 239 /** 240 * disk_map_sector_rcu - map sector to partition 241 * @disk: gendisk of interest 242 * @sector: sector to map 243 * 244 * Find out which partition @sector maps to on @disk. This is 245 * primarily used for stats accounting. 246 * 247 * CONTEXT: 248 * RCU read locked. The returned partition pointer is valid only 249 * while preemption is disabled. 250 * 251 * RETURNS: 252 * Found partition on success, part0 is returned if no partition matches 253 */ 254 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 255 { 256 struct disk_part_tbl *ptbl; 257 struct hd_struct *part; 258 int i; 259 260 ptbl = rcu_dereference(disk->part_tbl); 261 262 part = rcu_dereference(ptbl->last_lookup); 263 if (part && sector_in_part(part, sector)) 264 return part; 265 266 for (i = 1; i < ptbl->len; i++) { 267 part = rcu_dereference(ptbl->part[i]); 268 269 if (part && sector_in_part(part, sector)) { 270 rcu_assign_pointer(ptbl->last_lookup, part); 271 return part; 272 } 273 } 274 return &disk->part0; 275 } 276 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 277 278 /* 279 * Can be deleted altogether. Later. 280 * 281 */ 282 #define BLKDEV_MAJOR_HASH_SIZE 255 283 static struct blk_major_name { 284 struct blk_major_name *next; 285 int major; 286 char name[16]; 287 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 288 289 /* index in the above - for now: assume no multimajor ranges */ 290 static inline int major_to_index(unsigned major) 291 { 292 return major % BLKDEV_MAJOR_HASH_SIZE; 293 } 294 295 #ifdef CONFIG_PROC_FS 296 void blkdev_show(struct seq_file *seqf, off_t offset) 297 { 298 struct blk_major_name *dp; 299 300 mutex_lock(&block_class_lock); 301 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) 302 if (dp->major == offset) 303 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 304 mutex_unlock(&block_class_lock); 305 } 306 #endif /* CONFIG_PROC_FS */ 307 308 /** 309 * register_blkdev - register a new block device 310 * 311 * @major: the requested major device number [1..255]. If @major = 0, try to 312 * allocate any unused major number. 313 * @name: the name of the new block device as a zero terminated string 314 * 315 * The @name must be unique within the system. 316 * 317 * The return value depends on the @major input parameter: 318 * 319 * - if a major device number was requested in range [1..255] then the 320 * function returns zero on success, or a negative error code 321 * - if any unused major number was requested with @major = 0 parameter 322 * then the return value is the allocated major number in range 323 * [1..255] or a negative error code otherwise 324 */ 325 int register_blkdev(unsigned int major, const char *name) 326 { 327 struct blk_major_name **n, *p; 328 int index, ret = 0; 329 330 mutex_lock(&block_class_lock); 331 332 /* temporary */ 333 if (major == 0) { 334 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 335 if (major_names[index] == NULL) 336 break; 337 } 338 339 if (index == 0) { 340 printk("register_blkdev: failed to get major for %s\n", 341 name); 342 ret = -EBUSY; 343 goto out; 344 } 345 major = index; 346 ret = major; 347 } 348 349 if (major >= BLKDEV_MAJOR_MAX) { 350 pr_err("register_blkdev: major requested (%d) is greater than the maximum (%d) for %s\n", 351 major, BLKDEV_MAJOR_MAX, name); 352 353 ret = -EINVAL; 354 goto out; 355 } 356 357 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 358 if (p == NULL) { 359 ret = -ENOMEM; 360 goto out; 361 } 362 363 p->major = major; 364 strlcpy(p->name, name, sizeof(p->name)); 365 p->next = NULL; 366 index = major_to_index(major); 367 368 for (n = &major_names[index]; *n; n = &(*n)->next) { 369 if ((*n)->major == major) 370 break; 371 } 372 if (!*n) 373 *n = p; 374 else 375 ret = -EBUSY; 376 377 if (ret < 0) { 378 printk("register_blkdev: cannot get major %d for %s\n", 379 major, name); 380 kfree(p); 381 } 382 out: 383 mutex_unlock(&block_class_lock); 384 return ret; 385 } 386 387 EXPORT_SYMBOL(register_blkdev); 388 389 void unregister_blkdev(unsigned int major, const char *name) 390 { 391 struct blk_major_name **n; 392 struct blk_major_name *p = NULL; 393 int index = major_to_index(major); 394 395 mutex_lock(&block_class_lock); 396 for (n = &major_names[index]; *n; n = &(*n)->next) 397 if ((*n)->major == major) 398 break; 399 if (!*n || strcmp((*n)->name, name)) { 400 WARN_ON(1); 401 } else { 402 p = *n; 403 *n = p->next; 404 } 405 mutex_unlock(&block_class_lock); 406 kfree(p); 407 } 408 409 EXPORT_SYMBOL(unregister_blkdev); 410 411 static struct kobj_map *bdev_map; 412 413 /** 414 * blk_mangle_minor - scatter minor numbers apart 415 * @minor: minor number to mangle 416 * 417 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 418 * is enabled. Mangling twice gives the original value. 419 * 420 * RETURNS: 421 * Mangled value. 422 * 423 * CONTEXT: 424 * Don't care. 425 */ 426 static int blk_mangle_minor(int minor) 427 { 428 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 429 int i; 430 431 for (i = 0; i < MINORBITS / 2; i++) { 432 int low = minor & (1 << i); 433 int high = minor & (1 << (MINORBITS - 1 - i)); 434 int distance = MINORBITS - 1 - 2 * i; 435 436 minor ^= low | high; /* clear both bits */ 437 low <<= distance; /* swap the positions */ 438 high >>= distance; 439 minor |= low | high; /* and set */ 440 } 441 #endif 442 return minor; 443 } 444 445 /** 446 * blk_alloc_devt - allocate a dev_t for a partition 447 * @part: partition to allocate dev_t for 448 * @devt: out parameter for resulting dev_t 449 * 450 * Allocate a dev_t for block device. 451 * 452 * RETURNS: 453 * 0 on success, allocated dev_t is returned in *@devt. -errno on 454 * failure. 455 * 456 * CONTEXT: 457 * Might sleep. 458 */ 459 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 460 { 461 struct gendisk *disk = part_to_disk(part); 462 int idx; 463 464 /* in consecutive minor range? */ 465 if (part->partno < disk->minors) { 466 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 467 return 0; 468 } 469 470 /* allocate ext devt */ 471 idr_preload(GFP_KERNEL); 472 473 spin_lock_bh(&ext_devt_lock); 474 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 475 spin_unlock_bh(&ext_devt_lock); 476 477 idr_preload_end(); 478 if (idx < 0) 479 return idx == -ENOSPC ? -EBUSY : idx; 480 481 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 482 return 0; 483 } 484 485 /** 486 * blk_free_devt - free a dev_t 487 * @devt: dev_t to free 488 * 489 * Free @devt which was allocated using blk_alloc_devt(). 490 * 491 * CONTEXT: 492 * Might sleep. 493 */ 494 void blk_free_devt(dev_t devt) 495 { 496 if (devt == MKDEV(0, 0)) 497 return; 498 499 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 500 spin_lock_bh(&ext_devt_lock); 501 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 502 spin_unlock_bh(&ext_devt_lock); 503 } 504 } 505 506 static char *bdevt_str(dev_t devt, char *buf) 507 { 508 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 509 char tbuf[BDEVT_SIZE]; 510 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 511 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 512 } else 513 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 514 515 return buf; 516 } 517 518 /* 519 * Register device numbers dev..(dev+range-1) 520 * range must be nonzero 521 * The hash chain is sorted on range, so that subranges can override. 522 */ 523 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 524 struct kobject *(*probe)(dev_t, int *, void *), 525 int (*lock)(dev_t, void *), void *data) 526 { 527 kobj_map(bdev_map, devt, range, module, probe, lock, data); 528 } 529 530 EXPORT_SYMBOL(blk_register_region); 531 532 void blk_unregister_region(dev_t devt, unsigned long range) 533 { 534 kobj_unmap(bdev_map, devt, range); 535 } 536 537 EXPORT_SYMBOL(blk_unregister_region); 538 539 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 540 { 541 struct gendisk *p = data; 542 543 return &disk_to_dev(p)->kobj; 544 } 545 546 static int exact_lock(dev_t devt, void *data) 547 { 548 struct gendisk *p = data; 549 550 if (!get_disk(p)) 551 return -1; 552 return 0; 553 } 554 555 static void register_disk(struct device *parent, struct gendisk *disk) 556 { 557 struct device *ddev = disk_to_dev(disk); 558 struct block_device *bdev; 559 struct disk_part_iter piter; 560 struct hd_struct *part; 561 int err; 562 563 ddev->parent = parent; 564 565 dev_set_name(ddev, "%s", disk->disk_name); 566 567 /* delay uevents, until we scanned partition table */ 568 dev_set_uevent_suppress(ddev, 1); 569 570 if (device_add(ddev)) 571 return; 572 if (!sysfs_deprecated) { 573 err = sysfs_create_link(block_depr, &ddev->kobj, 574 kobject_name(&ddev->kobj)); 575 if (err) { 576 device_del(ddev); 577 return; 578 } 579 } 580 581 /* 582 * avoid probable deadlock caused by allocating memory with 583 * GFP_KERNEL in runtime_resume callback of its all ancestor 584 * devices 585 */ 586 pm_runtime_set_memalloc_noio(ddev, true); 587 588 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 589 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 590 591 /* No minors to use for partitions */ 592 if (!disk_part_scan_enabled(disk)) 593 goto exit; 594 595 /* No such device (e.g., media were just removed) */ 596 if (!get_capacity(disk)) 597 goto exit; 598 599 bdev = bdget_disk(disk, 0); 600 if (!bdev) 601 goto exit; 602 603 bdev->bd_invalidated = 1; 604 err = blkdev_get(bdev, FMODE_READ, NULL); 605 if (err < 0) 606 goto exit; 607 blkdev_put(bdev, FMODE_READ); 608 609 exit: 610 /* announce disk after possible partitions are created */ 611 dev_set_uevent_suppress(ddev, 0); 612 kobject_uevent(&ddev->kobj, KOBJ_ADD); 613 614 /* announce possible partitions */ 615 disk_part_iter_init(&piter, disk, 0); 616 while ((part = disk_part_iter_next(&piter))) 617 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 618 disk_part_iter_exit(&piter); 619 } 620 621 /** 622 * device_add_disk - add partitioning information to kernel list 623 * @parent: parent device for the disk 624 * @disk: per-device partitioning information 625 * 626 * This function registers the partitioning information in @disk 627 * with the kernel. 628 * 629 * FIXME: error handling 630 */ 631 void device_add_disk(struct device *parent, struct gendisk *disk) 632 { 633 struct backing_dev_info *bdi; 634 dev_t devt; 635 int retval; 636 637 /* minors == 0 indicates to use ext devt from part0 and should 638 * be accompanied with EXT_DEVT flag. Make sure all 639 * parameters make sense. 640 */ 641 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 642 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 643 644 disk->flags |= GENHD_FL_UP; 645 646 retval = blk_alloc_devt(&disk->part0, &devt); 647 if (retval) { 648 WARN_ON(1); 649 return; 650 } 651 disk_to_dev(disk)->devt = devt; 652 653 /* ->major and ->first_minor aren't supposed to be 654 * dereferenced from here on, but set them just in case. 655 */ 656 disk->major = MAJOR(devt); 657 disk->first_minor = MINOR(devt); 658 659 disk_alloc_events(disk); 660 661 /* Register BDI before referencing it from bdev */ 662 bdi = disk->queue->backing_dev_info; 663 bdi_register_owner(bdi, disk_to_dev(disk)); 664 665 blk_register_region(disk_devt(disk), disk->minors, NULL, 666 exact_match, exact_lock, disk); 667 register_disk(parent, disk); 668 blk_register_queue(disk); 669 670 /* 671 * Take an extra ref on queue which will be put on disk_release() 672 * so that it sticks around as long as @disk is there. 673 */ 674 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 675 676 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 677 "bdi"); 678 WARN_ON(retval); 679 680 disk_add_events(disk); 681 blk_integrity_add(disk); 682 } 683 EXPORT_SYMBOL(device_add_disk); 684 685 void del_gendisk(struct gendisk *disk) 686 { 687 struct disk_part_iter piter; 688 struct hd_struct *part; 689 690 blk_integrity_del(disk); 691 disk_del_events(disk); 692 693 /* invalidate stuff */ 694 disk_part_iter_init(&piter, disk, 695 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 696 while ((part = disk_part_iter_next(&piter))) { 697 invalidate_partition(disk, part->partno); 698 bdev_unhash_inode(part_devt(part)); 699 delete_partition(disk, part->partno); 700 } 701 disk_part_iter_exit(&piter); 702 703 invalidate_partition(disk, 0); 704 bdev_unhash_inode(disk_devt(disk)); 705 set_capacity(disk, 0); 706 disk->flags &= ~GENHD_FL_UP; 707 708 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 709 if (disk->queue) { 710 /* 711 * Unregister bdi before releasing device numbers (as they can 712 * get reused and we'd get clashes in sysfs). 713 */ 714 bdi_unregister(disk->queue->backing_dev_info); 715 blk_unregister_queue(disk); 716 } else { 717 WARN_ON(1); 718 } 719 blk_unregister_region(disk_devt(disk), disk->minors); 720 721 part_stat_set_all(&disk->part0, 0); 722 disk->part0.stamp = 0; 723 724 kobject_put(disk->part0.holder_dir); 725 kobject_put(disk->slave_dir); 726 if (!sysfs_deprecated) 727 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 728 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 729 device_del(disk_to_dev(disk)); 730 } 731 EXPORT_SYMBOL(del_gendisk); 732 733 /* sysfs access to bad-blocks list. */ 734 static ssize_t disk_badblocks_show(struct device *dev, 735 struct device_attribute *attr, 736 char *page) 737 { 738 struct gendisk *disk = dev_to_disk(dev); 739 740 if (!disk->bb) 741 return sprintf(page, "\n"); 742 743 return badblocks_show(disk->bb, page, 0); 744 } 745 746 static ssize_t disk_badblocks_store(struct device *dev, 747 struct device_attribute *attr, 748 const char *page, size_t len) 749 { 750 struct gendisk *disk = dev_to_disk(dev); 751 752 if (!disk->bb) 753 return -ENXIO; 754 755 return badblocks_store(disk->bb, page, len, 0); 756 } 757 758 /** 759 * get_gendisk - get partitioning information for a given device 760 * @devt: device to get partitioning information for 761 * @partno: returned partition index 762 * 763 * This function gets the structure containing partitioning 764 * information for the given device @devt. 765 */ 766 struct gendisk *get_gendisk(dev_t devt, int *partno) 767 { 768 struct gendisk *disk = NULL; 769 770 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 771 struct kobject *kobj; 772 773 kobj = kobj_lookup(bdev_map, devt, partno); 774 if (kobj) 775 disk = dev_to_disk(kobj_to_dev(kobj)); 776 } else { 777 struct hd_struct *part; 778 779 spin_lock_bh(&ext_devt_lock); 780 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 781 if (part && get_disk(part_to_disk(part))) { 782 *partno = part->partno; 783 disk = part_to_disk(part); 784 } 785 spin_unlock_bh(&ext_devt_lock); 786 } 787 788 return disk; 789 } 790 EXPORT_SYMBOL(get_gendisk); 791 792 /** 793 * bdget_disk - do bdget() by gendisk and partition number 794 * @disk: gendisk of interest 795 * @partno: partition number 796 * 797 * Find partition @partno from @disk, do bdget() on it. 798 * 799 * CONTEXT: 800 * Don't care. 801 * 802 * RETURNS: 803 * Resulting block_device on success, NULL on failure. 804 */ 805 struct block_device *bdget_disk(struct gendisk *disk, int partno) 806 { 807 struct hd_struct *part; 808 struct block_device *bdev = NULL; 809 810 part = disk_get_part(disk, partno); 811 if (part) 812 bdev = bdget(part_devt(part)); 813 disk_put_part(part); 814 815 return bdev; 816 } 817 EXPORT_SYMBOL(bdget_disk); 818 819 /* 820 * print a full list of all partitions - intended for places where the root 821 * filesystem can't be mounted and thus to give the victim some idea of what 822 * went wrong 823 */ 824 void __init printk_all_partitions(void) 825 { 826 struct class_dev_iter iter; 827 struct device *dev; 828 829 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 830 while ((dev = class_dev_iter_next(&iter))) { 831 struct gendisk *disk = dev_to_disk(dev); 832 struct disk_part_iter piter; 833 struct hd_struct *part; 834 char name_buf[BDEVNAME_SIZE]; 835 char devt_buf[BDEVT_SIZE]; 836 837 /* 838 * Don't show empty devices or things that have been 839 * suppressed 840 */ 841 if (get_capacity(disk) == 0 || 842 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 843 continue; 844 845 /* 846 * Note, unlike /proc/partitions, I am showing the 847 * numbers in hex - the same format as the root= 848 * option takes. 849 */ 850 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 851 while ((part = disk_part_iter_next(&piter))) { 852 bool is_part0 = part == &disk->part0; 853 854 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 855 bdevt_str(part_devt(part), devt_buf), 856 (unsigned long long)part_nr_sects_read(part) >> 1 857 , disk_name(disk, part->partno, name_buf), 858 part->info ? part->info->uuid : ""); 859 if (is_part0) { 860 if (dev->parent && dev->parent->driver) 861 printk(" driver: %s\n", 862 dev->parent->driver->name); 863 else 864 printk(" (driver?)\n"); 865 } else 866 printk("\n"); 867 } 868 disk_part_iter_exit(&piter); 869 } 870 class_dev_iter_exit(&iter); 871 } 872 873 #ifdef CONFIG_PROC_FS 874 /* iterator */ 875 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 876 { 877 loff_t skip = *pos; 878 struct class_dev_iter *iter; 879 struct device *dev; 880 881 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 882 if (!iter) 883 return ERR_PTR(-ENOMEM); 884 885 seqf->private = iter; 886 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 887 do { 888 dev = class_dev_iter_next(iter); 889 if (!dev) 890 return NULL; 891 } while (skip--); 892 893 return dev_to_disk(dev); 894 } 895 896 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 897 { 898 struct device *dev; 899 900 (*pos)++; 901 dev = class_dev_iter_next(seqf->private); 902 if (dev) 903 return dev_to_disk(dev); 904 905 return NULL; 906 } 907 908 static void disk_seqf_stop(struct seq_file *seqf, void *v) 909 { 910 struct class_dev_iter *iter = seqf->private; 911 912 /* stop is called even after start failed :-( */ 913 if (iter) { 914 class_dev_iter_exit(iter); 915 kfree(iter); 916 seqf->private = NULL; 917 } 918 } 919 920 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 921 { 922 void *p; 923 924 p = disk_seqf_start(seqf, pos); 925 if (!IS_ERR_OR_NULL(p) && !*pos) 926 seq_puts(seqf, "major minor #blocks name\n\n"); 927 return p; 928 } 929 930 static int show_partition(struct seq_file *seqf, void *v) 931 { 932 struct gendisk *sgp = v; 933 struct disk_part_iter piter; 934 struct hd_struct *part; 935 char buf[BDEVNAME_SIZE]; 936 937 /* Don't show non-partitionable removeable devices or empty devices */ 938 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 939 (sgp->flags & GENHD_FL_REMOVABLE))) 940 return 0; 941 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 942 return 0; 943 944 /* show the full disk and all non-0 size partitions of it */ 945 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 946 while ((part = disk_part_iter_next(&piter))) 947 seq_printf(seqf, "%4d %7d %10llu %s\n", 948 MAJOR(part_devt(part)), MINOR(part_devt(part)), 949 (unsigned long long)part_nr_sects_read(part) >> 1, 950 disk_name(sgp, part->partno, buf)); 951 disk_part_iter_exit(&piter); 952 953 return 0; 954 } 955 956 static const struct seq_operations partitions_op = { 957 .start = show_partition_start, 958 .next = disk_seqf_next, 959 .stop = disk_seqf_stop, 960 .show = show_partition 961 }; 962 963 static int partitions_open(struct inode *inode, struct file *file) 964 { 965 return seq_open(file, &partitions_op); 966 } 967 968 static const struct file_operations proc_partitions_operations = { 969 .open = partitions_open, 970 .read = seq_read, 971 .llseek = seq_lseek, 972 .release = seq_release, 973 }; 974 #endif 975 976 977 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 978 { 979 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 980 /* Make old-style 2.4 aliases work */ 981 request_module("block-major-%d", MAJOR(devt)); 982 return NULL; 983 } 984 985 static int __init genhd_device_init(void) 986 { 987 int error; 988 989 block_class.dev_kobj = sysfs_dev_block_kobj; 990 error = class_register(&block_class); 991 if (unlikely(error)) 992 return error; 993 bdev_map = kobj_map_init(base_probe, &block_class_lock); 994 blk_dev_init(); 995 996 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 997 998 /* create top-level block dir */ 999 if (!sysfs_deprecated) 1000 block_depr = kobject_create_and_add("block", NULL); 1001 return 0; 1002 } 1003 1004 subsys_initcall(genhd_device_init); 1005 1006 static ssize_t disk_range_show(struct device *dev, 1007 struct device_attribute *attr, char *buf) 1008 { 1009 struct gendisk *disk = dev_to_disk(dev); 1010 1011 return sprintf(buf, "%d\n", disk->minors); 1012 } 1013 1014 static ssize_t disk_ext_range_show(struct device *dev, 1015 struct device_attribute *attr, char *buf) 1016 { 1017 struct gendisk *disk = dev_to_disk(dev); 1018 1019 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1020 } 1021 1022 static ssize_t disk_removable_show(struct device *dev, 1023 struct device_attribute *attr, char *buf) 1024 { 1025 struct gendisk *disk = dev_to_disk(dev); 1026 1027 return sprintf(buf, "%d\n", 1028 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1029 } 1030 1031 static ssize_t disk_ro_show(struct device *dev, 1032 struct device_attribute *attr, char *buf) 1033 { 1034 struct gendisk *disk = dev_to_disk(dev); 1035 1036 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1037 } 1038 1039 static ssize_t disk_capability_show(struct device *dev, 1040 struct device_attribute *attr, char *buf) 1041 { 1042 struct gendisk *disk = dev_to_disk(dev); 1043 1044 return sprintf(buf, "%x\n", disk->flags); 1045 } 1046 1047 static ssize_t disk_alignment_offset_show(struct device *dev, 1048 struct device_attribute *attr, 1049 char *buf) 1050 { 1051 struct gendisk *disk = dev_to_disk(dev); 1052 1053 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1054 } 1055 1056 static ssize_t disk_discard_alignment_show(struct device *dev, 1057 struct device_attribute *attr, 1058 char *buf) 1059 { 1060 struct gendisk *disk = dev_to_disk(dev); 1061 1062 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1063 } 1064 1065 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 1066 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 1067 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 1068 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 1069 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 1070 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 1071 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 1072 NULL); 1073 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 1074 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 1075 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 1076 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show, 1077 disk_badblocks_store); 1078 #ifdef CONFIG_FAIL_MAKE_REQUEST 1079 static struct device_attribute dev_attr_fail = 1080 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 1081 #endif 1082 #ifdef CONFIG_FAIL_IO_TIMEOUT 1083 static struct device_attribute dev_attr_fail_timeout = 1084 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 1085 part_timeout_store); 1086 #endif 1087 1088 static struct attribute *disk_attrs[] = { 1089 &dev_attr_range.attr, 1090 &dev_attr_ext_range.attr, 1091 &dev_attr_removable.attr, 1092 &dev_attr_ro.attr, 1093 &dev_attr_size.attr, 1094 &dev_attr_alignment_offset.attr, 1095 &dev_attr_discard_alignment.attr, 1096 &dev_attr_capability.attr, 1097 &dev_attr_stat.attr, 1098 &dev_attr_inflight.attr, 1099 &dev_attr_badblocks.attr, 1100 #ifdef CONFIG_FAIL_MAKE_REQUEST 1101 &dev_attr_fail.attr, 1102 #endif 1103 #ifdef CONFIG_FAIL_IO_TIMEOUT 1104 &dev_attr_fail_timeout.attr, 1105 #endif 1106 NULL 1107 }; 1108 1109 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1110 { 1111 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1112 struct gendisk *disk = dev_to_disk(dev); 1113 1114 if (a == &dev_attr_badblocks.attr && !disk->bb) 1115 return 0; 1116 return a->mode; 1117 } 1118 1119 static struct attribute_group disk_attr_group = { 1120 .attrs = disk_attrs, 1121 .is_visible = disk_visible, 1122 }; 1123 1124 static const struct attribute_group *disk_attr_groups[] = { 1125 &disk_attr_group, 1126 NULL 1127 }; 1128 1129 /** 1130 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1131 * @disk: disk to replace part_tbl for 1132 * @new_ptbl: new part_tbl to install 1133 * 1134 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1135 * original ptbl is freed using RCU callback. 1136 * 1137 * LOCKING: 1138 * Matching bd_mutex locked or the caller is the only user of @disk. 1139 */ 1140 static void disk_replace_part_tbl(struct gendisk *disk, 1141 struct disk_part_tbl *new_ptbl) 1142 { 1143 struct disk_part_tbl *old_ptbl = 1144 rcu_dereference_protected(disk->part_tbl, 1); 1145 1146 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1147 1148 if (old_ptbl) { 1149 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1150 kfree_rcu(old_ptbl, rcu_head); 1151 } 1152 } 1153 1154 /** 1155 * disk_expand_part_tbl - expand disk->part_tbl 1156 * @disk: disk to expand part_tbl for 1157 * @partno: expand such that this partno can fit in 1158 * 1159 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1160 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1161 * 1162 * LOCKING: 1163 * Matching bd_mutex locked or the caller is the only user of @disk. 1164 * Might sleep. 1165 * 1166 * RETURNS: 1167 * 0 on success, -errno on failure. 1168 */ 1169 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1170 { 1171 struct disk_part_tbl *old_ptbl = 1172 rcu_dereference_protected(disk->part_tbl, 1); 1173 struct disk_part_tbl *new_ptbl; 1174 int len = old_ptbl ? old_ptbl->len : 0; 1175 int i, target; 1176 size_t size; 1177 1178 /* 1179 * check for int overflow, since we can get here from blkpg_ioctl() 1180 * with a user passed 'partno'. 1181 */ 1182 target = partno + 1; 1183 if (target < 0) 1184 return -EINVAL; 1185 1186 /* disk_max_parts() is zero during initialization, ignore if so */ 1187 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1188 return -EINVAL; 1189 1190 if (target <= len) 1191 return 0; 1192 1193 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1194 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1195 if (!new_ptbl) 1196 return -ENOMEM; 1197 1198 new_ptbl->len = target; 1199 1200 for (i = 0; i < len; i++) 1201 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1202 1203 disk_replace_part_tbl(disk, new_ptbl); 1204 return 0; 1205 } 1206 1207 static void disk_release(struct device *dev) 1208 { 1209 struct gendisk *disk = dev_to_disk(dev); 1210 1211 blk_free_devt(dev->devt); 1212 disk_release_events(disk); 1213 kfree(disk->random); 1214 disk_replace_part_tbl(disk, NULL); 1215 hd_free_part(&disk->part0); 1216 if (disk->queue) 1217 blk_put_queue(disk->queue); 1218 kfree(disk); 1219 } 1220 struct class block_class = { 1221 .name = "block", 1222 }; 1223 1224 static char *block_devnode(struct device *dev, umode_t *mode, 1225 kuid_t *uid, kgid_t *gid) 1226 { 1227 struct gendisk *disk = dev_to_disk(dev); 1228 1229 if (disk->devnode) 1230 return disk->devnode(disk, mode); 1231 return NULL; 1232 } 1233 1234 static const struct device_type disk_type = { 1235 .name = "disk", 1236 .groups = disk_attr_groups, 1237 .release = disk_release, 1238 .devnode = block_devnode, 1239 }; 1240 1241 #ifdef CONFIG_PROC_FS 1242 /* 1243 * aggregate disk stat collector. Uses the same stats that the sysfs 1244 * entries do, above, but makes them available through one seq_file. 1245 * 1246 * The output looks suspiciously like /proc/partitions with a bunch of 1247 * extra fields. 1248 */ 1249 static int diskstats_show(struct seq_file *seqf, void *v) 1250 { 1251 struct gendisk *gp = v; 1252 struct disk_part_iter piter; 1253 struct hd_struct *hd; 1254 char buf[BDEVNAME_SIZE]; 1255 unsigned int inflight[2]; 1256 int cpu; 1257 1258 /* 1259 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1260 seq_puts(seqf, "major minor name" 1261 " rio rmerge rsect ruse wio wmerge " 1262 "wsect wuse running use aveq" 1263 "\n\n"); 1264 */ 1265 1266 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1267 while ((hd = disk_part_iter_next(&piter))) { 1268 cpu = part_stat_lock(); 1269 part_round_stats(gp->queue, cpu, hd); 1270 part_stat_unlock(); 1271 part_in_flight(gp->queue, hd, inflight); 1272 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1273 "%u %lu %lu %lu %u %u %u %u\n", 1274 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1275 disk_name(gp, hd->partno, buf), 1276 part_stat_read(hd, ios[READ]), 1277 part_stat_read(hd, merges[READ]), 1278 part_stat_read(hd, sectors[READ]), 1279 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1280 part_stat_read(hd, ios[WRITE]), 1281 part_stat_read(hd, merges[WRITE]), 1282 part_stat_read(hd, sectors[WRITE]), 1283 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1284 inflight[0], 1285 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1286 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1287 ); 1288 } 1289 disk_part_iter_exit(&piter); 1290 1291 return 0; 1292 } 1293 1294 static const struct seq_operations diskstats_op = { 1295 .start = disk_seqf_start, 1296 .next = disk_seqf_next, 1297 .stop = disk_seqf_stop, 1298 .show = diskstats_show 1299 }; 1300 1301 static int diskstats_open(struct inode *inode, struct file *file) 1302 { 1303 return seq_open(file, &diskstats_op); 1304 } 1305 1306 static const struct file_operations proc_diskstats_operations = { 1307 .open = diskstats_open, 1308 .read = seq_read, 1309 .llseek = seq_lseek, 1310 .release = seq_release, 1311 }; 1312 1313 static int __init proc_genhd_init(void) 1314 { 1315 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1316 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1317 return 0; 1318 } 1319 module_init(proc_genhd_init); 1320 #endif /* CONFIG_PROC_FS */ 1321 1322 dev_t blk_lookup_devt(const char *name, int partno) 1323 { 1324 dev_t devt = MKDEV(0, 0); 1325 struct class_dev_iter iter; 1326 struct device *dev; 1327 1328 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1329 while ((dev = class_dev_iter_next(&iter))) { 1330 struct gendisk *disk = dev_to_disk(dev); 1331 struct hd_struct *part; 1332 1333 if (strcmp(dev_name(dev), name)) 1334 continue; 1335 1336 if (partno < disk->minors) { 1337 /* We need to return the right devno, even 1338 * if the partition doesn't exist yet. 1339 */ 1340 devt = MKDEV(MAJOR(dev->devt), 1341 MINOR(dev->devt) + partno); 1342 break; 1343 } 1344 part = disk_get_part(disk, partno); 1345 if (part) { 1346 devt = part_devt(part); 1347 disk_put_part(part); 1348 break; 1349 } 1350 disk_put_part(part); 1351 } 1352 class_dev_iter_exit(&iter); 1353 return devt; 1354 } 1355 EXPORT_SYMBOL(blk_lookup_devt); 1356 1357 struct gendisk *alloc_disk(int minors) 1358 { 1359 return alloc_disk_node(minors, NUMA_NO_NODE); 1360 } 1361 EXPORT_SYMBOL(alloc_disk); 1362 1363 struct gendisk *alloc_disk_node(int minors, int node_id) 1364 { 1365 struct gendisk *disk; 1366 struct disk_part_tbl *ptbl; 1367 1368 if (minors > DISK_MAX_PARTS) { 1369 printk(KERN_ERR 1370 "block: can't allocated more than %d partitions\n", 1371 DISK_MAX_PARTS); 1372 minors = DISK_MAX_PARTS; 1373 } 1374 1375 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1376 if (disk) { 1377 if (!init_part_stats(&disk->part0)) { 1378 kfree(disk); 1379 return NULL; 1380 } 1381 disk->node_id = node_id; 1382 if (disk_expand_part_tbl(disk, 0)) { 1383 free_part_stats(&disk->part0); 1384 kfree(disk); 1385 return NULL; 1386 } 1387 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 1388 rcu_assign_pointer(ptbl->part[0], &disk->part0); 1389 1390 /* 1391 * set_capacity() and get_capacity() currently don't use 1392 * seqcounter to read/update the part0->nr_sects. Still init 1393 * the counter as we can read the sectors in IO submission 1394 * patch using seqence counters. 1395 * 1396 * TODO: Ideally set_capacity() and get_capacity() should be 1397 * converted to make use of bd_mutex and sequence counters. 1398 */ 1399 seqcount_init(&disk->part0.nr_sects_seq); 1400 if (hd_ref_init(&disk->part0)) { 1401 hd_free_part(&disk->part0); 1402 kfree(disk); 1403 return NULL; 1404 } 1405 1406 disk->minors = minors; 1407 rand_initialize_disk(disk); 1408 disk_to_dev(disk)->class = &block_class; 1409 disk_to_dev(disk)->type = &disk_type; 1410 device_initialize(disk_to_dev(disk)); 1411 } 1412 return disk; 1413 } 1414 EXPORT_SYMBOL(alloc_disk_node); 1415 1416 struct kobject *get_disk(struct gendisk *disk) 1417 { 1418 struct module *owner; 1419 struct kobject *kobj; 1420 1421 if (!disk->fops) 1422 return NULL; 1423 owner = disk->fops->owner; 1424 if (owner && !try_module_get(owner)) 1425 return NULL; 1426 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1427 if (kobj == NULL) { 1428 module_put(owner); 1429 return NULL; 1430 } 1431 return kobj; 1432 1433 } 1434 1435 EXPORT_SYMBOL(get_disk); 1436 1437 void put_disk(struct gendisk *disk) 1438 { 1439 if (disk) 1440 kobject_put(&disk_to_dev(disk)->kobj); 1441 } 1442 1443 EXPORT_SYMBOL(put_disk); 1444 1445 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1446 { 1447 char event[] = "DISK_RO=1"; 1448 char *envp[] = { event, NULL }; 1449 1450 if (!ro) 1451 event[8] = '0'; 1452 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1453 } 1454 1455 void set_device_ro(struct block_device *bdev, int flag) 1456 { 1457 bdev->bd_part->policy = flag; 1458 } 1459 1460 EXPORT_SYMBOL(set_device_ro); 1461 1462 void set_disk_ro(struct gendisk *disk, int flag) 1463 { 1464 struct disk_part_iter piter; 1465 struct hd_struct *part; 1466 1467 if (disk->part0.policy != flag) { 1468 set_disk_ro_uevent(disk, flag); 1469 disk->part0.policy = flag; 1470 } 1471 1472 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1473 while ((part = disk_part_iter_next(&piter))) 1474 part->policy = flag; 1475 disk_part_iter_exit(&piter); 1476 } 1477 1478 EXPORT_SYMBOL(set_disk_ro); 1479 1480 int bdev_read_only(struct block_device *bdev) 1481 { 1482 if (!bdev) 1483 return 0; 1484 return bdev->bd_part->policy; 1485 } 1486 1487 EXPORT_SYMBOL(bdev_read_only); 1488 1489 int invalidate_partition(struct gendisk *disk, int partno) 1490 { 1491 int res = 0; 1492 struct block_device *bdev = bdget_disk(disk, partno); 1493 if (bdev) { 1494 fsync_bdev(bdev); 1495 res = __invalidate_device(bdev, true); 1496 bdput(bdev); 1497 } 1498 return res; 1499 } 1500 1501 EXPORT_SYMBOL(invalidate_partition); 1502 1503 /* 1504 * Disk events - monitor disk events like media change and eject request. 1505 */ 1506 struct disk_events { 1507 struct list_head node; /* all disk_event's */ 1508 struct gendisk *disk; /* the associated disk */ 1509 spinlock_t lock; 1510 1511 struct mutex block_mutex; /* protects blocking */ 1512 int block; /* event blocking depth */ 1513 unsigned int pending; /* events already sent out */ 1514 unsigned int clearing; /* events being cleared */ 1515 1516 long poll_msecs; /* interval, -1 for default */ 1517 struct delayed_work dwork; 1518 }; 1519 1520 static const char *disk_events_strs[] = { 1521 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1522 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1523 }; 1524 1525 static char *disk_uevents[] = { 1526 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1527 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1528 }; 1529 1530 /* list of all disk_events */ 1531 static DEFINE_MUTEX(disk_events_mutex); 1532 static LIST_HEAD(disk_events); 1533 1534 /* disable in-kernel polling by default */ 1535 static unsigned long disk_events_dfl_poll_msecs; 1536 1537 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1538 { 1539 struct disk_events *ev = disk->ev; 1540 long intv_msecs = 0; 1541 1542 /* 1543 * If device-specific poll interval is set, always use it. If 1544 * the default is being used, poll iff there are events which 1545 * can't be monitored asynchronously. 1546 */ 1547 if (ev->poll_msecs >= 0) 1548 intv_msecs = ev->poll_msecs; 1549 else if (disk->events & ~disk->async_events) 1550 intv_msecs = disk_events_dfl_poll_msecs; 1551 1552 return msecs_to_jiffies(intv_msecs); 1553 } 1554 1555 /** 1556 * disk_block_events - block and flush disk event checking 1557 * @disk: disk to block events for 1558 * 1559 * On return from this function, it is guaranteed that event checking 1560 * isn't in progress and won't happen until unblocked by 1561 * disk_unblock_events(). Events blocking is counted and the actual 1562 * unblocking happens after the matching number of unblocks are done. 1563 * 1564 * Note that this intentionally does not block event checking from 1565 * disk_clear_events(). 1566 * 1567 * CONTEXT: 1568 * Might sleep. 1569 */ 1570 void disk_block_events(struct gendisk *disk) 1571 { 1572 struct disk_events *ev = disk->ev; 1573 unsigned long flags; 1574 bool cancel; 1575 1576 if (!ev) 1577 return; 1578 1579 /* 1580 * Outer mutex ensures that the first blocker completes canceling 1581 * the event work before further blockers are allowed to finish. 1582 */ 1583 mutex_lock(&ev->block_mutex); 1584 1585 spin_lock_irqsave(&ev->lock, flags); 1586 cancel = !ev->block++; 1587 spin_unlock_irqrestore(&ev->lock, flags); 1588 1589 if (cancel) 1590 cancel_delayed_work_sync(&disk->ev->dwork); 1591 1592 mutex_unlock(&ev->block_mutex); 1593 } 1594 1595 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1596 { 1597 struct disk_events *ev = disk->ev; 1598 unsigned long intv; 1599 unsigned long flags; 1600 1601 spin_lock_irqsave(&ev->lock, flags); 1602 1603 if (WARN_ON_ONCE(ev->block <= 0)) 1604 goto out_unlock; 1605 1606 if (--ev->block) 1607 goto out_unlock; 1608 1609 intv = disk_events_poll_jiffies(disk); 1610 if (check_now) 1611 queue_delayed_work(system_freezable_power_efficient_wq, 1612 &ev->dwork, 0); 1613 else if (intv) 1614 queue_delayed_work(system_freezable_power_efficient_wq, 1615 &ev->dwork, intv); 1616 out_unlock: 1617 spin_unlock_irqrestore(&ev->lock, flags); 1618 } 1619 1620 /** 1621 * disk_unblock_events - unblock disk event checking 1622 * @disk: disk to unblock events for 1623 * 1624 * Undo disk_block_events(). When the block count reaches zero, it 1625 * starts events polling if configured. 1626 * 1627 * CONTEXT: 1628 * Don't care. Safe to call from irq context. 1629 */ 1630 void disk_unblock_events(struct gendisk *disk) 1631 { 1632 if (disk->ev) 1633 __disk_unblock_events(disk, false); 1634 } 1635 1636 /** 1637 * disk_flush_events - schedule immediate event checking and flushing 1638 * @disk: disk to check and flush events for 1639 * @mask: events to flush 1640 * 1641 * Schedule immediate event checking on @disk if not blocked. Events in 1642 * @mask are scheduled to be cleared from the driver. Note that this 1643 * doesn't clear the events from @disk->ev. 1644 * 1645 * CONTEXT: 1646 * If @mask is non-zero must be called with bdev->bd_mutex held. 1647 */ 1648 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1649 { 1650 struct disk_events *ev = disk->ev; 1651 1652 if (!ev) 1653 return; 1654 1655 spin_lock_irq(&ev->lock); 1656 ev->clearing |= mask; 1657 if (!ev->block) 1658 mod_delayed_work(system_freezable_power_efficient_wq, 1659 &ev->dwork, 0); 1660 spin_unlock_irq(&ev->lock); 1661 } 1662 1663 /** 1664 * disk_clear_events - synchronously check, clear and return pending events 1665 * @disk: disk to fetch and clear events from 1666 * @mask: mask of events to be fetched and cleared 1667 * 1668 * Disk events are synchronously checked and pending events in @mask 1669 * are cleared and returned. This ignores the block count. 1670 * 1671 * CONTEXT: 1672 * Might sleep. 1673 */ 1674 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1675 { 1676 const struct block_device_operations *bdops = disk->fops; 1677 struct disk_events *ev = disk->ev; 1678 unsigned int pending; 1679 unsigned int clearing = mask; 1680 1681 if (!ev) { 1682 /* for drivers still using the old ->media_changed method */ 1683 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1684 bdops->media_changed && bdops->media_changed(disk)) 1685 return DISK_EVENT_MEDIA_CHANGE; 1686 return 0; 1687 } 1688 1689 disk_block_events(disk); 1690 1691 /* 1692 * store the union of mask and ev->clearing on the stack so that the 1693 * race with disk_flush_events does not cause ambiguity (ev->clearing 1694 * can still be modified even if events are blocked). 1695 */ 1696 spin_lock_irq(&ev->lock); 1697 clearing |= ev->clearing; 1698 ev->clearing = 0; 1699 spin_unlock_irq(&ev->lock); 1700 1701 disk_check_events(ev, &clearing); 1702 /* 1703 * if ev->clearing is not 0, the disk_flush_events got called in the 1704 * middle of this function, so we want to run the workfn without delay. 1705 */ 1706 __disk_unblock_events(disk, ev->clearing ? true : false); 1707 1708 /* then, fetch and clear pending events */ 1709 spin_lock_irq(&ev->lock); 1710 pending = ev->pending & mask; 1711 ev->pending &= ~mask; 1712 spin_unlock_irq(&ev->lock); 1713 WARN_ON_ONCE(clearing & mask); 1714 1715 return pending; 1716 } 1717 1718 /* 1719 * Separate this part out so that a different pointer for clearing_ptr can be 1720 * passed in for disk_clear_events. 1721 */ 1722 static void disk_events_workfn(struct work_struct *work) 1723 { 1724 struct delayed_work *dwork = to_delayed_work(work); 1725 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1726 1727 disk_check_events(ev, &ev->clearing); 1728 } 1729 1730 static void disk_check_events(struct disk_events *ev, 1731 unsigned int *clearing_ptr) 1732 { 1733 struct gendisk *disk = ev->disk; 1734 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1735 unsigned int clearing = *clearing_ptr; 1736 unsigned int events; 1737 unsigned long intv; 1738 int nr_events = 0, i; 1739 1740 /* check events */ 1741 events = disk->fops->check_events(disk, clearing); 1742 1743 /* accumulate pending events and schedule next poll if necessary */ 1744 spin_lock_irq(&ev->lock); 1745 1746 events &= ~ev->pending; 1747 ev->pending |= events; 1748 *clearing_ptr &= ~clearing; 1749 1750 intv = disk_events_poll_jiffies(disk); 1751 if (!ev->block && intv) 1752 queue_delayed_work(system_freezable_power_efficient_wq, 1753 &ev->dwork, intv); 1754 1755 spin_unlock_irq(&ev->lock); 1756 1757 /* 1758 * Tell userland about new events. Only the events listed in 1759 * @disk->events are reported. Unlisted events are processed the 1760 * same internally but never get reported to userland. 1761 */ 1762 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1763 if (events & disk->events & (1 << i)) 1764 envp[nr_events++] = disk_uevents[i]; 1765 1766 if (nr_events) 1767 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1768 } 1769 1770 /* 1771 * A disk events enabled device has the following sysfs nodes under 1772 * its /sys/block/X/ directory. 1773 * 1774 * events : list of all supported events 1775 * events_async : list of events which can be detected w/o polling 1776 * events_poll_msecs : polling interval, 0: disable, -1: system default 1777 */ 1778 static ssize_t __disk_events_show(unsigned int events, char *buf) 1779 { 1780 const char *delim = ""; 1781 ssize_t pos = 0; 1782 int i; 1783 1784 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1785 if (events & (1 << i)) { 1786 pos += sprintf(buf + pos, "%s%s", 1787 delim, disk_events_strs[i]); 1788 delim = " "; 1789 } 1790 if (pos) 1791 pos += sprintf(buf + pos, "\n"); 1792 return pos; 1793 } 1794 1795 static ssize_t disk_events_show(struct device *dev, 1796 struct device_attribute *attr, char *buf) 1797 { 1798 struct gendisk *disk = dev_to_disk(dev); 1799 1800 return __disk_events_show(disk->events, buf); 1801 } 1802 1803 static ssize_t disk_events_async_show(struct device *dev, 1804 struct device_attribute *attr, char *buf) 1805 { 1806 struct gendisk *disk = dev_to_disk(dev); 1807 1808 return __disk_events_show(disk->async_events, buf); 1809 } 1810 1811 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1812 struct device_attribute *attr, 1813 char *buf) 1814 { 1815 struct gendisk *disk = dev_to_disk(dev); 1816 1817 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1818 } 1819 1820 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1821 struct device_attribute *attr, 1822 const char *buf, size_t count) 1823 { 1824 struct gendisk *disk = dev_to_disk(dev); 1825 long intv; 1826 1827 if (!count || !sscanf(buf, "%ld", &intv)) 1828 return -EINVAL; 1829 1830 if (intv < 0 && intv != -1) 1831 return -EINVAL; 1832 1833 disk_block_events(disk); 1834 disk->ev->poll_msecs = intv; 1835 __disk_unblock_events(disk, true); 1836 1837 return count; 1838 } 1839 1840 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1841 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1842 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1843 disk_events_poll_msecs_show, 1844 disk_events_poll_msecs_store); 1845 1846 static const struct attribute *disk_events_attrs[] = { 1847 &dev_attr_events.attr, 1848 &dev_attr_events_async.attr, 1849 &dev_attr_events_poll_msecs.attr, 1850 NULL, 1851 }; 1852 1853 /* 1854 * The default polling interval can be specified by the kernel 1855 * parameter block.events_dfl_poll_msecs which defaults to 0 1856 * (disable). This can also be modified runtime by writing to 1857 * /sys/module/block/events_dfl_poll_msecs. 1858 */ 1859 static int disk_events_set_dfl_poll_msecs(const char *val, 1860 const struct kernel_param *kp) 1861 { 1862 struct disk_events *ev; 1863 int ret; 1864 1865 ret = param_set_ulong(val, kp); 1866 if (ret < 0) 1867 return ret; 1868 1869 mutex_lock(&disk_events_mutex); 1870 1871 list_for_each_entry(ev, &disk_events, node) 1872 disk_flush_events(ev->disk, 0); 1873 1874 mutex_unlock(&disk_events_mutex); 1875 1876 return 0; 1877 } 1878 1879 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1880 .set = disk_events_set_dfl_poll_msecs, 1881 .get = param_get_ulong, 1882 }; 1883 1884 #undef MODULE_PARAM_PREFIX 1885 #define MODULE_PARAM_PREFIX "block." 1886 1887 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1888 &disk_events_dfl_poll_msecs, 0644); 1889 1890 /* 1891 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1892 */ 1893 static void disk_alloc_events(struct gendisk *disk) 1894 { 1895 struct disk_events *ev; 1896 1897 if (!disk->fops->check_events) 1898 return; 1899 1900 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1901 if (!ev) { 1902 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1903 return; 1904 } 1905 1906 INIT_LIST_HEAD(&ev->node); 1907 ev->disk = disk; 1908 spin_lock_init(&ev->lock); 1909 mutex_init(&ev->block_mutex); 1910 ev->block = 1; 1911 ev->poll_msecs = -1; 1912 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1913 1914 disk->ev = ev; 1915 } 1916 1917 static void disk_add_events(struct gendisk *disk) 1918 { 1919 if (!disk->ev) 1920 return; 1921 1922 /* FIXME: error handling */ 1923 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 1924 pr_warn("%s: failed to create sysfs files for events\n", 1925 disk->disk_name); 1926 1927 mutex_lock(&disk_events_mutex); 1928 list_add_tail(&disk->ev->node, &disk_events); 1929 mutex_unlock(&disk_events_mutex); 1930 1931 /* 1932 * Block count is initialized to 1 and the following initial 1933 * unblock kicks it into action. 1934 */ 1935 __disk_unblock_events(disk, true); 1936 } 1937 1938 static void disk_del_events(struct gendisk *disk) 1939 { 1940 if (!disk->ev) 1941 return; 1942 1943 disk_block_events(disk); 1944 1945 mutex_lock(&disk_events_mutex); 1946 list_del_init(&disk->ev->node); 1947 mutex_unlock(&disk_events_mutex); 1948 1949 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1950 } 1951 1952 static void disk_release_events(struct gendisk *disk) 1953 { 1954 /* the block count should be 1 from disk_del_events() */ 1955 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1956 kfree(disk->ev); 1957 } 1958