xref: /openbmc/linux/block/genhd.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  gendisk handling
4  */
5 
6 #include <linux/module.h>
7 #include <linux/fs.h>
8 #include <linux/genhd.h>
9 #include <linux/kdev_t.h>
10 #include <linux/kernel.h>
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 #include <linux/init.h>
14 #include <linux/spinlock.h>
15 #include <linux/proc_fs.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 #include <linux/kmod.h>
19 #include <linux/kobj_map.h>
20 #include <linux/mutex.h>
21 #include <linux/idr.h>
22 #include <linux/log2.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/badblocks.h>
25 
26 #include "blk.h"
27 
28 static DEFINE_MUTEX(block_class_lock);
29 struct kobject *block_depr;
30 
31 /* for extended dynamic devt allocation, currently only one major is used */
32 #define NR_EXT_DEVT		(1 << MINORBITS)
33 
34 /* For extended devt allocation.  ext_devt_lock prevents look up
35  * results from going away underneath its user.
36  */
37 static DEFINE_SPINLOCK(ext_devt_lock);
38 static DEFINE_IDR(ext_devt_idr);
39 
40 static const struct device_type disk_type;
41 
42 static void disk_check_events(struct disk_events *ev,
43 			      unsigned int *clearing_ptr);
44 static void disk_alloc_events(struct gendisk *disk);
45 static void disk_add_events(struct gendisk *disk);
46 static void disk_del_events(struct gendisk *disk);
47 static void disk_release_events(struct gendisk *disk);
48 
49 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
50 {
51 	if (queue_is_mq(q))
52 		return;
53 
54 	part_stat_local_inc(part, in_flight[rw]);
55 	if (part->partno)
56 		part_stat_local_inc(&part_to_disk(part)->part0, in_flight[rw]);
57 }
58 
59 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
60 {
61 	if (queue_is_mq(q))
62 		return;
63 
64 	part_stat_local_dec(part, in_flight[rw]);
65 	if (part->partno)
66 		part_stat_local_dec(&part_to_disk(part)->part0, in_flight[rw]);
67 }
68 
69 unsigned int part_in_flight(struct request_queue *q, struct hd_struct *part)
70 {
71 	int cpu;
72 	unsigned int inflight;
73 
74 	if (queue_is_mq(q)) {
75 		return blk_mq_in_flight(q, part);
76 	}
77 
78 	inflight = 0;
79 	for_each_possible_cpu(cpu) {
80 		inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
81 			    part_stat_local_read_cpu(part, in_flight[1], cpu);
82 	}
83 	if ((int)inflight < 0)
84 		inflight = 0;
85 
86 	return inflight;
87 }
88 
89 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
90 		       unsigned int inflight[2])
91 {
92 	int cpu;
93 
94 	if (queue_is_mq(q)) {
95 		blk_mq_in_flight_rw(q, part, inflight);
96 		return;
97 	}
98 
99 	inflight[0] = 0;
100 	inflight[1] = 0;
101 	for_each_possible_cpu(cpu) {
102 		inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
103 		inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
104 	}
105 	if ((int)inflight[0] < 0)
106 		inflight[0] = 0;
107 	if ((int)inflight[1] < 0)
108 		inflight[1] = 0;
109 }
110 
111 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
112 {
113 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
114 
115 	if (unlikely(partno < 0 || partno >= ptbl->len))
116 		return NULL;
117 	return rcu_dereference(ptbl->part[partno]);
118 }
119 
120 /**
121  * disk_get_part - get partition
122  * @disk: disk to look partition from
123  * @partno: partition number
124  *
125  * Look for partition @partno from @disk.  If found, increment
126  * reference count and return it.
127  *
128  * CONTEXT:
129  * Don't care.
130  *
131  * RETURNS:
132  * Pointer to the found partition on success, NULL if not found.
133  */
134 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
135 {
136 	struct hd_struct *part;
137 
138 	rcu_read_lock();
139 	part = __disk_get_part(disk, partno);
140 	if (part)
141 		get_device(part_to_dev(part));
142 	rcu_read_unlock();
143 
144 	return part;
145 }
146 EXPORT_SYMBOL_GPL(disk_get_part);
147 
148 /**
149  * disk_part_iter_init - initialize partition iterator
150  * @piter: iterator to initialize
151  * @disk: disk to iterate over
152  * @flags: DISK_PITER_* flags
153  *
154  * Initialize @piter so that it iterates over partitions of @disk.
155  *
156  * CONTEXT:
157  * Don't care.
158  */
159 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
160 			  unsigned int flags)
161 {
162 	struct disk_part_tbl *ptbl;
163 
164 	rcu_read_lock();
165 	ptbl = rcu_dereference(disk->part_tbl);
166 
167 	piter->disk = disk;
168 	piter->part = NULL;
169 
170 	if (flags & DISK_PITER_REVERSE)
171 		piter->idx = ptbl->len - 1;
172 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
173 		piter->idx = 0;
174 	else
175 		piter->idx = 1;
176 
177 	piter->flags = flags;
178 
179 	rcu_read_unlock();
180 }
181 EXPORT_SYMBOL_GPL(disk_part_iter_init);
182 
183 /**
184  * disk_part_iter_next - proceed iterator to the next partition and return it
185  * @piter: iterator of interest
186  *
187  * Proceed @piter to the next partition and return it.
188  *
189  * CONTEXT:
190  * Don't care.
191  */
192 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
193 {
194 	struct disk_part_tbl *ptbl;
195 	int inc, end;
196 
197 	/* put the last partition */
198 	disk_put_part(piter->part);
199 	piter->part = NULL;
200 
201 	/* get part_tbl */
202 	rcu_read_lock();
203 	ptbl = rcu_dereference(piter->disk->part_tbl);
204 
205 	/* determine iteration parameters */
206 	if (piter->flags & DISK_PITER_REVERSE) {
207 		inc = -1;
208 		if (piter->flags & (DISK_PITER_INCL_PART0 |
209 				    DISK_PITER_INCL_EMPTY_PART0))
210 			end = -1;
211 		else
212 			end = 0;
213 	} else {
214 		inc = 1;
215 		end = ptbl->len;
216 	}
217 
218 	/* iterate to the next partition */
219 	for (; piter->idx != end; piter->idx += inc) {
220 		struct hd_struct *part;
221 
222 		part = rcu_dereference(ptbl->part[piter->idx]);
223 		if (!part)
224 			continue;
225 		if (!part_nr_sects_read(part) &&
226 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
227 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
228 		      piter->idx == 0))
229 			continue;
230 
231 		get_device(part_to_dev(part));
232 		piter->part = part;
233 		piter->idx += inc;
234 		break;
235 	}
236 
237 	rcu_read_unlock();
238 
239 	return piter->part;
240 }
241 EXPORT_SYMBOL_GPL(disk_part_iter_next);
242 
243 /**
244  * disk_part_iter_exit - finish up partition iteration
245  * @piter: iter of interest
246  *
247  * Called when iteration is over.  Cleans up @piter.
248  *
249  * CONTEXT:
250  * Don't care.
251  */
252 void disk_part_iter_exit(struct disk_part_iter *piter)
253 {
254 	disk_put_part(piter->part);
255 	piter->part = NULL;
256 }
257 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
258 
259 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
260 {
261 	return part->start_sect <= sector &&
262 		sector < part->start_sect + part_nr_sects_read(part);
263 }
264 
265 /**
266  * disk_map_sector_rcu - map sector to partition
267  * @disk: gendisk of interest
268  * @sector: sector to map
269  *
270  * Find out which partition @sector maps to on @disk.  This is
271  * primarily used for stats accounting.
272  *
273  * CONTEXT:
274  * RCU read locked.  The returned partition pointer is valid only
275  * while preemption is disabled.
276  *
277  * RETURNS:
278  * Found partition on success, part0 is returned if no partition matches
279  */
280 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
281 {
282 	struct disk_part_tbl *ptbl;
283 	struct hd_struct *part;
284 	int i;
285 
286 	ptbl = rcu_dereference(disk->part_tbl);
287 
288 	part = rcu_dereference(ptbl->last_lookup);
289 	if (part && sector_in_part(part, sector))
290 		return part;
291 
292 	for (i = 1; i < ptbl->len; i++) {
293 		part = rcu_dereference(ptbl->part[i]);
294 
295 		if (part && sector_in_part(part, sector)) {
296 			rcu_assign_pointer(ptbl->last_lookup, part);
297 			return part;
298 		}
299 	}
300 	return &disk->part0;
301 }
302 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
303 
304 /**
305  * disk_has_partitions
306  * @disk: gendisk of interest
307  *
308  * Walk through the partition table and check if valid partition exists.
309  *
310  * CONTEXT:
311  * Don't care.
312  *
313  * RETURNS:
314  * True if the gendisk has at least one valid non-zero size partition.
315  * Otherwise false.
316  */
317 bool disk_has_partitions(struct gendisk *disk)
318 {
319 	struct disk_part_tbl *ptbl;
320 	int i;
321 	bool ret = false;
322 
323 	rcu_read_lock();
324 	ptbl = rcu_dereference(disk->part_tbl);
325 
326 	/* Iterate partitions skipping the whole device at index 0 */
327 	for (i = 1; i < ptbl->len; i++) {
328 		if (rcu_dereference(ptbl->part[i])) {
329 			ret = true;
330 			break;
331 		}
332 	}
333 
334 	rcu_read_unlock();
335 
336 	return ret;
337 }
338 EXPORT_SYMBOL_GPL(disk_has_partitions);
339 
340 /*
341  * Can be deleted altogether. Later.
342  *
343  */
344 #define BLKDEV_MAJOR_HASH_SIZE 255
345 static struct blk_major_name {
346 	struct blk_major_name *next;
347 	int major;
348 	char name[16];
349 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
350 
351 /* index in the above - for now: assume no multimajor ranges */
352 static inline int major_to_index(unsigned major)
353 {
354 	return major % BLKDEV_MAJOR_HASH_SIZE;
355 }
356 
357 #ifdef CONFIG_PROC_FS
358 void blkdev_show(struct seq_file *seqf, off_t offset)
359 {
360 	struct blk_major_name *dp;
361 
362 	mutex_lock(&block_class_lock);
363 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
364 		if (dp->major == offset)
365 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
366 	mutex_unlock(&block_class_lock);
367 }
368 #endif /* CONFIG_PROC_FS */
369 
370 /**
371  * register_blkdev - register a new block device
372  *
373  * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
374  *         @major = 0, try to allocate any unused major number.
375  * @name: the name of the new block device as a zero terminated string
376  *
377  * The @name must be unique within the system.
378  *
379  * The return value depends on the @major input parameter:
380  *
381  *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
382  *    then the function returns zero on success, or a negative error code
383  *  - if any unused major number was requested with @major = 0 parameter
384  *    then the return value is the allocated major number in range
385  *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
386  *
387  * See Documentation/admin-guide/devices.txt for the list of allocated
388  * major numbers.
389  */
390 int register_blkdev(unsigned int major, const char *name)
391 {
392 	struct blk_major_name **n, *p;
393 	int index, ret = 0;
394 
395 	mutex_lock(&block_class_lock);
396 
397 	/* temporary */
398 	if (major == 0) {
399 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
400 			if (major_names[index] == NULL)
401 				break;
402 		}
403 
404 		if (index == 0) {
405 			printk("%s: failed to get major for %s\n",
406 			       __func__, name);
407 			ret = -EBUSY;
408 			goto out;
409 		}
410 		major = index;
411 		ret = major;
412 	}
413 
414 	if (major >= BLKDEV_MAJOR_MAX) {
415 		pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
416 		       __func__, major, BLKDEV_MAJOR_MAX-1, name);
417 
418 		ret = -EINVAL;
419 		goto out;
420 	}
421 
422 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
423 	if (p == NULL) {
424 		ret = -ENOMEM;
425 		goto out;
426 	}
427 
428 	p->major = major;
429 	strlcpy(p->name, name, sizeof(p->name));
430 	p->next = NULL;
431 	index = major_to_index(major);
432 
433 	for (n = &major_names[index]; *n; n = &(*n)->next) {
434 		if ((*n)->major == major)
435 			break;
436 	}
437 	if (!*n)
438 		*n = p;
439 	else
440 		ret = -EBUSY;
441 
442 	if (ret < 0) {
443 		printk("register_blkdev: cannot get major %u for %s\n",
444 		       major, name);
445 		kfree(p);
446 	}
447 out:
448 	mutex_unlock(&block_class_lock);
449 	return ret;
450 }
451 
452 EXPORT_SYMBOL(register_blkdev);
453 
454 void unregister_blkdev(unsigned int major, const char *name)
455 {
456 	struct blk_major_name **n;
457 	struct blk_major_name *p = NULL;
458 	int index = major_to_index(major);
459 
460 	mutex_lock(&block_class_lock);
461 	for (n = &major_names[index]; *n; n = &(*n)->next)
462 		if ((*n)->major == major)
463 			break;
464 	if (!*n || strcmp((*n)->name, name)) {
465 		WARN_ON(1);
466 	} else {
467 		p = *n;
468 		*n = p->next;
469 	}
470 	mutex_unlock(&block_class_lock);
471 	kfree(p);
472 }
473 
474 EXPORT_SYMBOL(unregister_blkdev);
475 
476 static struct kobj_map *bdev_map;
477 
478 /**
479  * blk_mangle_minor - scatter minor numbers apart
480  * @minor: minor number to mangle
481  *
482  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
483  * is enabled.  Mangling twice gives the original value.
484  *
485  * RETURNS:
486  * Mangled value.
487  *
488  * CONTEXT:
489  * Don't care.
490  */
491 static int blk_mangle_minor(int minor)
492 {
493 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
494 	int i;
495 
496 	for (i = 0; i < MINORBITS / 2; i++) {
497 		int low = minor & (1 << i);
498 		int high = minor & (1 << (MINORBITS - 1 - i));
499 		int distance = MINORBITS - 1 - 2 * i;
500 
501 		minor ^= low | high;	/* clear both bits */
502 		low <<= distance;	/* swap the positions */
503 		high >>= distance;
504 		minor |= low | high;	/* and set */
505 	}
506 #endif
507 	return minor;
508 }
509 
510 /**
511  * blk_alloc_devt - allocate a dev_t for a partition
512  * @part: partition to allocate dev_t for
513  * @devt: out parameter for resulting dev_t
514  *
515  * Allocate a dev_t for block device.
516  *
517  * RETURNS:
518  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
519  * failure.
520  *
521  * CONTEXT:
522  * Might sleep.
523  */
524 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
525 {
526 	struct gendisk *disk = part_to_disk(part);
527 	int idx;
528 
529 	/* in consecutive minor range? */
530 	if (part->partno < disk->minors) {
531 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
532 		return 0;
533 	}
534 
535 	/* allocate ext devt */
536 	idr_preload(GFP_KERNEL);
537 
538 	spin_lock_bh(&ext_devt_lock);
539 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
540 	spin_unlock_bh(&ext_devt_lock);
541 
542 	idr_preload_end();
543 	if (idx < 0)
544 		return idx == -ENOSPC ? -EBUSY : idx;
545 
546 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
547 	return 0;
548 }
549 
550 /**
551  * blk_free_devt - free a dev_t
552  * @devt: dev_t to free
553  *
554  * Free @devt which was allocated using blk_alloc_devt().
555  *
556  * CONTEXT:
557  * Might sleep.
558  */
559 void blk_free_devt(dev_t devt)
560 {
561 	if (devt == MKDEV(0, 0))
562 		return;
563 
564 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
565 		spin_lock_bh(&ext_devt_lock);
566 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
567 		spin_unlock_bh(&ext_devt_lock);
568 	}
569 }
570 
571 /*
572  * We invalidate devt by assigning NULL pointer for devt in idr.
573  */
574 void blk_invalidate_devt(dev_t devt)
575 {
576 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
577 		spin_lock_bh(&ext_devt_lock);
578 		idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
579 		spin_unlock_bh(&ext_devt_lock);
580 	}
581 }
582 
583 static char *bdevt_str(dev_t devt, char *buf)
584 {
585 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
586 		char tbuf[BDEVT_SIZE];
587 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
588 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
589 	} else
590 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
591 
592 	return buf;
593 }
594 
595 /*
596  * Register device numbers dev..(dev+range-1)
597  * range must be nonzero
598  * The hash chain is sorted on range, so that subranges can override.
599  */
600 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
601 			 struct kobject *(*probe)(dev_t, int *, void *),
602 			 int (*lock)(dev_t, void *), void *data)
603 {
604 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
605 }
606 
607 EXPORT_SYMBOL(blk_register_region);
608 
609 void blk_unregister_region(dev_t devt, unsigned long range)
610 {
611 	kobj_unmap(bdev_map, devt, range);
612 }
613 
614 EXPORT_SYMBOL(blk_unregister_region);
615 
616 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
617 {
618 	struct gendisk *p = data;
619 
620 	return &disk_to_dev(p)->kobj;
621 }
622 
623 static int exact_lock(dev_t devt, void *data)
624 {
625 	struct gendisk *p = data;
626 
627 	if (!get_disk_and_module(p))
628 		return -1;
629 	return 0;
630 }
631 
632 static void register_disk(struct device *parent, struct gendisk *disk,
633 			  const struct attribute_group **groups)
634 {
635 	struct device *ddev = disk_to_dev(disk);
636 	struct block_device *bdev;
637 	struct disk_part_iter piter;
638 	struct hd_struct *part;
639 	int err;
640 
641 	ddev->parent = parent;
642 
643 	dev_set_name(ddev, "%s", disk->disk_name);
644 
645 	/* delay uevents, until we scanned partition table */
646 	dev_set_uevent_suppress(ddev, 1);
647 
648 	if (groups) {
649 		WARN_ON(ddev->groups);
650 		ddev->groups = groups;
651 	}
652 	if (device_add(ddev))
653 		return;
654 	if (!sysfs_deprecated) {
655 		err = sysfs_create_link(block_depr, &ddev->kobj,
656 					kobject_name(&ddev->kobj));
657 		if (err) {
658 			device_del(ddev);
659 			return;
660 		}
661 	}
662 
663 	/*
664 	 * avoid probable deadlock caused by allocating memory with
665 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
666 	 * devices
667 	 */
668 	pm_runtime_set_memalloc_noio(ddev, true);
669 
670 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
671 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
672 
673 	if (disk->flags & GENHD_FL_HIDDEN) {
674 		dev_set_uevent_suppress(ddev, 0);
675 		return;
676 	}
677 
678 	/* No minors to use for partitions */
679 	if (!disk_part_scan_enabled(disk))
680 		goto exit;
681 
682 	/* No such device (e.g., media were just removed) */
683 	if (!get_capacity(disk))
684 		goto exit;
685 
686 	bdev = bdget_disk(disk, 0);
687 	if (!bdev)
688 		goto exit;
689 
690 	bdev->bd_invalidated = 1;
691 	err = blkdev_get(bdev, FMODE_READ, NULL);
692 	if (err < 0)
693 		goto exit;
694 	blkdev_put(bdev, FMODE_READ);
695 
696 exit:
697 	/* announce disk after possible partitions are created */
698 	dev_set_uevent_suppress(ddev, 0);
699 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
700 
701 	/* announce possible partitions */
702 	disk_part_iter_init(&piter, disk, 0);
703 	while ((part = disk_part_iter_next(&piter)))
704 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
705 	disk_part_iter_exit(&piter);
706 
707 	if (disk->queue->backing_dev_info->dev) {
708 		err = sysfs_create_link(&ddev->kobj,
709 			  &disk->queue->backing_dev_info->dev->kobj,
710 			  "bdi");
711 		WARN_ON(err);
712 	}
713 }
714 
715 /**
716  * __device_add_disk - add disk information to kernel list
717  * @parent: parent device for the disk
718  * @disk: per-device partitioning information
719  * @groups: Additional per-device sysfs groups
720  * @register_queue: register the queue if set to true
721  *
722  * This function registers the partitioning information in @disk
723  * with the kernel.
724  *
725  * FIXME: error handling
726  */
727 static void __device_add_disk(struct device *parent, struct gendisk *disk,
728 			      const struct attribute_group **groups,
729 			      bool register_queue)
730 {
731 	dev_t devt;
732 	int retval;
733 
734 	/*
735 	 * The disk queue should now be all set with enough information about
736 	 * the device for the elevator code to pick an adequate default
737 	 * elevator if one is needed, that is, for devices requesting queue
738 	 * registration.
739 	 */
740 	if (register_queue)
741 		elevator_init_mq(disk->queue);
742 
743 	/* minors == 0 indicates to use ext devt from part0 and should
744 	 * be accompanied with EXT_DEVT flag.  Make sure all
745 	 * parameters make sense.
746 	 */
747 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
748 	WARN_ON(!disk->minors &&
749 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
750 
751 	disk->flags |= GENHD_FL_UP;
752 
753 	retval = blk_alloc_devt(&disk->part0, &devt);
754 	if (retval) {
755 		WARN_ON(1);
756 		return;
757 	}
758 	disk->major = MAJOR(devt);
759 	disk->first_minor = MINOR(devt);
760 
761 	disk_alloc_events(disk);
762 
763 	if (disk->flags & GENHD_FL_HIDDEN) {
764 		/*
765 		 * Don't let hidden disks show up in /proc/partitions,
766 		 * and don't bother scanning for partitions either.
767 		 */
768 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
769 		disk->flags |= GENHD_FL_NO_PART_SCAN;
770 	} else {
771 		int ret;
772 
773 		/* Register BDI before referencing it from bdev */
774 		disk_to_dev(disk)->devt = devt;
775 		ret = bdi_register_owner(disk->queue->backing_dev_info,
776 						disk_to_dev(disk));
777 		WARN_ON(ret);
778 		blk_register_region(disk_devt(disk), disk->minors, NULL,
779 				    exact_match, exact_lock, disk);
780 	}
781 	register_disk(parent, disk, groups);
782 	if (register_queue)
783 		blk_register_queue(disk);
784 
785 	/*
786 	 * Take an extra ref on queue which will be put on disk_release()
787 	 * so that it sticks around as long as @disk is there.
788 	 */
789 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
790 
791 	disk_add_events(disk);
792 	blk_integrity_add(disk);
793 }
794 
795 void device_add_disk(struct device *parent, struct gendisk *disk,
796 		     const struct attribute_group **groups)
797 
798 {
799 	__device_add_disk(parent, disk, groups, true);
800 }
801 EXPORT_SYMBOL(device_add_disk);
802 
803 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
804 {
805 	__device_add_disk(parent, disk, NULL, false);
806 }
807 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
808 
809 void del_gendisk(struct gendisk *disk)
810 {
811 	struct disk_part_iter piter;
812 	struct hd_struct *part;
813 
814 	blk_integrity_del(disk);
815 	disk_del_events(disk);
816 
817 	/*
818 	 * Block lookups of the disk until all bdevs are unhashed and the
819 	 * disk is marked as dead (GENHD_FL_UP cleared).
820 	 */
821 	down_write(&disk->lookup_sem);
822 	/* invalidate stuff */
823 	disk_part_iter_init(&piter, disk,
824 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
825 	while ((part = disk_part_iter_next(&piter))) {
826 		invalidate_partition(disk, part->partno);
827 		bdev_unhash_inode(part_devt(part));
828 		delete_partition(disk, part->partno);
829 	}
830 	disk_part_iter_exit(&piter);
831 
832 	invalidate_partition(disk, 0);
833 	bdev_unhash_inode(disk_devt(disk));
834 	set_capacity(disk, 0);
835 	disk->flags &= ~GENHD_FL_UP;
836 	up_write(&disk->lookup_sem);
837 
838 	if (!(disk->flags & GENHD_FL_HIDDEN))
839 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
840 	if (disk->queue) {
841 		/*
842 		 * Unregister bdi before releasing device numbers (as they can
843 		 * get reused and we'd get clashes in sysfs).
844 		 */
845 		if (!(disk->flags & GENHD_FL_HIDDEN))
846 			bdi_unregister(disk->queue->backing_dev_info);
847 		blk_unregister_queue(disk);
848 	} else {
849 		WARN_ON(1);
850 	}
851 
852 	if (!(disk->flags & GENHD_FL_HIDDEN))
853 		blk_unregister_region(disk_devt(disk), disk->minors);
854 	/*
855 	 * Remove gendisk pointer from idr so that it cannot be looked up
856 	 * while RCU period before freeing gendisk is running to prevent
857 	 * use-after-free issues. Note that the device number stays
858 	 * "in-use" until we really free the gendisk.
859 	 */
860 	blk_invalidate_devt(disk_devt(disk));
861 
862 	kobject_put(disk->part0.holder_dir);
863 	kobject_put(disk->slave_dir);
864 
865 	part_stat_set_all(&disk->part0, 0);
866 	disk->part0.stamp = 0;
867 	if (!sysfs_deprecated)
868 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
869 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
870 	device_del(disk_to_dev(disk));
871 }
872 EXPORT_SYMBOL(del_gendisk);
873 
874 /* sysfs access to bad-blocks list. */
875 static ssize_t disk_badblocks_show(struct device *dev,
876 					struct device_attribute *attr,
877 					char *page)
878 {
879 	struct gendisk *disk = dev_to_disk(dev);
880 
881 	if (!disk->bb)
882 		return sprintf(page, "\n");
883 
884 	return badblocks_show(disk->bb, page, 0);
885 }
886 
887 static ssize_t disk_badblocks_store(struct device *dev,
888 					struct device_attribute *attr,
889 					const char *page, size_t len)
890 {
891 	struct gendisk *disk = dev_to_disk(dev);
892 
893 	if (!disk->bb)
894 		return -ENXIO;
895 
896 	return badblocks_store(disk->bb, page, len, 0);
897 }
898 
899 /**
900  * get_gendisk - get partitioning information for a given device
901  * @devt: device to get partitioning information for
902  * @partno: returned partition index
903  *
904  * This function gets the structure containing partitioning
905  * information for the given device @devt.
906  */
907 struct gendisk *get_gendisk(dev_t devt, int *partno)
908 {
909 	struct gendisk *disk = NULL;
910 
911 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
912 		struct kobject *kobj;
913 
914 		kobj = kobj_lookup(bdev_map, devt, partno);
915 		if (kobj)
916 			disk = dev_to_disk(kobj_to_dev(kobj));
917 	} else {
918 		struct hd_struct *part;
919 
920 		spin_lock_bh(&ext_devt_lock);
921 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
922 		if (part && get_disk_and_module(part_to_disk(part))) {
923 			*partno = part->partno;
924 			disk = part_to_disk(part);
925 		}
926 		spin_unlock_bh(&ext_devt_lock);
927 	}
928 
929 	if (!disk)
930 		return NULL;
931 
932 	/*
933 	 * Synchronize with del_gendisk() to not return disk that is being
934 	 * destroyed.
935 	 */
936 	down_read(&disk->lookup_sem);
937 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
938 		     !(disk->flags & GENHD_FL_UP))) {
939 		up_read(&disk->lookup_sem);
940 		put_disk_and_module(disk);
941 		disk = NULL;
942 	} else {
943 		up_read(&disk->lookup_sem);
944 	}
945 	return disk;
946 }
947 EXPORT_SYMBOL(get_gendisk);
948 
949 /**
950  * bdget_disk - do bdget() by gendisk and partition number
951  * @disk: gendisk of interest
952  * @partno: partition number
953  *
954  * Find partition @partno from @disk, do bdget() on it.
955  *
956  * CONTEXT:
957  * Don't care.
958  *
959  * RETURNS:
960  * Resulting block_device on success, NULL on failure.
961  */
962 struct block_device *bdget_disk(struct gendisk *disk, int partno)
963 {
964 	struct hd_struct *part;
965 	struct block_device *bdev = NULL;
966 
967 	part = disk_get_part(disk, partno);
968 	if (part)
969 		bdev = bdget(part_devt(part));
970 	disk_put_part(part);
971 
972 	return bdev;
973 }
974 EXPORT_SYMBOL(bdget_disk);
975 
976 /*
977  * print a full list of all partitions - intended for places where the root
978  * filesystem can't be mounted and thus to give the victim some idea of what
979  * went wrong
980  */
981 void __init printk_all_partitions(void)
982 {
983 	struct class_dev_iter iter;
984 	struct device *dev;
985 
986 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
987 	while ((dev = class_dev_iter_next(&iter))) {
988 		struct gendisk *disk = dev_to_disk(dev);
989 		struct disk_part_iter piter;
990 		struct hd_struct *part;
991 		char name_buf[BDEVNAME_SIZE];
992 		char devt_buf[BDEVT_SIZE];
993 
994 		/*
995 		 * Don't show empty devices or things that have been
996 		 * suppressed
997 		 */
998 		if (get_capacity(disk) == 0 ||
999 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
1000 			continue;
1001 
1002 		/*
1003 		 * Note, unlike /proc/partitions, I am showing the
1004 		 * numbers in hex - the same format as the root=
1005 		 * option takes.
1006 		 */
1007 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
1008 		while ((part = disk_part_iter_next(&piter))) {
1009 			bool is_part0 = part == &disk->part0;
1010 
1011 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
1012 			       bdevt_str(part_devt(part), devt_buf),
1013 			       (unsigned long long)part_nr_sects_read(part) >> 1
1014 			       , disk_name(disk, part->partno, name_buf),
1015 			       part->info ? part->info->uuid : "");
1016 			if (is_part0) {
1017 				if (dev->parent && dev->parent->driver)
1018 					printk(" driver: %s\n",
1019 					      dev->parent->driver->name);
1020 				else
1021 					printk(" (driver?)\n");
1022 			} else
1023 				printk("\n");
1024 		}
1025 		disk_part_iter_exit(&piter);
1026 	}
1027 	class_dev_iter_exit(&iter);
1028 }
1029 
1030 #ifdef CONFIG_PROC_FS
1031 /* iterator */
1032 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
1033 {
1034 	loff_t skip = *pos;
1035 	struct class_dev_iter *iter;
1036 	struct device *dev;
1037 
1038 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1039 	if (!iter)
1040 		return ERR_PTR(-ENOMEM);
1041 
1042 	seqf->private = iter;
1043 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1044 	do {
1045 		dev = class_dev_iter_next(iter);
1046 		if (!dev)
1047 			return NULL;
1048 	} while (skip--);
1049 
1050 	return dev_to_disk(dev);
1051 }
1052 
1053 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1054 {
1055 	struct device *dev;
1056 
1057 	(*pos)++;
1058 	dev = class_dev_iter_next(seqf->private);
1059 	if (dev)
1060 		return dev_to_disk(dev);
1061 
1062 	return NULL;
1063 }
1064 
1065 static void disk_seqf_stop(struct seq_file *seqf, void *v)
1066 {
1067 	struct class_dev_iter *iter = seqf->private;
1068 
1069 	/* stop is called even after start failed :-( */
1070 	if (iter) {
1071 		class_dev_iter_exit(iter);
1072 		kfree(iter);
1073 		seqf->private = NULL;
1074 	}
1075 }
1076 
1077 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1078 {
1079 	void *p;
1080 
1081 	p = disk_seqf_start(seqf, pos);
1082 	if (!IS_ERR_OR_NULL(p) && !*pos)
1083 		seq_puts(seqf, "major minor  #blocks  name\n\n");
1084 	return p;
1085 }
1086 
1087 static int show_partition(struct seq_file *seqf, void *v)
1088 {
1089 	struct gendisk *sgp = v;
1090 	struct disk_part_iter piter;
1091 	struct hd_struct *part;
1092 	char buf[BDEVNAME_SIZE];
1093 
1094 	/* Don't show non-partitionable removeable devices or empty devices */
1095 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1096 				   (sgp->flags & GENHD_FL_REMOVABLE)))
1097 		return 0;
1098 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1099 		return 0;
1100 
1101 	/* show the full disk and all non-0 size partitions of it */
1102 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1103 	while ((part = disk_part_iter_next(&piter)))
1104 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1105 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1106 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1107 			   disk_name(sgp, part->partno, buf));
1108 	disk_part_iter_exit(&piter);
1109 
1110 	return 0;
1111 }
1112 
1113 static const struct seq_operations partitions_op = {
1114 	.start	= show_partition_start,
1115 	.next	= disk_seqf_next,
1116 	.stop	= disk_seqf_stop,
1117 	.show	= show_partition
1118 };
1119 #endif
1120 
1121 
1122 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1123 {
1124 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1125 		/* Make old-style 2.4 aliases work */
1126 		request_module("block-major-%d", MAJOR(devt));
1127 	return NULL;
1128 }
1129 
1130 static int __init genhd_device_init(void)
1131 {
1132 	int error;
1133 
1134 	block_class.dev_kobj = sysfs_dev_block_kobj;
1135 	error = class_register(&block_class);
1136 	if (unlikely(error))
1137 		return error;
1138 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1139 	blk_dev_init();
1140 
1141 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1142 
1143 	/* create top-level block dir */
1144 	if (!sysfs_deprecated)
1145 		block_depr = kobject_create_and_add("block", NULL);
1146 	return 0;
1147 }
1148 
1149 subsys_initcall(genhd_device_init);
1150 
1151 static ssize_t disk_range_show(struct device *dev,
1152 			       struct device_attribute *attr, char *buf)
1153 {
1154 	struct gendisk *disk = dev_to_disk(dev);
1155 
1156 	return sprintf(buf, "%d\n", disk->minors);
1157 }
1158 
1159 static ssize_t disk_ext_range_show(struct device *dev,
1160 				   struct device_attribute *attr, char *buf)
1161 {
1162 	struct gendisk *disk = dev_to_disk(dev);
1163 
1164 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1165 }
1166 
1167 static ssize_t disk_removable_show(struct device *dev,
1168 				   struct device_attribute *attr, char *buf)
1169 {
1170 	struct gendisk *disk = dev_to_disk(dev);
1171 
1172 	return sprintf(buf, "%d\n",
1173 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1174 }
1175 
1176 static ssize_t disk_hidden_show(struct device *dev,
1177 				   struct device_attribute *attr, char *buf)
1178 {
1179 	struct gendisk *disk = dev_to_disk(dev);
1180 
1181 	return sprintf(buf, "%d\n",
1182 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1183 }
1184 
1185 static ssize_t disk_ro_show(struct device *dev,
1186 				   struct device_attribute *attr, char *buf)
1187 {
1188 	struct gendisk *disk = dev_to_disk(dev);
1189 
1190 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1191 }
1192 
1193 static ssize_t disk_capability_show(struct device *dev,
1194 				    struct device_attribute *attr, char *buf)
1195 {
1196 	struct gendisk *disk = dev_to_disk(dev);
1197 
1198 	return sprintf(buf, "%x\n", disk->flags);
1199 }
1200 
1201 static ssize_t disk_alignment_offset_show(struct device *dev,
1202 					  struct device_attribute *attr,
1203 					  char *buf)
1204 {
1205 	struct gendisk *disk = dev_to_disk(dev);
1206 
1207 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1208 }
1209 
1210 static ssize_t disk_discard_alignment_show(struct device *dev,
1211 					   struct device_attribute *attr,
1212 					   char *buf)
1213 {
1214 	struct gendisk *disk = dev_to_disk(dev);
1215 
1216 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1217 }
1218 
1219 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1220 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1221 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1222 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1223 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1224 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1225 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1226 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1227 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1228 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1229 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1230 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1231 #ifdef CONFIG_FAIL_MAKE_REQUEST
1232 static struct device_attribute dev_attr_fail =
1233 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1234 #endif
1235 #ifdef CONFIG_FAIL_IO_TIMEOUT
1236 static struct device_attribute dev_attr_fail_timeout =
1237 	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1238 #endif
1239 
1240 static struct attribute *disk_attrs[] = {
1241 	&dev_attr_range.attr,
1242 	&dev_attr_ext_range.attr,
1243 	&dev_attr_removable.attr,
1244 	&dev_attr_hidden.attr,
1245 	&dev_attr_ro.attr,
1246 	&dev_attr_size.attr,
1247 	&dev_attr_alignment_offset.attr,
1248 	&dev_attr_discard_alignment.attr,
1249 	&dev_attr_capability.attr,
1250 	&dev_attr_stat.attr,
1251 	&dev_attr_inflight.attr,
1252 	&dev_attr_badblocks.attr,
1253 #ifdef CONFIG_FAIL_MAKE_REQUEST
1254 	&dev_attr_fail.attr,
1255 #endif
1256 #ifdef CONFIG_FAIL_IO_TIMEOUT
1257 	&dev_attr_fail_timeout.attr,
1258 #endif
1259 	NULL
1260 };
1261 
1262 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1263 {
1264 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1265 	struct gendisk *disk = dev_to_disk(dev);
1266 
1267 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1268 		return 0;
1269 	return a->mode;
1270 }
1271 
1272 static struct attribute_group disk_attr_group = {
1273 	.attrs = disk_attrs,
1274 	.is_visible = disk_visible,
1275 };
1276 
1277 static const struct attribute_group *disk_attr_groups[] = {
1278 	&disk_attr_group,
1279 	NULL
1280 };
1281 
1282 /**
1283  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1284  * @disk: disk to replace part_tbl for
1285  * @new_ptbl: new part_tbl to install
1286  *
1287  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1288  * original ptbl is freed using RCU callback.
1289  *
1290  * LOCKING:
1291  * Matching bd_mutex locked or the caller is the only user of @disk.
1292  */
1293 static void disk_replace_part_tbl(struct gendisk *disk,
1294 				  struct disk_part_tbl *new_ptbl)
1295 {
1296 	struct disk_part_tbl *old_ptbl =
1297 		rcu_dereference_protected(disk->part_tbl, 1);
1298 
1299 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1300 
1301 	if (old_ptbl) {
1302 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1303 		kfree_rcu(old_ptbl, rcu_head);
1304 	}
1305 }
1306 
1307 /**
1308  * disk_expand_part_tbl - expand disk->part_tbl
1309  * @disk: disk to expand part_tbl for
1310  * @partno: expand such that this partno can fit in
1311  *
1312  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1313  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1314  *
1315  * LOCKING:
1316  * Matching bd_mutex locked or the caller is the only user of @disk.
1317  * Might sleep.
1318  *
1319  * RETURNS:
1320  * 0 on success, -errno on failure.
1321  */
1322 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1323 {
1324 	struct disk_part_tbl *old_ptbl =
1325 		rcu_dereference_protected(disk->part_tbl, 1);
1326 	struct disk_part_tbl *new_ptbl;
1327 	int len = old_ptbl ? old_ptbl->len : 0;
1328 	int i, target;
1329 
1330 	/*
1331 	 * check for int overflow, since we can get here from blkpg_ioctl()
1332 	 * with a user passed 'partno'.
1333 	 */
1334 	target = partno + 1;
1335 	if (target < 0)
1336 		return -EINVAL;
1337 
1338 	/* disk_max_parts() is zero during initialization, ignore if so */
1339 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1340 		return -EINVAL;
1341 
1342 	if (target <= len)
1343 		return 0;
1344 
1345 	new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1346 				disk->node_id);
1347 	if (!new_ptbl)
1348 		return -ENOMEM;
1349 
1350 	new_ptbl->len = target;
1351 
1352 	for (i = 0; i < len; i++)
1353 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1354 
1355 	disk_replace_part_tbl(disk, new_ptbl);
1356 	return 0;
1357 }
1358 
1359 static void disk_release(struct device *dev)
1360 {
1361 	struct gendisk *disk = dev_to_disk(dev);
1362 
1363 	blk_free_devt(dev->devt);
1364 	disk_release_events(disk);
1365 	kfree(disk->random);
1366 	disk_replace_part_tbl(disk, NULL);
1367 	hd_free_part(&disk->part0);
1368 	if (disk->queue)
1369 		blk_put_queue(disk->queue);
1370 	kfree(disk);
1371 }
1372 struct class block_class = {
1373 	.name		= "block",
1374 };
1375 
1376 static char *block_devnode(struct device *dev, umode_t *mode,
1377 			   kuid_t *uid, kgid_t *gid)
1378 {
1379 	struct gendisk *disk = dev_to_disk(dev);
1380 
1381 	if (disk->devnode)
1382 		return disk->devnode(disk, mode);
1383 	return NULL;
1384 }
1385 
1386 static const struct device_type disk_type = {
1387 	.name		= "disk",
1388 	.groups		= disk_attr_groups,
1389 	.release	= disk_release,
1390 	.devnode	= block_devnode,
1391 };
1392 
1393 #ifdef CONFIG_PROC_FS
1394 /*
1395  * aggregate disk stat collector.  Uses the same stats that the sysfs
1396  * entries do, above, but makes them available through one seq_file.
1397  *
1398  * The output looks suspiciously like /proc/partitions with a bunch of
1399  * extra fields.
1400  */
1401 static int diskstats_show(struct seq_file *seqf, void *v)
1402 {
1403 	struct gendisk *gp = v;
1404 	struct disk_part_iter piter;
1405 	struct hd_struct *hd;
1406 	char buf[BDEVNAME_SIZE];
1407 	unsigned int inflight;
1408 
1409 	/*
1410 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1411 		seq_puts(seqf,	"major minor name"
1412 				"     rio rmerge rsect ruse wio wmerge "
1413 				"wsect wuse running use aveq"
1414 				"\n\n");
1415 	*/
1416 
1417 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1418 	while ((hd = disk_part_iter_next(&piter))) {
1419 		inflight = part_in_flight(gp->queue, hd);
1420 		seq_printf(seqf, "%4d %7d %s "
1421 			   "%lu %lu %lu %u "
1422 			   "%lu %lu %lu %u "
1423 			   "%u %u %u "
1424 			   "%lu %lu %lu %u "
1425 			   "%lu %u"
1426 			   "\n",
1427 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1428 			   disk_name(gp, hd->partno, buf),
1429 			   part_stat_read(hd, ios[STAT_READ]),
1430 			   part_stat_read(hd, merges[STAT_READ]),
1431 			   part_stat_read(hd, sectors[STAT_READ]),
1432 			   (unsigned int)part_stat_read_msecs(hd, STAT_READ),
1433 			   part_stat_read(hd, ios[STAT_WRITE]),
1434 			   part_stat_read(hd, merges[STAT_WRITE]),
1435 			   part_stat_read(hd, sectors[STAT_WRITE]),
1436 			   (unsigned int)part_stat_read_msecs(hd, STAT_WRITE),
1437 			   inflight,
1438 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1439 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue)),
1440 			   part_stat_read(hd, ios[STAT_DISCARD]),
1441 			   part_stat_read(hd, merges[STAT_DISCARD]),
1442 			   part_stat_read(hd, sectors[STAT_DISCARD]),
1443 			   (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD),
1444 			   part_stat_read(hd, ios[STAT_FLUSH]),
1445 			   (unsigned int)part_stat_read_msecs(hd, STAT_FLUSH)
1446 			);
1447 	}
1448 	disk_part_iter_exit(&piter);
1449 
1450 	return 0;
1451 }
1452 
1453 static const struct seq_operations diskstats_op = {
1454 	.start	= disk_seqf_start,
1455 	.next	= disk_seqf_next,
1456 	.stop	= disk_seqf_stop,
1457 	.show	= diskstats_show
1458 };
1459 
1460 static int __init proc_genhd_init(void)
1461 {
1462 	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1463 	proc_create_seq("partitions", 0, NULL, &partitions_op);
1464 	return 0;
1465 }
1466 module_init(proc_genhd_init);
1467 #endif /* CONFIG_PROC_FS */
1468 
1469 dev_t blk_lookup_devt(const char *name, int partno)
1470 {
1471 	dev_t devt = MKDEV(0, 0);
1472 	struct class_dev_iter iter;
1473 	struct device *dev;
1474 
1475 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1476 	while ((dev = class_dev_iter_next(&iter))) {
1477 		struct gendisk *disk = dev_to_disk(dev);
1478 		struct hd_struct *part;
1479 
1480 		if (strcmp(dev_name(dev), name))
1481 			continue;
1482 
1483 		if (partno < disk->minors) {
1484 			/* We need to return the right devno, even
1485 			 * if the partition doesn't exist yet.
1486 			 */
1487 			devt = MKDEV(MAJOR(dev->devt),
1488 				     MINOR(dev->devt) + partno);
1489 			break;
1490 		}
1491 		part = disk_get_part(disk, partno);
1492 		if (part) {
1493 			devt = part_devt(part);
1494 			disk_put_part(part);
1495 			break;
1496 		}
1497 		disk_put_part(part);
1498 	}
1499 	class_dev_iter_exit(&iter);
1500 	return devt;
1501 }
1502 EXPORT_SYMBOL(blk_lookup_devt);
1503 
1504 struct gendisk *__alloc_disk_node(int minors, int node_id)
1505 {
1506 	struct gendisk *disk;
1507 	struct disk_part_tbl *ptbl;
1508 
1509 	if (minors > DISK_MAX_PARTS) {
1510 		printk(KERN_ERR
1511 			"block: can't allocate more than %d partitions\n",
1512 			DISK_MAX_PARTS);
1513 		minors = DISK_MAX_PARTS;
1514 	}
1515 
1516 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1517 	if (disk) {
1518 		if (!init_part_stats(&disk->part0)) {
1519 			kfree(disk);
1520 			return NULL;
1521 		}
1522 		init_rwsem(&disk->lookup_sem);
1523 		disk->node_id = node_id;
1524 		if (disk_expand_part_tbl(disk, 0)) {
1525 			free_part_stats(&disk->part0);
1526 			kfree(disk);
1527 			return NULL;
1528 		}
1529 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1530 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1531 
1532 		/*
1533 		 * set_capacity() and get_capacity() currently don't use
1534 		 * seqcounter to read/update the part0->nr_sects. Still init
1535 		 * the counter as we can read the sectors in IO submission
1536 		 * patch using seqence counters.
1537 		 *
1538 		 * TODO: Ideally set_capacity() and get_capacity() should be
1539 		 * converted to make use of bd_mutex and sequence counters.
1540 		 */
1541 		seqcount_init(&disk->part0.nr_sects_seq);
1542 		if (hd_ref_init(&disk->part0)) {
1543 			hd_free_part(&disk->part0);
1544 			kfree(disk);
1545 			return NULL;
1546 		}
1547 
1548 		disk->minors = minors;
1549 		rand_initialize_disk(disk);
1550 		disk_to_dev(disk)->class = &block_class;
1551 		disk_to_dev(disk)->type = &disk_type;
1552 		device_initialize(disk_to_dev(disk));
1553 	}
1554 	return disk;
1555 }
1556 EXPORT_SYMBOL(__alloc_disk_node);
1557 
1558 struct kobject *get_disk_and_module(struct gendisk *disk)
1559 {
1560 	struct module *owner;
1561 	struct kobject *kobj;
1562 
1563 	if (!disk->fops)
1564 		return NULL;
1565 	owner = disk->fops->owner;
1566 	if (owner && !try_module_get(owner))
1567 		return NULL;
1568 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1569 	if (kobj == NULL) {
1570 		module_put(owner);
1571 		return NULL;
1572 	}
1573 	return kobj;
1574 
1575 }
1576 EXPORT_SYMBOL(get_disk_and_module);
1577 
1578 void put_disk(struct gendisk *disk)
1579 {
1580 	if (disk)
1581 		kobject_put(&disk_to_dev(disk)->kobj);
1582 }
1583 EXPORT_SYMBOL(put_disk);
1584 
1585 /*
1586  * This is a counterpart of get_disk_and_module() and thus also of
1587  * get_gendisk().
1588  */
1589 void put_disk_and_module(struct gendisk *disk)
1590 {
1591 	if (disk) {
1592 		struct module *owner = disk->fops->owner;
1593 
1594 		put_disk(disk);
1595 		module_put(owner);
1596 	}
1597 }
1598 EXPORT_SYMBOL(put_disk_and_module);
1599 
1600 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1601 {
1602 	char event[] = "DISK_RO=1";
1603 	char *envp[] = { event, NULL };
1604 
1605 	if (!ro)
1606 		event[8] = '0';
1607 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1608 }
1609 
1610 void set_device_ro(struct block_device *bdev, int flag)
1611 {
1612 	bdev->bd_part->policy = flag;
1613 }
1614 
1615 EXPORT_SYMBOL(set_device_ro);
1616 
1617 void set_disk_ro(struct gendisk *disk, int flag)
1618 {
1619 	struct disk_part_iter piter;
1620 	struct hd_struct *part;
1621 
1622 	if (disk->part0.policy != flag) {
1623 		set_disk_ro_uevent(disk, flag);
1624 		disk->part0.policy = flag;
1625 	}
1626 
1627 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1628 	while ((part = disk_part_iter_next(&piter)))
1629 		part->policy = flag;
1630 	disk_part_iter_exit(&piter);
1631 }
1632 
1633 EXPORT_SYMBOL(set_disk_ro);
1634 
1635 int bdev_read_only(struct block_device *bdev)
1636 {
1637 	if (!bdev)
1638 		return 0;
1639 	return bdev->bd_part->policy;
1640 }
1641 
1642 EXPORT_SYMBOL(bdev_read_only);
1643 
1644 int invalidate_partition(struct gendisk *disk, int partno)
1645 {
1646 	int res = 0;
1647 	struct block_device *bdev = bdget_disk(disk, partno);
1648 	if (bdev) {
1649 		fsync_bdev(bdev);
1650 		res = __invalidate_device(bdev, true);
1651 		bdput(bdev);
1652 	}
1653 	return res;
1654 }
1655 
1656 EXPORT_SYMBOL(invalidate_partition);
1657 
1658 /*
1659  * Disk events - monitor disk events like media change and eject request.
1660  */
1661 struct disk_events {
1662 	struct list_head	node;		/* all disk_event's */
1663 	struct gendisk		*disk;		/* the associated disk */
1664 	spinlock_t		lock;
1665 
1666 	struct mutex		block_mutex;	/* protects blocking */
1667 	int			block;		/* event blocking depth */
1668 	unsigned int		pending;	/* events already sent out */
1669 	unsigned int		clearing;	/* events being cleared */
1670 
1671 	long			poll_msecs;	/* interval, -1 for default */
1672 	struct delayed_work	dwork;
1673 };
1674 
1675 static const char *disk_events_strs[] = {
1676 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1677 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1678 };
1679 
1680 static char *disk_uevents[] = {
1681 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1682 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1683 };
1684 
1685 /* list of all disk_events */
1686 static DEFINE_MUTEX(disk_events_mutex);
1687 static LIST_HEAD(disk_events);
1688 
1689 /* disable in-kernel polling by default */
1690 static unsigned long disk_events_dfl_poll_msecs;
1691 
1692 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1693 {
1694 	struct disk_events *ev = disk->ev;
1695 	long intv_msecs = 0;
1696 
1697 	/*
1698 	 * If device-specific poll interval is set, always use it.  If
1699 	 * the default is being used, poll if the POLL flag is set.
1700 	 */
1701 	if (ev->poll_msecs >= 0)
1702 		intv_msecs = ev->poll_msecs;
1703 	else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1704 		intv_msecs = disk_events_dfl_poll_msecs;
1705 
1706 	return msecs_to_jiffies(intv_msecs);
1707 }
1708 
1709 /**
1710  * disk_block_events - block and flush disk event checking
1711  * @disk: disk to block events for
1712  *
1713  * On return from this function, it is guaranteed that event checking
1714  * isn't in progress and won't happen until unblocked by
1715  * disk_unblock_events().  Events blocking is counted and the actual
1716  * unblocking happens after the matching number of unblocks are done.
1717  *
1718  * Note that this intentionally does not block event checking from
1719  * disk_clear_events().
1720  *
1721  * CONTEXT:
1722  * Might sleep.
1723  */
1724 void disk_block_events(struct gendisk *disk)
1725 {
1726 	struct disk_events *ev = disk->ev;
1727 	unsigned long flags;
1728 	bool cancel;
1729 
1730 	if (!ev)
1731 		return;
1732 
1733 	/*
1734 	 * Outer mutex ensures that the first blocker completes canceling
1735 	 * the event work before further blockers are allowed to finish.
1736 	 */
1737 	mutex_lock(&ev->block_mutex);
1738 
1739 	spin_lock_irqsave(&ev->lock, flags);
1740 	cancel = !ev->block++;
1741 	spin_unlock_irqrestore(&ev->lock, flags);
1742 
1743 	if (cancel)
1744 		cancel_delayed_work_sync(&disk->ev->dwork);
1745 
1746 	mutex_unlock(&ev->block_mutex);
1747 }
1748 
1749 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1750 {
1751 	struct disk_events *ev = disk->ev;
1752 	unsigned long intv;
1753 	unsigned long flags;
1754 
1755 	spin_lock_irqsave(&ev->lock, flags);
1756 
1757 	if (WARN_ON_ONCE(ev->block <= 0))
1758 		goto out_unlock;
1759 
1760 	if (--ev->block)
1761 		goto out_unlock;
1762 
1763 	intv = disk_events_poll_jiffies(disk);
1764 	if (check_now)
1765 		queue_delayed_work(system_freezable_power_efficient_wq,
1766 				&ev->dwork, 0);
1767 	else if (intv)
1768 		queue_delayed_work(system_freezable_power_efficient_wq,
1769 				&ev->dwork, intv);
1770 out_unlock:
1771 	spin_unlock_irqrestore(&ev->lock, flags);
1772 }
1773 
1774 /**
1775  * disk_unblock_events - unblock disk event checking
1776  * @disk: disk to unblock events for
1777  *
1778  * Undo disk_block_events().  When the block count reaches zero, it
1779  * starts events polling if configured.
1780  *
1781  * CONTEXT:
1782  * Don't care.  Safe to call from irq context.
1783  */
1784 void disk_unblock_events(struct gendisk *disk)
1785 {
1786 	if (disk->ev)
1787 		__disk_unblock_events(disk, false);
1788 }
1789 
1790 /**
1791  * disk_flush_events - schedule immediate event checking and flushing
1792  * @disk: disk to check and flush events for
1793  * @mask: events to flush
1794  *
1795  * Schedule immediate event checking on @disk if not blocked.  Events in
1796  * @mask are scheduled to be cleared from the driver.  Note that this
1797  * doesn't clear the events from @disk->ev.
1798  *
1799  * CONTEXT:
1800  * If @mask is non-zero must be called with bdev->bd_mutex held.
1801  */
1802 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1803 {
1804 	struct disk_events *ev = disk->ev;
1805 
1806 	if (!ev)
1807 		return;
1808 
1809 	spin_lock_irq(&ev->lock);
1810 	ev->clearing |= mask;
1811 	if (!ev->block)
1812 		mod_delayed_work(system_freezable_power_efficient_wq,
1813 				&ev->dwork, 0);
1814 	spin_unlock_irq(&ev->lock);
1815 }
1816 
1817 /**
1818  * disk_clear_events - synchronously check, clear and return pending events
1819  * @disk: disk to fetch and clear events from
1820  * @mask: mask of events to be fetched and cleared
1821  *
1822  * Disk events are synchronously checked and pending events in @mask
1823  * are cleared and returned.  This ignores the block count.
1824  *
1825  * CONTEXT:
1826  * Might sleep.
1827  */
1828 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1829 {
1830 	const struct block_device_operations *bdops = disk->fops;
1831 	struct disk_events *ev = disk->ev;
1832 	unsigned int pending;
1833 	unsigned int clearing = mask;
1834 
1835 	if (!ev) {
1836 		/* for drivers still using the old ->media_changed method */
1837 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1838 		    bdops->media_changed && bdops->media_changed(disk))
1839 			return DISK_EVENT_MEDIA_CHANGE;
1840 		return 0;
1841 	}
1842 
1843 	disk_block_events(disk);
1844 
1845 	/*
1846 	 * store the union of mask and ev->clearing on the stack so that the
1847 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1848 	 * can still be modified even if events are blocked).
1849 	 */
1850 	spin_lock_irq(&ev->lock);
1851 	clearing |= ev->clearing;
1852 	ev->clearing = 0;
1853 	spin_unlock_irq(&ev->lock);
1854 
1855 	disk_check_events(ev, &clearing);
1856 	/*
1857 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1858 	 * middle of this function, so we want to run the workfn without delay.
1859 	 */
1860 	__disk_unblock_events(disk, ev->clearing ? true : false);
1861 
1862 	/* then, fetch and clear pending events */
1863 	spin_lock_irq(&ev->lock);
1864 	pending = ev->pending & mask;
1865 	ev->pending &= ~mask;
1866 	spin_unlock_irq(&ev->lock);
1867 	WARN_ON_ONCE(clearing & mask);
1868 
1869 	return pending;
1870 }
1871 
1872 /*
1873  * Separate this part out so that a different pointer for clearing_ptr can be
1874  * passed in for disk_clear_events.
1875  */
1876 static void disk_events_workfn(struct work_struct *work)
1877 {
1878 	struct delayed_work *dwork = to_delayed_work(work);
1879 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1880 
1881 	disk_check_events(ev, &ev->clearing);
1882 }
1883 
1884 static void disk_check_events(struct disk_events *ev,
1885 			      unsigned int *clearing_ptr)
1886 {
1887 	struct gendisk *disk = ev->disk;
1888 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1889 	unsigned int clearing = *clearing_ptr;
1890 	unsigned int events;
1891 	unsigned long intv;
1892 	int nr_events = 0, i;
1893 
1894 	/* check events */
1895 	events = disk->fops->check_events(disk, clearing);
1896 
1897 	/* accumulate pending events and schedule next poll if necessary */
1898 	spin_lock_irq(&ev->lock);
1899 
1900 	events &= ~ev->pending;
1901 	ev->pending |= events;
1902 	*clearing_ptr &= ~clearing;
1903 
1904 	intv = disk_events_poll_jiffies(disk);
1905 	if (!ev->block && intv)
1906 		queue_delayed_work(system_freezable_power_efficient_wq,
1907 				&ev->dwork, intv);
1908 
1909 	spin_unlock_irq(&ev->lock);
1910 
1911 	/*
1912 	 * Tell userland about new events.  Only the events listed in
1913 	 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
1914 	 * is set. Otherwise, events are processed internally but never
1915 	 * get reported to userland.
1916 	 */
1917 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1918 		if ((events & disk->events & (1 << i)) &&
1919 		    (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
1920 			envp[nr_events++] = disk_uevents[i];
1921 
1922 	if (nr_events)
1923 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1924 }
1925 
1926 /*
1927  * A disk events enabled device has the following sysfs nodes under
1928  * its /sys/block/X/ directory.
1929  *
1930  * events		: list of all supported events
1931  * events_async		: list of events which can be detected w/o polling
1932  *			  (always empty, only for backwards compatibility)
1933  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1934  */
1935 static ssize_t __disk_events_show(unsigned int events, char *buf)
1936 {
1937 	const char *delim = "";
1938 	ssize_t pos = 0;
1939 	int i;
1940 
1941 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1942 		if (events & (1 << i)) {
1943 			pos += sprintf(buf + pos, "%s%s",
1944 				       delim, disk_events_strs[i]);
1945 			delim = " ";
1946 		}
1947 	if (pos)
1948 		pos += sprintf(buf + pos, "\n");
1949 	return pos;
1950 }
1951 
1952 static ssize_t disk_events_show(struct device *dev,
1953 				struct device_attribute *attr, char *buf)
1954 {
1955 	struct gendisk *disk = dev_to_disk(dev);
1956 
1957 	if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
1958 		return 0;
1959 
1960 	return __disk_events_show(disk->events, buf);
1961 }
1962 
1963 static ssize_t disk_events_async_show(struct device *dev,
1964 				      struct device_attribute *attr, char *buf)
1965 {
1966 	return 0;
1967 }
1968 
1969 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1970 					   struct device_attribute *attr,
1971 					   char *buf)
1972 {
1973 	struct gendisk *disk = dev_to_disk(dev);
1974 
1975 	if (!disk->ev)
1976 		return sprintf(buf, "-1\n");
1977 
1978 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1979 }
1980 
1981 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1982 					    struct device_attribute *attr,
1983 					    const char *buf, size_t count)
1984 {
1985 	struct gendisk *disk = dev_to_disk(dev);
1986 	long intv;
1987 
1988 	if (!count || !sscanf(buf, "%ld", &intv))
1989 		return -EINVAL;
1990 
1991 	if (intv < 0 && intv != -1)
1992 		return -EINVAL;
1993 
1994 	if (!disk->ev)
1995 		return -ENODEV;
1996 
1997 	disk_block_events(disk);
1998 	disk->ev->poll_msecs = intv;
1999 	__disk_unblock_events(disk, true);
2000 
2001 	return count;
2002 }
2003 
2004 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
2005 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
2006 static const DEVICE_ATTR(events_poll_msecs, 0644,
2007 			 disk_events_poll_msecs_show,
2008 			 disk_events_poll_msecs_store);
2009 
2010 static const struct attribute *disk_events_attrs[] = {
2011 	&dev_attr_events.attr,
2012 	&dev_attr_events_async.attr,
2013 	&dev_attr_events_poll_msecs.attr,
2014 	NULL,
2015 };
2016 
2017 /*
2018  * The default polling interval can be specified by the kernel
2019  * parameter block.events_dfl_poll_msecs which defaults to 0
2020  * (disable).  This can also be modified runtime by writing to
2021  * /sys/module/block/parameters/events_dfl_poll_msecs.
2022  */
2023 static int disk_events_set_dfl_poll_msecs(const char *val,
2024 					  const struct kernel_param *kp)
2025 {
2026 	struct disk_events *ev;
2027 	int ret;
2028 
2029 	ret = param_set_ulong(val, kp);
2030 	if (ret < 0)
2031 		return ret;
2032 
2033 	mutex_lock(&disk_events_mutex);
2034 
2035 	list_for_each_entry(ev, &disk_events, node)
2036 		disk_flush_events(ev->disk, 0);
2037 
2038 	mutex_unlock(&disk_events_mutex);
2039 
2040 	return 0;
2041 }
2042 
2043 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2044 	.set	= disk_events_set_dfl_poll_msecs,
2045 	.get	= param_get_ulong,
2046 };
2047 
2048 #undef MODULE_PARAM_PREFIX
2049 #define MODULE_PARAM_PREFIX	"block."
2050 
2051 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2052 		&disk_events_dfl_poll_msecs, 0644);
2053 
2054 /*
2055  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2056  */
2057 static void disk_alloc_events(struct gendisk *disk)
2058 {
2059 	struct disk_events *ev;
2060 
2061 	if (!disk->fops->check_events || !disk->events)
2062 		return;
2063 
2064 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2065 	if (!ev) {
2066 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
2067 		return;
2068 	}
2069 
2070 	INIT_LIST_HEAD(&ev->node);
2071 	ev->disk = disk;
2072 	spin_lock_init(&ev->lock);
2073 	mutex_init(&ev->block_mutex);
2074 	ev->block = 1;
2075 	ev->poll_msecs = -1;
2076 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2077 
2078 	disk->ev = ev;
2079 }
2080 
2081 static void disk_add_events(struct gendisk *disk)
2082 {
2083 	/* FIXME: error handling */
2084 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2085 		pr_warn("%s: failed to create sysfs files for events\n",
2086 			disk->disk_name);
2087 
2088 	if (!disk->ev)
2089 		return;
2090 
2091 	mutex_lock(&disk_events_mutex);
2092 	list_add_tail(&disk->ev->node, &disk_events);
2093 	mutex_unlock(&disk_events_mutex);
2094 
2095 	/*
2096 	 * Block count is initialized to 1 and the following initial
2097 	 * unblock kicks it into action.
2098 	 */
2099 	__disk_unblock_events(disk, true);
2100 }
2101 
2102 static void disk_del_events(struct gendisk *disk)
2103 {
2104 	if (disk->ev) {
2105 		disk_block_events(disk);
2106 
2107 		mutex_lock(&disk_events_mutex);
2108 		list_del_init(&disk->ev->node);
2109 		mutex_unlock(&disk_events_mutex);
2110 	}
2111 
2112 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2113 }
2114 
2115 static void disk_release_events(struct gendisk *disk)
2116 {
2117 	/* the block count should be 1 from disk_del_events() */
2118 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2119 	kfree(disk->ev);
2120 }
2121