1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * gendisk handling 4 */ 5 6 #include <linux/module.h> 7 #include <linux/fs.h> 8 #include <linux/genhd.h> 9 #include <linux/kdev_t.h> 10 #include <linux/kernel.h> 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 #include <linux/init.h> 14 #include <linux/spinlock.h> 15 #include <linux/proc_fs.h> 16 #include <linux/seq_file.h> 17 #include <linux/slab.h> 18 #include <linux/kmod.h> 19 #include <linux/kobj_map.h> 20 #include <linux/mutex.h> 21 #include <linux/idr.h> 22 #include <linux/log2.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/badblocks.h> 25 26 #include "blk.h" 27 28 static DEFINE_MUTEX(block_class_lock); 29 struct kobject *block_depr; 30 31 /* for extended dynamic devt allocation, currently only one major is used */ 32 #define NR_EXT_DEVT (1 << MINORBITS) 33 34 /* For extended devt allocation. ext_devt_lock prevents look up 35 * results from going away underneath its user. 36 */ 37 static DEFINE_SPINLOCK(ext_devt_lock); 38 static DEFINE_IDR(ext_devt_idr); 39 40 static const struct device_type disk_type; 41 42 static void disk_check_events(struct disk_events *ev, 43 unsigned int *clearing_ptr); 44 static void disk_alloc_events(struct gendisk *disk); 45 static void disk_add_events(struct gendisk *disk); 46 static void disk_del_events(struct gendisk *disk); 47 static void disk_release_events(struct gendisk *disk); 48 49 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 50 { 51 if (queue_is_mq(q)) 52 return; 53 54 part_stat_local_inc(part, in_flight[rw]); 55 if (part->partno) 56 part_stat_local_inc(&part_to_disk(part)->part0, in_flight[rw]); 57 } 58 59 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 60 { 61 if (queue_is_mq(q)) 62 return; 63 64 part_stat_local_dec(part, in_flight[rw]); 65 if (part->partno) 66 part_stat_local_dec(&part_to_disk(part)->part0, in_flight[rw]); 67 } 68 69 unsigned int part_in_flight(struct request_queue *q, struct hd_struct *part) 70 { 71 int cpu; 72 unsigned int inflight; 73 74 if (queue_is_mq(q)) { 75 return blk_mq_in_flight(q, part); 76 } 77 78 inflight = 0; 79 for_each_possible_cpu(cpu) { 80 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) + 81 part_stat_local_read_cpu(part, in_flight[1], cpu); 82 } 83 if ((int)inflight < 0) 84 inflight = 0; 85 86 return inflight; 87 } 88 89 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part, 90 unsigned int inflight[2]) 91 { 92 int cpu; 93 94 if (queue_is_mq(q)) { 95 blk_mq_in_flight_rw(q, part, inflight); 96 return; 97 } 98 99 inflight[0] = 0; 100 inflight[1] = 0; 101 for_each_possible_cpu(cpu) { 102 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu); 103 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu); 104 } 105 if ((int)inflight[0] < 0) 106 inflight[0] = 0; 107 if ((int)inflight[1] < 0) 108 inflight[1] = 0; 109 } 110 111 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno) 112 { 113 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl); 114 115 if (unlikely(partno < 0 || partno >= ptbl->len)) 116 return NULL; 117 return rcu_dereference(ptbl->part[partno]); 118 } 119 120 /** 121 * disk_get_part - get partition 122 * @disk: disk to look partition from 123 * @partno: partition number 124 * 125 * Look for partition @partno from @disk. If found, increment 126 * reference count and return it. 127 * 128 * CONTEXT: 129 * Don't care. 130 * 131 * RETURNS: 132 * Pointer to the found partition on success, NULL if not found. 133 */ 134 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 135 { 136 struct hd_struct *part; 137 138 rcu_read_lock(); 139 part = __disk_get_part(disk, partno); 140 if (part) 141 get_device(part_to_dev(part)); 142 rcu_read_unlock(); 143 144 return part; 145 } 146 EXPORT_SYMBOL_GPL(disk_get_part); 147 148 /** 149 * disk_part_iter_init - initialize partition iterator 150 * @piter: iterator to initialize 151 * @disk: disk to iterate over 152 * @flags: DISK_PITER_* flags 153 * 154 * Initialize @piter so that it iterates over partitions of @disk. 155 * 156 * CONTEXT: 157 * Don't care. 158 */ 159 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 160 unsigned int flags) 161 { 162 struct disk_part_tbl *ptbl; 163 164 rcu_read_lock(); 165 ptbl = rcu_dereference(disk->part_tbl); 166 167 piter->disk = disk; 168 piter->part = NULL; 169 170 if (flags & DISK_PITER_REVERSE) 171 piter->idx = ptbl->len - 1; 172 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 173 piter->idx = 0; 174 else 175 piter->idx = 1; 176 177 piter->flags = flags; 178 179 rcu_read_unlock(); 180 } 181 EXPORT_SYMBOL_GPL(disk_part_iter_init); 182 183 /** 184 * disk_part_iter_next - proceed iterator to the next partition and return it 185 * @piter: iterator of interest 186 * 187 * Proceed @piter to the next partition and return it. 188 * 189 * CONTEXT: 190 * Don't care. 191 */ 192 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 193 { 194 struct disk_part_tbl *ptbl; 195 int inc, end; 196 197 /* put the last partition */ 198 disk_put_part(piter->part); 199 piter->part = NULL; 200 201 /* get part_tbl */ 202 rcu_read_lock(); 203 ptbl = rcu_dereference(piter->disk->part_tbl); 204 205 /* determine iteration parameters */ 206 if (piter->flags & DISK_PITER_REVERSE) { 207 inc = -1; 208 if (piter->flags & (DISK_PITER_INCL_PART0 | 209 DISK_PITER_INCL_EMPTY_PART0)) 210 end = -1; 211 else 212 end = 0; 213 } else { 214 inc = 1; 215 end = ptbl->len; 216 } 217 218 /* iterate to the next partition */ 219 for (; piter->idx != end; piter->idx += inc) { 220 struct hd_struct *part; 221 222 part = rcu_dereference(ptbl->part[piter->idx]); 223 if (!part) 224 continue; 225 if (!part_nr_sects_read(part) && 226 !(piter->flags & DISK_PITER_INCL_EMPTY) && 227 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 228 piter->idx == 0)) 229 continue; 230 231 get_device(part_to_dev(part)); 232 piter->part = part; 233 piter->idx += inc; 234 break; 235 } 236 237 rcu_read_unlock(); 238 239 return piter->part; 240 } 241 EXPORT_SYMBOL_GPL(disk_part_iter_next); 242 243 /** 244 * disk_part_iter_exit - finish up partition iteration 245 * @piter: iter of interest 246 * 247 * Called when iteration is over. Cleans up @piter. 248 * 249 * CONTEXT: 250 * Don't care. 251 */ 252 void disk_part_iter_exit(struct disk_part_iter *piter) 253 { 254 disk_put_part(piter->part); 255 piter->part = NULL; 256 } 257 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 258 259 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 260 { 261 return part->start_sect <= sector && 262 sector < part->start_sect + part_nr_sects_read(part); 263 } 264 265 /** 266 * disk_map_sector_rcu - map sector to partition 267 * @disk: gendisk of interest 268 * @sector: sector to map 269 * 270 * Find out which partition @sector maps to on @disk. This is 271 * primarily used for stats accounting. 272 * 273 * CONTEXT: 274 * RCU read locked. The returned partition pointer is valid only 275 * while preemption is disabled. 276 * 277 * RETURNS: 278 * Found partition on success, part0 is returned if no partition matches 279 */ 280 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 281 { 282 struct disk_part_tbl *ptbl; 283 struct hd_struct *part; 284 int i; 285 286 ptbl = rcu_dereference(disk->part_tbl); 287 288 part = rcu_dereference(ptbl->last_lookup); 289 if (part && sector_in_part(part, sector)) 290 return part; 291 292 for (i = 1; i < ptbl->len; i++) { 293 part = rcu_dereference(ptbl->part[i]); 294 295 if (part && sector_in_part(part, sector)) { 296 rcu_assign_pointer(ptbl->last_lookup, part); 297 return part; 298 } 299 } 300 return &disk->part0; 301 } 302 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 303 304 /** 305 * disk_has_partitions 306 * @disk: gendisk of interest 307 * 308 * Walk through the partition table and check if valid partition exists. 309 * 310 * CONTEXT: 311 * Don't care. 312 * 313 * RETURNS: 314 * True if the gendisk has at least one valid non-zero size partition. 315 * Otherwise false. 316 */ 317 bool disk_has_partitions(struct gendisk *disk) 318 { 319 struct disk_part_tbl *ptbl; 320 int i; 321 bool ret = false; 322 323 rcu_read_lock(); 324 ptbl = rcu_dereference(disk->part_tbl); 325 326 /* Iterate partitions skipping the whole device at index 0 */ 327 for (i = 1; i < ptbl->len; i++) { 328 if (rcu_dereference(ptbl->part[i])) { 329 ret = true; 330 break; 331 } 332 } 333 334 rcu_read_unlock(); 335 336 return ret; 337 } 338 EXPORT_SYMBOL_GPL(disk_has_partitions); 339 340 /* 341 * Can be deleted altogether. Later. 342 * 343 */ 344 #define BLKDEV_MAJOR_HASH_SIZE 255 345 static struct blk_major_name { 346 struct blk_major_name *next; 347 int major; 348 char name[16]; 349 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 350 351 /* index in the above - for now: assume no multimajor ranges */ 352 static inline int major_to_index(unsigned major) 353 { 354 return major % BLKDEV_MAJOR_HASH_SIZE; 355 } 356 357 #ifdef CONFIG_PROC_FS 358 void blkdev_show(struct seq_file *seqf, off_t offset) 359 { 360 struct blk_major_name *dp; 361 362 mutex_lock(&block_class_lock); 363 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) 364 if (dp->major == offset) 365 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 366 mutex_unlock(&block_class_lock); 367 } 368 #endif /* CONFIG_PROC_FS */ 369 370 /** 371 * register_blkdev - register a new block device 372 * 373 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If 374 * @major = 0, try to allocate any unused major number. 375 * @name: the name of the new block device as a zero terminated string 376 * 377 * The @name must be unique within the system. 378 * 379 * The return value depends on the @major input parameter: 380 * 381 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] 382 * then the function returns zero on success, or a negative error code 383 * - if any unused major number was requested with @major = 0 parameter 384 * then the return value is the allocated major number in range 385 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise 386 * 387 * See Documentation/admin-guide/devices.txt for the list of allocated 388 * major numbers. 389 */ 390 int register_blkdev(unsigned int major, const char *name) 391 { 392 struct blk_major_name **n, *p; 393 int index, ret = 0; 394 395 mutex_lock(&block_class_lock); 396 397 /* temporary */ 398 if (major == 0) { 399 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 400 if (major_names[index] == NULL) 401 break; 402 } 403 404 if (index == 0) { 405 printk("%s: failed to get major for %s\n", 406 __func__, name); 407 ret = -EBUSY; 408 goto out; 409 } 410 major = index; 411 ret = major; 412 } 413 414 if (major >= BLKDEV_MAJOR_MAX) { 415 pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n", 416 __func__, major, BLKDEV_MAJOR_MAX-1, name); 417 418 ret = -EINVAL; 419 goto out; 420 } 421 422 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 423 if (p == NULL) { 424 ret = -ENOMEM; 425 goto out; 426 } 427 428 p->major = major; 429 strlcpy(p->name, name, sizeof(p->name)); 430 p->next = NULL; 431 index = major_to_index(major); 432 433 for (n = &major_names[index]; *n; n = &(*n)->next) { 434 if ((*n)->major == major) 435 break; 436 } 437 if (!*n) 438 *n = p; 439 else 440 ret = -EBUSY; 441 442 if (ret < 0) { 443 printk("register_blkdev: cannot get major %u for %s\n", 444 major, name); 445 kfree(p); 446 } 447 out: 448 mutex_unlock(&block_class_lock); 449 return ret; 450 } 451 452 EXPORT_SYMBOL(register_blkdev); 453 454 void unregister_blkdev(unsigned int major, const char *name) 455 { 456 struct blk_major_name **n; 457 struct blk_major_name *p = NULL; 458 int index = major_to_index(major); 459 460 mutex_lock(&block_class_lock); 461 for (n = &major_names[index]; *n; n = &(*n)->next) 462 if ((*n)->major == major) 463 break; 464 if (!*n || strcmp((*n)->name, name)) { 465 WARN_ON(1); 466 } else { 467 p = *n; 468 *n = p->next; 469 } 470 mutex_unlock(&block_class_lock); 471 kfree(p); 472 } 473 474 EXPORT_SYMBOL(unregister_blkdev); 475 476 static struct kobj_map *bdev_map; 477 478 /** 479 * blk_mangle_minor - scatter minor numbers apart 480 * @minor: minor number to mangle 481 * 482 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 483 * is enabled. Mangling twice gives the original value. 484 * 485 * RETURNS: 486 * Mangled value. 487 * 488 * CONTEXT: 489 * Don't care. 490 */ 491 static int blk_mangle_minor(int minor) 492 { 493 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 494 int i; 495 496 for (i = 0; i < MINORBITS / 2; i++) { 497 int low = minor & (1 << i); 498 int high = minor & (1 << (MINORBITS - 1 - i)); 499 int distance = MINORBITS - 1 - 2 * i; 500 501 minor ^= low | high; /* clear both bits */ 502 low <<= distance; /* swap the positions */ 503 high >>= distance; 504 minor |= low | high; /* and set */ 505 } 506 #endif 507 return minor; 508 } 509 510 /** 511 * blk_alloc_devt - allocate a dev_t for a partition 512 * @part: partition to allocate dev_t for 513 * @devt: out parameter for resulting dev_t 514 * 515 * Allocate a dev_t for block device. 516 * 517 * RETURNS: 518 * 0 on success, allocated dev_t is returned in *@devt. -errno on 519 * failure. 520 * 521 * CONTEXT: 522 * Might sleep. 523 */ 524 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 525 { 526 struct gendisk *disk = part_to_disk(part); 527 int idx; 528 529 /* in consecutive minor range? */ 530 if (part->partno < disk->minors) { 531 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 532 return 0; 533 } 534 535 /* allocate ext devt */ 536 idr_preload(GFP_KERNEL); 537 538 spin_lock_bh(&ext_devt_lock); 539 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 540 spin_unlock_bh(&ext_devt_lock); 541 542 idr_preload_end(); 543 if (idx < 0) 544 return idx == -ENOSPC ? -EBUSY : idx; 545 546 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 547 return 0; 548 } 549 550 /** 551 * blk_free_devt - free a dev_t 552 * @devt: dev_t to free 553 * 554 * Free @devt which was allocated using blk_alloc_devt(). 555 * 556 * CONTEXT: 557 * Might sleep. 558 */ 559 void blk_free_devt(dev_t devt) 560 { 561 if (devt == MKDEV(0, 0)) 562 return; 563 564 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 565 spin_lock_bh(&ext_devt_lock); 566 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 567 spin_unlock_bh(&ext_devt_lock); 568 } 569 } 570 571 /* 572 * We invalidate devt by assigning NULL pointer for devt in idr. 573 */ 574 void blk_invalidate_devt(dev_t devt) 575 { 576 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 577 spin_lock_bh(&ext_devt_lock); 578 idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt))); 579 spin_unlock_bh(&ext_devt_lock); 580 } 581 } 582 583 static char *bdevt_str(dev_t devt, char *buf) 584 { 585 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 586 char tbuf[BDEVT_SIZE]; 587 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 588 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 589 } else 590 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 591 592 return buf; 593 } 594 595 /* 596 * Register device numbers dev..(dev+range-1) 597 * range must be nonzero 598 * The hash chain is sorted on range, so that subranges can override. 599 */ 600 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 601 struct kobject *(*probe)(dev_t, int *, void *), 602 int (*lock)(dev_t, void *), void *data) 603 { 604 kobj_map(bdev_map, devt, range, module, probe, lock, data); 605 } 606 607 EXPORT_SYMBOL(blk_register_region); 608 609 void blk_unregister_region(dev_t devt, unsigned long range) 610 { 611 kobj_unmap(bdev_map, devt, range); 612 } 613 614 EXPORT_SYMBOL(blk_unregister_region); 615 616 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 617 { 618 struct gendisk *p = data; 619 620 return &disk_to_dev(p)->kobj; 621 } 622 623 static int exact_lock(dev_t devt, void *data) 624 { 625 struct gendisk *p = data; 626 627 if (!get_disk_and_module(p)) 628 return -1; 629 return 0; 630 } 631 632 static void register_disk(struct device *parent, struct gendisk *disk, 633 const struct attribute_group **groups) 634 { 635 struct device *ddev = disk_to_dev(disk); 636 struct block_device *bdev; 637 struct disk_part_iter piter; 638 struct hd_struct *part; 639 int err; 640 641 ddev->parent = parent; 642 643 dev_set_name(ddev, "%s", disk->disk_name); 644 645 /* delay uevents, until we scanned partition table */ 646 dev_set_uevent_suppress(ddev, 1); 647 648 if (groups) { 649 WARN_ON(ddev->groups); 650 ddev->groups = groups; 651 } 652 if (device_add(ddev)) 653 return; 654 if (!sysfs_deprecated) { 655 err = sysfs_create_link(block_depr, &ddev->kobj, 656 kobject_name(&ddev->kobj)); 657 if (err) { 658 device_del(ddev); 659 return; 660 } 661 } 662 663 /* 664 * avoid probable deadlock caused by allocating memory with 665 * GFP_KERNEL in runtime_resume callback of its all ancestor 666 * devices 667 */ 668 pm_runtime_set_memalloc_noio(ddev, true); 669 670 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 671 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 672 673 if (disk->flags & GENHD_FL_HIDDEN) { 674 dev_set_uevent_suppress(ddev, 0); 675 return; 676 } 677 678 /* No minors to use for partitions */ 679 if (!disk_part_scan_enabled(disk)) 680 goto exit; 681 682 /* No such device (e.g., media were just removed) */ 683 if (!get_capacity(disk)) 684 goto exit; 685 686 bdev = bdget_disk(disk, 0); 687 if (!bdev) 688 goto exit; 689 690 bdev->bd_invalidated = 1; 691 err = blkdev_get(bdev, FMODE_READ, NULL); 692 if (err < 0) 693 goto exit; 694 blkdev_put(bdev, FMODE_READ); 695 696 exit: 697 /* announce disk after possible partitions are created */ 698 dev_set_uevent_suppress(ddev, 0); 699 kobject_uevent(&ddev->kobj, KOBJ_ADD); 700 701 /* announce possible partitions */ 702 disk_part_iter_init(&piter, disk, 0); 703 while ((part = disk_part_iter_next(&piter))) 704 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 705 disk_part_iter_exit(&piter); 706 707 if (disk->queue->backing_dev_info->dev) { 708 err = sysfs_create_link(&ddev->kobj, 709 &disk->queue->backing_dev_info->dev->kobj, 710 "bdi"); 711 WARN_ON(err); 712 } 713 } 714 715 /** 716 * __device_add_disk - add disk information to kernel list 717 * @parent: parent device for the disk 718 * @disk: per-device partitioning information 719 * @groups: Additional per-device sysfs groups 720 * @register_queue: register the queue if set to true 721 * 722 * This function registers the partitioning information in @disk 723 * with the kernel. 724 * 725 * FIXME: error handling 726 */ 727 static void __device_add_disk(struct device *parent, struct gendisk *disk, 728 const struct attribute_group **groups, 729 bool register_queue) 730 { 731 dev_t devt; 732 int retval; 733 734 /* 735 * The disk queue should now be all set with enough information about 736 * the device for the elevator code to pick an adequate default 737 * elevator if one is needed, that is, for devices requesting queue 738 * registration. 739 */ 740 if (register_queue) 741 elevator_init_mq(disk->queue); 742 743 /* minors == 0 indicates to use ext devt from part0 and should 744 * be accompanied with EXT_DEVT flag. Make sure all 745 * parameters make sense. 746 */ 747 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 748 WARN_ON(!disk->minors && 749 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN))); 750 751 disk->flags |= GENHD_FL_UP; 752 753 retval = blk_alloc_devt(&disk->part0, &devt); 754 if (retval) { 755 WARN_ON(1); 756 return; 757 } 758 disk->major = MAJOR(devt); 759 disk->first_minor = MINOR(devt); 760 761 disk_alloc_events(disk); 762 763 if (disk->flags & GENHD_FL_HIDDEN) { 764 /* 765 * Don't let hidden disks show up in /proc/partitions, 766 * and don't bother scanning for partitions either. 767 */ 768 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 769 disk->flags |= GENHD_FL_NO_PART_SCAN; 770 } else { 771 int ret; 772 773 /* Register BDI before referencing it from bdev */ 774 disk_to_dev(disk)->devt = devt; 775 ret = bdi_register_owner(disk->queue->backing_dev_info, 776 disk_to_dev(disk)); 777 WARN_ON(ret); 778 blk_register_region(disk_devt(disk), disk->minors, NULL, 779 exact_match, exact_lock, disk); 780 } 781 register_disk(parent, disk, groups); 782 if (register_queue) 783 blk_register_queue(disk); 784 785 /* 786 * Take an extra ref on queue which will be put on disk_release() 787 * so that it sticks around as long as @disk is there. 788 */ 789 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 790 791 disk_add_events(disk); 792 blk_integrity_add(disk); 793 } 794 795 void device_add_disk(struct device *parent, struct gendisk *disk, 796 const struct attribute_group **groups) 797 798 { 799 __device_add_disk(parent, disk, groups, true); 800 } 801 EXPORT_SYMBOL(device_add_disk); 802 803 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk) 804 { 805 __device_add_disk(parent, disk, NULL, false); 806 } 807 EXPORT_SYMBOL(device_add_disk_no_queue_reg); 808 809 void del_gendisk(struct gendisk *disk) 810 { 811 struct disk_part_iter piter; 812 struct hd_struct *part; 813 814 blk_integrity_del(disk); 815 disk_del_events(disk); 816 817 /* 818 * Block lookups of the disk until all bdevs are unhashed and the 819 * disk is marked as dead (GENHD_FL_UP cleared). 820 */ 821 down_write(&disk->lookup_sem); 822 /* invalidate stuff */ 823 disk_part_iter_init(&piter, disk, 824 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 825 while ((part = disk_part_iter_next(&piter))) { 826 invalidate_partition(disk, part->partno); 827 bdev_unhash_inode(part_devt(part)); 828 delete_partition(disk, part->partno); 829 } 830 disk_part_iter_exit(&piter); 831 832 invalidate_partition(disk, 0); 833 bdev_unhash_inode(disk_devt(disk)); 834 set_capacity(disk, 0); 835 disk->flags &= ~GENHD_FL_UP; 836 up_write(&disk->lookup_sem); 837 838 if (!(disk->flags & GENHD_FL_HIDDEN)) 839 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 840 if (disk->queue) { 841 /* 842 * Unregister bdi before releasing device numbers (as they can 843 * get reused and we'd get clashes in sysfs). 844 */ 845 if (!(disk->flags & GENHD_FL_HIDDEN)) 846 bdi_unregister(disk->queue->backing_dev_info); 847 blk_unregister_queue(disk); 848 } else { 849 WARN_ON(1); 850 } 851 852 if (!(disk->flags & GENHD_FL_HIDDEN)) 853 blk_unregister_region(disk_devt(disk), disk->minors); 854 /* 855 * Remove gendisk pointer from idr so that it cannot be looked up 856 * while RCU period before freeing gendisk is running to prevent 857 * use-after-free issues. Note that the device number stays 858 * "in-use" until we really free the gendisk. 859 */ 860 blk_invalidate_devt(disk_devt(disk)); 861 862 kobject_put(disk->part0.holder_dir); 863 kobject_put(disk->slave_dir); 864 865 part_stat_set_all(&disk->part0, 0); 866 disk->part0.stamp = 0; 867 if (!sysfs_deprecated) 868 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 869 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 870 device_del(disk_to_dev(disk)); 871 } 872 EXPORT_SYMBOL(del_gendisk); 873 874 /* sysfs access to bad-blocks list. */ 875 static ssize_t disk_badblocks_show(struct device *dev, 876 struct device_attribute *attr, 877 char *page) 878 { 879 struct gendisk *disk = dev_to_disk(dev); 880 881 if (!disk->bb) 882 return sprintf(page, "\n"); 883 884 return badblocks_show(disk->bb, page, 0); 885 } 886 887 static ssize_t disk_badblocks_store(struct device *dev, 888 struct device_attribute *attr, 889 const char *page, size_t len) 890 { 891 struct gendisk *disk = dev_to_disk(dev); 892 893 if (!disk->bb) 894 return -ENXIO; 895 896 return badblocks_store(disk->bb, page, len, 0); 897 } 898 899 /** 900 * get_gendisk - get partitioning information for a given device 901 * @devt: device to get partitioning information for 902 * @partno: returned partition index 903 * 904 * This function gets the structure containing partitioning 905 * information for the given device @devt. 906 */ 907 struct gendisk *get_gendisk(dev_t devt, int *partno) 908 { 909 struct gendisk *disk = NULL; 910 911 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 912 struct kobject *kobj; 913 914 kobj = kobj_lookup(bdev_map, devt, partno); 915 if (kobj) 916 disk = dev_to_disk(kobj_to_dev(kobj)); 917 } else { 918 struct hd_struct *part; 919 920 spin_lock_bh(&ext_devt_lock); 921 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 922 if (part && get_disk_and_module(part_to_disk(part))) { 923 *partno = part->partno; 924 disk = part_to_disk(part); 925 } 926 spin_unlock_bh(&ext_devt_lock); 927 } 928 929 if (!disk) 930 return NULL; 931 932 /* 933 * Synchronize with del_gendisk() to not return disk that is being 934 * destroyed. 935 */ 936 down_read(&disk->lookup_sem); 937 if (unlikely((disk->flags & GENHD_FL_HIDDEN) || 938 !(disk->flags & GENHD_FL_UP))) { 939 up_read(&disk->lookup_sem); 940 put_disk_and_module(disk); 941 disk = NULL; 942 } else { 943 up_read(&disk->lookup_sem); 944 } 945 return disk; 946 } 947 EXPORT_SYMBOL(get_gendisk); 948 949 /** 950 * bdget_disk - do bdget() by gendisk and partition number 951 * @disk: gendisk of interest 952 * @partno: partition number 953 * 954 * Find partition @partno from @disk, do bdget() on it. 955 * 956 * CONTEXT: 957 * Don't care. 958 * 959 * RETURNS: 960 * Resulting block_device on success, NULL on failure. 961 */ 962 struct block_device *bdget_disk(struct gendisk *disk, int partno) 963 { 964 struct hd_struct *part; 965 struct block_device *bdev = NULL; 966 967 part = disk_get_part(disk, partno); 968 if (part) 969 bdev = bdget(part_devt(part)); 970 disk_put_part(part); 971 972 return bdev; 973 } 974 EXPORT_SYMBOL(bdget_disk); 975 976 /* 977 * print a full list of all partitions - intended for places where the root 978 * filesystem can't be mounted and thus to give the victim some idea of what 979 * went wrong 980 */ 981 void __init printk_all_partitions(void) 982 { 983 struct class_dev_iter iter; 984 struct device *dev; 985 986 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 987 while ((dev = class_dev_iter_next(&iter))) { 988 struct gendisk *disk = dev_to_disk(dev); 989 struct disk_part_iter piter; 990 struct hd_struct *part; 991 char name_buf[BDEVNAME_SIZE]; 992 char devt_buf[BDEVT_SIZE]; 993 994 /* 995 * Don't show empty devices or things that have been 996 * suppressed 997 */ 998 if (get_capacity(disk) == 0 || 999 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 1000 continue; 1001 1002 /* 1003 * Note, unlike /proc/partitions, I am showing the 1004 * numbers in hex - the same format as the root= 1005 * option takes. 1006 */ 1007 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 1008 while ((part = disk_part_iter_next(&piter))) { 1009 bool is_part0 = part == &disk->part0; 1010 1011 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 1012 bdevt_str(part_devt(part), devt_buf), 1013 (unsigned long long)part_nr_sects_read(part) >> 1 1014 , disk_name(disk, part->partno, name_buf), 1015 part->info ? part->info->uuid : ""); 1016 if (is_part0) { 1017 if (dev->parent && dev->parent->driver) 1018 printk(" driver: %s\n", 1019 dev->parent->driver->name); 1020 else 1021 printk(" (driver?)\n"); 1022 } else 1023 printk("\n"); 1024 } 1025 disk_part_iter_exit(&piter); 1026 } 1027 class_dev_iter_exit(&iter); 1028 } 1029 1030 #ifdef CONFIG_PROC_FS 1031 /* iterator */ 1032 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 1033 { 1034 loff_t skip = *pos; 1035 struct class_dev_iter *iter; 1036 struct device *dev; 1037 1038 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 1039 if (!iter) 1040 return ERR_PTR(-ENOMEM); 1041 1042 seqf->private = iter; 1043 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 1044 do { 1045 dev = class_dev_iter_next(iter); 1046 if (!dev) 1047 return NULL; 1048 } while (skip--); 1049 1050 return dev_to_disk(dev); 1051 } 1052 1053 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 1054 { 1055 struct device *dev; 1056 1057 (*pos)++; 1058 dev = class_dev_iter_next(seqf->private); 1059 if (dev) 1060 return dev_to_disk(dev); 1061 1062 return NULL; 1063 } 1064 1065 static void disk_seqf_stop(struct seq_file *seqf, void *v) 1066 { 1067 struct class_dev_iter *iter = seqf->private; 1068 1069 /* stop is called even after start failed :-( */ 1070 if (iter) { 1071 class_dev_iter_exit(iter); 1072 kfree(iter); 1073 seqf->private = NULL; 1074 } 1075 } 1076 1077 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 1078 { 1079 void *p; 1080 1081 p = disk_seqf_start(seqf, pos); 1082 if (!IS_ERR_OR_NULL(p) && !*pos) 1083 seq_puts(seqf, "major minor #blocks name\n\n"); 1084 return p; 1085 } 1086 1087 static int show_partition(struct seq_file *seqf, void *v) 1088 { 1089 struct gendisk *sgp = v; 1090 struct disk_part_iter piter; 1091 struct hd_struct *part; 1092 char buf[BDEVNAME_SIZE]; 1093 1094 /* Don't show non-partitionable removeable devices or empty devices */ 1095 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 1096 (sgp->flags & GENHD_FL_REMOVABLE))) 1097 return 0; 1098 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 1099 return 0; 1100 1101 /* show the full disk and all non-0 size partitions of it */ 1102 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 1103 while ((part = disk_part_iter_next(&piter))) 1104 seq_printf(seqf, "%4d %7d %10llu %s\n", 1105 MAJOR(part_devt(part)), MINOR(part_devt(part)), 1106 (unsigned long long)part_nr_sects_read(part) >> 1, 1107 disk_name(sgp, part->partno, buf)); 1108 disk_part_iter_exit(&piter); 1109 1110 return 0; 1111 } 1112 1113 static const struct seq_operations partitions_op = { 1114 .start = show_partition_start, 1115 .next = disk_seqf_next, 1116 .stop = disk_seqf_stop, 1117 .show = show_partition 1118 }; 1119 #endif 1120 1121 1122 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 1123 { 1124 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 1125 /* Make old-style 2.4 aliases work */ 1126 request_module("block-major-%d", MAJOR(devt)); 1127 return NULL; 1128 } 1129 1130 static int __init genhd_device_init(void) 1131 { 1132 int error; 1133 1134 block_class.dev_kobj = sysfs_dev_block_kobj; 1135 error = class_register(&block_class); 1136 if (unlikely(error)) 1137 return error; 1138 bdev_map = kobj_map_init(base_probe, &block_class_lock); 1139 blk_dev_init(); 1140 1141 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 1142 1143 /* create top-level block dir */ 1144 if (!sysfs_deprecated) 1145 block_depr = kobject_create_and_add("block", NULL); 1146 return 0; 1147 } 1148 1149 subsys_initcall(genhd_device_init); 1150 1151 static ssize_t disk_range_show(struct device *dev, 1152 struct device_attribute *attr, char *buf) 1153 { 1154 struct gendisk *disk = dev_to_disk(dev); 1155 1156 return sprintf(buf, "%d\n", disk->minors); 1157 } 1158 1159 static ssize_t disk_ext_range_show(struct device *dev, 1160 struct device_attribute *attr, char *buf) 1161 { 1162 struct gendisk *disk = dev_to_disk(dev); 1163 1164 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1165 } 1166 1167 static ssize_t disk_removable_show(struct device *dev, 1168 struct device_attribute *attr, char *buf) 1169 { 1170 struct gendisk *disk = dev_to_disk(dev); 1171 1172 return sprintf(buf, "%d\n", 1173 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1174 } 1175 1176 static ssize_t disk_hidden_show(struct device *dev, 1177 struct device_attribute *attr, char *buf) 1178 { 1179 struct gendisk *disk = dev_to_disk(dev); 1180 1181 return sprintf(buf, "%d\n", 1182 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); 1183 } 1184 1185 static ssize_t disk_ro_show(struct device *dev, 1186 struct device_attribute *attr, char *buf) 1187 { 1188 struct gendisk *disk = dev_to_disk(dev); 1189 1190 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1191 } 1192 1193 static ssize_t disk_capability_show(struct device *dev, 1194 struct device_attribute *attr, char *buf) 1195 { 1196 struct gendisk *disk = dev_to_disk(dev); 1197 1198 return sprintf(buf, "%x\n", disk->flags); 1199 } 1200 1201 static ssize_t disk_alignment_offset_show(struct device *dev, 1202 struct device_attribute *attr, 1203 char *buf) 1204 { 1205 struct gendisk *disk = dev_to_disk(dev); 1206 1207 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1208 } 1209 1210 static ssize_t disk_discard_alignment_show(struct device *dev, 1211 struct device_attribute *attr, 1212 char *buf) 1213 { 1214 struct gendisk *disk = dev_to_disk(dev); 1215 1216 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1217 } 1218 1219 static DEVICE_ATTR(range, 0444, disk_range_show, NULL); 1220 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL); 1221 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL); 1222 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL); 1223 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL); 1224 static DEVICE_ATTR(size, 0444, part_size_show, NULL); 1225 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL); 1226 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL); 1227 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL); 1228 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); 1229 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); 1230 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store); 1231 #ifdef CONFIG_FAIL_MAKE_REQUEST 1232 static struct device_attribute dev_attr_fail = 1233 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); 1234 #endif 1235 #ifdef CONFIG_FAIL_IO_TIMEOUT 1236 static struct device_attribute dev_attr_fail_timeout = 1237 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store); 1238 #endif 1239 1240 static struct attribute *disk_attrs[] = { 1241 &dev_attr_range.attr, 1242 &dev_attr_ext_range.attr, 1243 &dev_attr_removable.attr, 1244 &dev_attr_hidden.attr, 1245 &dev_attr_ro.attr, 1246 &dev_attr_size.attr, 1247 &dev_attr_alignment_offset.attr, 1248 &dev_attr_discard_alignment.attr, 1249 &dev_attr_capability.attr, 1250 &dev_attr_stat.attr, 1251 &dev_attr_inflight.attr, 1252 &dev_attr_badblocks.attr, 1253 #ifdef CONFIG_FAIL_MAKE_REQUEST 1254 &dev_attr_fail.attr, 1255 #endif 1256 #ifdef CONFIG_FAIL_IO_TIMEOUT 1257 &dev_attr_fail_timeout.attr, 1258 #endif 1259 NULL 1260 }; 1261 1262 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1263 { 1264 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1265 struct gendisk *disk = dev_to_disk(dev); 1266 1267 if (a == &dev_attr_badblocks.attr && !disk->bb) 1268 return 0; 1269 return a->mode; 1270 } 1271 1272 static struct attribute_group disk_attr_group = { 1273 .attrs = disk_attrs, 1274 .is_visible = disk_visible, 1275 }; 1276 1277 static const struct attribute_group *disk_attr_groups[] = { 1278 &disk_attr_group, 1279 NULL 1280 }; 1281 1282 /** 1283 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1284 * @disk: disk to replace part_tbl for 1285 * @new_ptbl: new part_tbl to install 1286 * 1287 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1288 * original ptbl is freed using RCU callback. 1289 * 1290 * LOCKING: 1291 * Matching bd_mutex locked or the caller is the only user of @disk. 1292 */ 1293 static void disk_replace_part_tbl(struct gendisk *disk, 1294 struct disk_part_tbl *new_ptbl) 1295 { 1296 struct disk_part_tbl *old_ptbl = 1297 rcu_dereference_protected(disk->part_tbl, 1); 1298 1299 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1300 1301 if (old_ptbl) { 1302 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1303 kfree_rcu(old_ptbl, rcu_head); 1304 } 1305 } 1306 1307 /** 1308 * disk_expand_part_tbl - expand disk->part_tbl 1309 * @disk: disk to expand part_tbl for 1310 * @partno: expand such that this partno can fit in 1311 * 1312 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1313 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1314 * 1315 * LOCKING: 1316 * Matching bd_mutex locked or the caller is the only user of @disk. 1317 * Might sleep. 1318 * 1319 * RETURNS: 1320 * 0 on success, -errno on failure. 1321 */ 1322 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1323 { 1324 struct disk_part_tbl *old_ptbl = 1325 rcu_dereference_protected(disk->part_tbl, 1); 1326 struct disk_part_tbl *new_ptbl; 1327 int len = old_ptbl ? old_ptbl->len : 0; 1328 int i, target; 1329 1330 /* 1331 * check for int overflow, since we can get here from blkpg_ioctl() 1332 * with a user passed 'partno'. 1333 */ 1334 target = partno + 1; 1335 if (target < 0) 1336 return -EINVAL; 1337 1338 /* disk_max_parts() is zero during initialization, ignore if so */ 1339 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1340 return -EINVAL; 1341 1342 if (target <= len) 1343 return 0; 1344 1345 new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL, 1346 disk->node_id); 1347 if (!new_ptbl) 1348 return -ENOMEM; 1349 1350 new_ptbl->len = target; 1351 1352 for (i = 0; i < len; i++) 1353 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1354 1355 disk_replace_part_tbl(disk, new_ptbl); 1356 return 0; 1357 } 1358 1359 static void disk_release(struct device *dev) 1360 { 1361 struct gendisk *disk = dev_to_disk(dev); 1362 1363 blk_free_devt(dev->devt); 1364 disk_release_events(disk); 1365 kfree(disk->random); 1366 disk_replace_part_tbl(disk, NULL); 1367 hd_free_part(&disk->part0); 1368 if (disk->queue) 1369 blk_put_queue(disk->queue); 1370 kfree(disk); 1371 } 1372 struct class block_class = { 1373 .name = "block", 1374 }; 1375 1376 static char *block_devnode(struct device *dev, umode_t *mode, 1377 kuid_t *uid, kgid_t *gid) 1378 { 1379 struct gendisk *disk = dev_to_disk(dev); 1380 1381 if (disk->devnode) 1382 return disk->devnode(disk, mode); 1383 return NULL; 1384 } 1385 1386 static const struct device_type disk_type = { 1387 .name = "disk", 1388 .groups = disk_attr_groups, 1389 .release = disk_release, 1390 .devnode = block_devnode, 1391 }; 1392 1393 #ifdef CONFIG_PROC_FS 1394 /* 1395 * aggregate disk stat collector. Uses the same stats that the sysfs 1396 * entries do, above, but makes them available through one seq_file. 1397 * 1398 * The output looks suspiciously like /proc/partitions with a bunch of 1399 * extra fields. 1400 */ 1401 static int diskstats_show(struct seq_file *seqf, void *v) 1402 { 1403 struct gendisk *gp = v; 1404 struct disk_part_iter piter; 1405 struct hd_struct *hd; 1406 char buf[BDEVNAME_SIZE]; 1407 unsigned int inflight; 1408 1409 /* 1410 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1411 seq_puts(seqf, "major minor name" 1412 " rio rmerge rsect ruse wio wmerge " 1413 "wsect wuse running use aveq" 1414 "\n\n"); 1415 */ 1416 1417 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1418 while ((hd = disk_part_iter_next(&piter))) { 1419 inflight = part_in_flight(gp->queue, hd); 1420 seq_printf(seqf, "%4d %7d %s " 1421 "%lu %lu %lu %u " 1422 "%lu %lu %lu %u " 1423 "%u %u %u " 1424 "%lu %lu %lu %u " 1425 "%lu %u" 1426 "\n", 1427 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1428 disk_name(gp, hd->partno, buf), 1429 part_stat_read(hd, ios[STAT_READ]), 1430 part_stat_read(hd, merges[STAT_READ]), 1431 part_stat_read(hd, sectors[STAT_READ]), 1432 (unsigned int)part_stat_read_msecs(hd, STAT_READ), 1433 part_stat_read(hd, ios[STAT_WRITE]), 1434 part_stat_read(hd, merges[STAT_WRITE]), 1435 part_stat_read(hd, sectors[STAT_WRITE]), 1436 (unsigned int)part_stat_read_msecs(hd, STAT_WRITE), 1437 inflight, 1438 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1439 jiffies_to_msecs(part_stat_read(hd, time_in_queue)), 1440 part_stat_read(hd, ios[STAT_DISCARD]), 1441 part_stat_read(hd, merges[STAT_DISCARD]), 1442 part_stat_read(hd, sectors[STAT_DISCARD]), 1443 (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD), 1444 part_stat_read(hd, ios[STAT_FLUSH]), 1445 (unsigned int)part_stat_read_msecs(hd, STAT_FLUSH) 1446 ); 1447 } 1448 disk_part_iter_exit(&piter); 1449 1450 return 0; 1451 } 1452 1453 static const struct seq_operations diskstats_op = { 1454 .start = disk_seqf_start, 1455 .next = disk_seqf_next, 1456 .stop = disk_seqf_stop, 1457 .show = diskstats_show 1458 }; 1459 1460 static int __init proc_genhd_init(void) 1461 { 1462 proc_create_seq("diskstats", 0, NULL, &diskstats_op); 1463 proc_create_seq("partitions", 0, NULL, &partitions_op); 1464 return 0; 1465 } 1466 module_init(proc_genhd_init); 1467 #endif /* CONFIG_PROC_FS */ 1468 1469 dev_t blk_lookup_devt(const char *name, int partno) 1470 { 1471 dev_t devt = MKDEV(0, 0); 1472 struct class_dev_iter iter; 1473 struct device *dev; 1474 1475 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1476 while ((dev = class_dev_iter_next(&iter))) { 1477 struct gendisk *disk = dev_to_disk(dev); 1478 struct hd_struct *part; 1479 1480 if (strcmp(dev_name(dev), name)) 1481 continue; 1482 1483 if (partno < disk->minors) { 1484 /* We need to return the right devno, even 1485 * if the partition doesn't exist yet. 1486 */ 1487 devt = MKDEV(MAJOR(dev->devt), 1488 MINOR(dev->devt) + partno); 1489 break; 1490 } 1491 part = disk_get_part(disk, partno); 1492 if (part) { 1493 devt = part_devt(part); 1494 disk_put_part(part); 1495 break; 1496 } 1497 disk_put_part(part); 1498 } 1499 class_dev_iter_exit(&iter); 1500 return devt; 1501 } 1502 EXPORT_SYMBOL(blk_lookup_devt); 1503 1504 struct gendisk *__alloc_disk_node(int minors, int node_id) 1505 { 1506 struct gendisk *disk; 1507 struct disk_part_tbl *ptbl; 1508 1509 if (minors > DISK_MAX_PARTS) { 1510 printk(KERN_ERR 1511 "block: can't allocate more than %d partitions\n", 1512 DISK_MAX_PARTS); 1513 minors = DISK_MAX_PARTS; 1514 } 1515 1516 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1517 if (disk) { 1518 if (!init_part_stats(&disk->part0)) { 1519 kfree(disk); 1520 return NULL; 1521 } 1522 init_rwsem(&disk->lookup_sem); 1523 disk->node_id = node_id; 1524 if (disk_expand_part_tbl(disk, 0)) { 1525 free_part_stats(&disk->part0); 1526 kfree(disk); 1527 return NULL; 1528 } 1529 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 1530 rcu_assign_pointer(ptbl->part[0], &disk->part0); 1531 1532 /* 1533 * set_capacity() and get_capacity() currently don't use 1534 * seqcounter to read/update the part0->nr_sects. Still init 1535 * the counter as we can read the sectors in IO submission 1536 * patch using seqence counters. 1537 * 1538 * TODO: Ideally set_capacity() and get_capacity() should be 1539 * converted to make use of bd_mutex and sequence counters. 1540 */ 1541 seqcount_init(&disk->part0.nr_sects_seq); 1542 if (hd_ref_init(&disk->part0)) { 1543 hd_free_part(&disk->part0); 1544 kfree(disk); 1545 return NULL; 1546 } 1547 1548 disk->minors = minors; 1549 rand_initialize_disk(disk); 1550 disk_to_dev(disk)->class = &block_class; 1551 disk_to_dev(disk)->type = &disk_type; 1552 device_initialize(disk_to_dev(disk)); 1553 } 1554 return disk; 1555 } 1556 EXPORT_SYMBOL(__alloc_disk_node); 1557 1558 struct kobject *get_disk_and_module(struct gendisk *disk) 1559 { 1560 struct module *owner; 1561 struct kobject *kobj; 1562 1563 if (!disk->fops) 1564 return NULL; 1565 owner = disk->fops->owner; 1566 if (owner && !try_module_get(owner)) 1567 return NULL; 1568 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1569 if (kobj == NULL) { 1570 module_put(owner); 1571 return NULL; 1572 } 1573 return kobj; 1574 1575 } 1576 EXPORT_SYMBOL(get_disk_and_module); 1577 1578 void put_disk(struct gendisk *disk) 1579 { 1580 if (disk) 1581 kobject_put(&disk_to_dev(disk)->kobj); 1582 } 1583 EXPORT_SYMBOL(put_disk); 1584 1585 /* 1586 * This is a counterpart of get_disk_and_module() and thus also of 1587 * get_gendisk(). 1588 */ 1589 void put_disk_and_module(struct gendisk *disk) 1590 { 1591 if (disk) { 1592 struct module *owner = disk->fops->owner; 1593 1594 put_disk(disk); 1595 module_put(owner); 1596 } 1597 } 1598 EXPORT_SYMBOL(put_disk_and_module); 1599 1600 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1601 { 1602 char event[] = "DISK_RO=1"; 1603 char *envp[] = { event, NULL }; 1604 1605 if (!ro) 1606 event[8] = '0'; 1607 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1608 } 1609 1610 void set_device_ro(struct block_device *bdev, int flag) 1611 { 1612 bdev->bd_part->policy = flag; 1613 } 1614 1615 EXPORT_SYMBOL(set_device_ro); 1616 1617 void set_disk_ro(struct gendisk *disk, int flag) 1618 { 1619 struct disk_part_iter piter; 1620 struct hd_struct *part; 1621 1622 if (disk->part0.policy != flag) { 1623 set_disk_ro_uevent(disk, flag); 1624 disk->part0.policy = flag; 1625 } 1626 1627 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1628 while ((part = disk_part_iter_next(&piter))) 1629 part->policy = flag; 1630 disk_part_iter_exit(&piter); 1631 } 1632 1633 EXPORT_SYMBOL(set_disk_ro); 1634 1635 int bdev_read_only(struct block_device *bdev) 1636 { 1637 if (!bdev) 1638 return 0; 1639 return bdev->bd_part->policy; 1640 } 1641 1642 EXPORT_SYMBOL(bdev_read_only); 1643 1644 int invalidate_partition(struct gendisk *disk, int partno) 1645 { 1646 int res = 0; 1647 struct block_device *bdev = bdget_disk(disk, partno); 1648 if (bdev) { 1649 fsync_bdev(bdev); 1650 res = __invalidate_device(bdev, true); 1651 bdput(bdev); 1652 } 1653 return res; 1654 } 1655 1656 EXPORT_SYMBOL(invalidate_partition); 1657 1658 /* 1659 * Disk events - monitor disk events like media change and eject request. 1660 */ 1661 struct disk_events { 1662 struct list_head node; /* all disk_event's */ 1663 struct gendisk *disk; /* the associated disk */ 1664 spinlock_t lock; 1665 1666 struct mutex block_mutex; /* protects blocking */ 1667 int block; /* event blocking depth */ 1668 unsigned int pending; /* events already sent out */ 1669 unsigned int clearing; /* events being cleared */ 1670 1671 long poll_msecs; /* interval, -1 for default */ 1672 struct delayed_work dwork; 1673 }; 1674 1675 static const char *disk_events_strs[] = { 1676 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1677 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1678 }; 1679 1680 static char *disk_uevents[] = { 1681 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1682 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1683 }; 1684 1685 /* list of all disk_events */ 1686 static DEFINE_MUTEX(disk_events_mutex); 1687 static LIST_HEAD(disk_events); 1688 1689 /* disable in-kernel polling by default */ 1690 static unsigned long disk_events_dfl_poll_msecs; 1691 1692 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1693 { 1694 struct disk_events *ev = disk->ev; 1695 long intv_msecs = 0; 1696 1697 /* 1698 * If device-specific poll interval is set, always use it. If 1699 * the default is being used, poll if the POLL flag is set. 1700 */ 1701 if (ev->poll_msecs >= 0) 1702 intv_msecs = ev->poll_msecs; 1703 else if (disk->event_flags & DISK_EVENT_FLAG_POLL) 1704 intv_msecs = disk_events_dfl_poll_msecs; 1705 1706 return msecs_to_jiffies(intv_msecs); 1707 } 1708 1709 /** 1710 * disk_block_events - block and flush disk event checking 1711 * @disk: disk to block events for 1712 * 1713 * On return from this function, it is guaranteed that event checking 1714 * isn't in progress and won't happen until unblocked by 1715 * disk_unblock_events(). Events blocking is counted and the actual 1716 * unblocking happens after the matching number of unblocks are done. 1717 * 1718 * Note that this intentionally does not block event checking from 1719 * disk_clear_events(). 1720 * 1721 * CONTEXT: 1722 * Might sleep. 1723 */ 1724 void disk_block_events(struct gendisk *disk) 1725 { 1726 struct disk_events *ev = disk->ev; 1727 unsigned long flags; 1728 bool cancel; 1729 1730 if (!ev) 1731 return; 1732 1733 /* 1734 * Outer mutex ensures that the first blocker completes canceling 1735 * the event work before further blockers are allowed to finish. 1736 */ 1737 mutex_lock(&ev->block_mutex); 1738 1739 spin_lock_irqsave(&ev->lock, flags); 1740 cancel = !ev->block++; 1741 spin_unlock_irqrestore(&ev->lock, flags); 1742 1743 if (cancel) 1744 cancel_delayed_work_sync(&disk->ev->dwork); 1745 1746 mutex_unlock(&ev->block_mutex); 1747 } 1748 1749 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1750 { 1751 struct disk_events *ev = disk->ev; 1752 unsigned long intv; 1753 unsigned long flags; 1754 1755 spin_lock_irqsave(&ev->lock, flags); 1756 1757 if (WARN_ON_ONCE(ev->block <= 0)) 1758 goto out_unlock; 1759 1760 if (--ev->block) 1761 goto out_unlock; 1762 1763 intv = disk_events_poll_jiffies(disk); 1764 if (check_now) 1765 queue_delayed_work(system_freezable_power_efficient_wq, 1766 &ev->dwork, 0); 1767 else if (intv) 1768 queue_delayed_work(system_freezable_power_efficient_wq, 1769 &ev->dwork, intv); 1770 out_unlock: 1771 spin_unlock_irqrestore(&ev->lock, flags); 1772 } 1773 1774 /** 1775 * disk_unblock_events - unblock disk event checking 1776 * @disk: disk to unblock events for 1777 * 1778 * Undo disk_block_events(). When the block count reaches zero, it 1779 * starts events polling if configured. 1780 * 1781 * CONTEXT: 1782 * Don't care. Safe to call from irq context. 1783 */ 1784 void disk_unblock_events(struct gendisk *disk) 1785 { 1786 if (disk->ev) 1787 __disk_unblock_events(disk, false); 1788 } 1789 1790 /** 1791 * disk_flush_events - schedule immediate event checking and flushing 1792 * @disk: disk to check and flush events for 1793 * @mask: events to flush 1794 * 1795 * Schedule immediate event checking on @disk if not blocked. Events in 1796 * @mask are scheduled to be cleared from the driver. Note that this 1797 * doesn't clear the events from @disk->ev. 1798 * 1799 * CONTEXT: 1800 * If @mask is non-zero must be called with bdev->bd_mutex held. 1801 */ 1802 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1803 { 1804 struct disk_events *ev = disk->ev; 1805 1806 if (!ev) 1807 return; 1808 1809 spin_lock_irq(&ev->lock); 1810 ev->clearing |= mask; 1811 if (!ev->block) 1812 mod_delayed_work(system_freezable_power_efficient_wq, 1813 &ev->dwork, 0); 1814 spin_unlock_irq(&ev->lock); 1815 } 1816 1817 /** 1818 * disk_clear_events - synchronously check, clear and return pending events 1819 * @disk: disk to fetch and clear events from 1820 * @mask: mask of events to be fetched and cleared 1821 * 1822 * Disk events are synchronously checked and pending events in @mask 1823 * are cleared and returned. This ignores the block count. 1824 * 1825 * CONTEXT: 1826 * Might sleep. 1827 */ 1828 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1829 { 1830 const struct block_device_operations *bdops = disk->fops; 1831 struct disk_events *ev = disk->ev; 1832 unsigned int pending; 1833 unsigned int clearing = mask; 1834 1835 if (!ev) { 1836 /* for drivers still using the old ->media_changed method */ 1837 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1838 bdops->media_changed && bdops->media_changed(disk)) 1839 return DISK_EVENT_MEDIA_CHANGE; 1840 return 0; 1841 } 1842 1843 disk_block_events(disk); 1844 1845 /* 1846 * store the union of mask and ev->clearing on the stack so that the 1847 * race with disk_flush_events does not cause ambiguity (ev->clearing 1848 * can still be modified even if events are blocked). 1849 */ 1850 spin_lock_irq(&ev->lock); 1851 clearing |= ev->clearing; 1852 ev->clearing = 0; 1853 spin_unlock_irq(&ev->lock); 1854 1855 disk_check_events(ev, &clearing); 1856 /* 1857 * if ev->clearing is not 0, the disk_flush_events got called in the 1858 * middle of this function, so we want to run the workfn without delay. 1859 */ 1860 __disk_unblock_events(disk, ev->clearing ? true : false); 1861 1862 /* then, fetch and clear pending events */ 1863 spin_lock_irq(&ev->lock); 1864 pending = ev->pending & mask; 1865 ev->pending &= ~mask; 1866 spin_unlock_irq(&ev->lock); 1867 WARN_ON_ONCE(clearing & mask); 1868 1869 return pending; 1870 } 1871 1872 /* 1873 * Separate this part out so that a different pointer for clearing_ptr can be 1874 * passed in for disk_clear_events. 1875 */ 1876 static void disk_events_workfn(struct work_struct *work) 1877 { 1878 struct delayed_work *dwork = to_delayed_work(work); 1879 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1880 1881 disk_check_events(ev, &ev->clearing); 1882 } 1883 1884 static void disk_check_events(struct disk_events *ev, 1885 unsigned int *clearing_ptr) 1886 { 1887 struct gendisk *disk = ev->disk; 1888 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1889 unsigned int clearing = *clearing_ptr; 1890 unsigned int events; 1891 unsigned long intv; 1892 int nr_events = 0, i; 1893 1894 /* check events */ 1895 events = disk->fops->check_events(disk, clearing); 1896 1897 /* accumulate pending events and schedule next poll if necessary */ 1898 spin_lock_irq(&ev->lock); 1899 1900 events &= ~ev->pending; 1901 ev->pending |= events; 1902 *clearing_ptr &= ~clearing; 1903 1904 intv = disk_events_poll_jiffies(disk); 1905 if (!ev->block && intv) 1906 queue_delayed_work(system_freezable_power_efficient_wq, 1907 &ev->dwork, intv); 1908 1909 spin_unlock_irq(&ev->lock); 1910 1911 /* 1912 * Tell userland about new events. Only the events listed in 1913 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT 1914 * is set. Otherwise, events are processed internally but never 1915 * get reported to userland. 1916 */ 1917 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1918 if ((events & disk->events & (1 << i)) && 1919 (disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 1920 envp[nr_events++] = disk_uevents[i]; 1921 1922 if (nr_events) 1923 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1924 } 1925 1926 /* 1927 * A disk events enabled device has the following sysfs nodes under 1928 * its /sys/block/X/ directory. 1929 * 1930 * events : list of all supported events 1931 * events_async : list of events which can be detected w/o polling 1932 * (always empty, only for backwards compatibility) 1933 * events_poll_msecs : polling interval, 0: disable, -1: system default 1934 */ 1935 static ssize_t __disk_events_show(unsigned int events, char *buf) 1936 { 1937 const char *delim = ""; 1938 ssize_t pos = 0; 1939 int i; 1940 1941 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1942 if (events & (1 << i)) { 1943 pos += sprintf(buf + pos, "%s%s", 1944 delim, disk_events_strs[i]); 1945 delim = " "; 1946 } 1947 if (pos) 1948 pos += sprintf(buf + pos, "\n"); 1949 return pos; 1950 } 1951 1952 static ssize_t disk_events_show(struct device *dev, 1953 struct device_attribute *attr, char *buf) 1954 { 1955 struct gendisk *disk = dev_to_disk(dev); 1956 1957 if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 1958 return 0; 1959 1960 return __disk_events_show(disk->events, buf); 1961 } 1962 1963 static ssize_t disk_events_async_show(struct device *dev, 1964 struct device_attribute *attr, char *buf) 1965 { 1966 return 0; 1967 } 1968 1969 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1970 struct device_attribute *attr, 1971 char *buf) 1972 { 1973 struct gendisk *disk = dev_to_disk(dev); 1974 1975 if (!disk->ev) 1976 return sprintf(buf, "-1\n"); 1977 1978 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1979 } 1980 1981 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1982 struct device_attribute *attr, 1983 const char *buf, size_t count) 1984 { 1985 struct gendisk *disk = dev_to_disk(dev); 1986 long intv; 1987 1988 if (!count || !sscanf(buf, "%ld", &intv)) 1989 return -EINVAL; 1990 1991 if (intv < 0 && intv != -1) 1992 return -EINVAL; 1993 1994 if (!disk->ev) 1995 return -ENODEV; 1996 1997 disk_block_events(disk); 1998 disk->ev->poll_msecs = intv; 1999 __disk_unblock_events(disk, true); 2000 2001 return count; 2002 } 2003 2004 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL); 2005 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL); 2006 static const DEVICE_ATTR(events_poll_msecs, 0644, 2007 disk_events_poll_msecs_show, 2008 disk_events_poll_msecs_store); 2009 2010 static const struct attribute *disk_events_attrs[] = { 2011 &dev_attr_events.attr, 2012 &dev_attr_events_async.attr, 2013 &dev_attr_events_poll_msecs.attr, 2014 NULL, 2015 }; 2016 2017 /* 2018 * The default polling interval can be specified by the kernel 2019 * parameter block.events_dfl_poll_msecs which defaults to 0 2020 * (disable). This can also be modified runtime by writing to 2021 * /sys/module/block/parameters/events_dfl_poll_msecs. 2022 */ 2023 static int disk_events_set_dfl_poll_msecs(const char *val, 2024 const struct kernel_param *kp) 2025 { 2026 struct disk_events *ev; 2027 int ret; 2028 2029 ret = param_set_ulong(val, kp); 2030 if (ret < 0) 2031 return ret; 2032 2033 mutex_lock(&disk_events_mutex); 2034 2035 list_for_each_entry(ev, &disk_events, node) 2036 disk_flush_events(ev->disk, 0); 2037 2038 mutex_unlock(&disk_events_mutex); 2039 2040 return 0; 2041 } 2042 2043 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 2044 .set = disk_events_set_dfl_poll_msecs, 2045 .get = param_get_ulong, 2046 }; 2047 2048 #undef MODULE_PARAM_PREFIX 2049 #define MODULE_PARAM_PREFIX "block." 2050 2051 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 2052 &disk_events_dfl_poll_msecs, 0644); 2053 2054 /* 2055 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 2056 */ 2057 static void disk_alloc_events(struct gendisk *disk) 2058 { 2059 struct disk_events *ev; 2060 2061 if (!disk->fops->check_events || !disk->events) 2062 return; 2063 2064 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 2065 if (!ev) { 2066 pr_warn("%s: failed to initialize events\n", disk->disk_name); 2067 return; 2068 } 2069 2070 INIT_LIST_HEAD(&ev->node); 2071 ev->disk = disk; 2072 spin_lock_init(&ev->lock); 2073 mutex_init(&ev->block_mutex); 2074 ev->block = 1; 2075 ev->poll_msecs = -1; 2076 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 2077 2078 disk->ev = ev; 2079 } 2080 2081 static void disk_add_events(struct gendisk *disk) 2082 { 2083 /* FIXME: error handling */ 2084 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 2085 pr_warn("%s: failed to create sysfs files for events\n", 2086 disk->disk_name); 2087 2088 if (!disk->ev) 2089 return; 2090 2091 mutex_lock(&disk_events_mutex); 2092 list_add_tail(&disk->ev->node, &disk_events); 2093 mutex_unlock(&disk_events_mutex); 2094 2095 /* 2096 * Block count is initialized to 1 and the following initial 2097 * unblock kicks it into action. 2098 */ 2099 __disk_unblock_events(disk, true); 2100 } 2101 2102 static void disk_del_events(struct gendisk *disk) 2103 { 2104 if (disk->ev) { 2105 disk_block_events(disk); 2106 2107 mutex_lock(&disk_events_mutex); 2108 list_del_init(&disk->ev->node); 2109 mutex_unlock(&disk_events_mutex); 2110 } 2111 2112 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 2113 } 2114 2115 static void disk_release_events(struct gendisk *disk) 2116 { 2117 /* the block count should be 1 from disk_del_events() */ 2118 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 2119 kfree(disk->ev); 2120 } 2121