1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/init.h> 12 #include <linux/spinlock.h> 13 #include <linux/proc_fs.h> 14 #include <linux/seq_file.h> 15 #include <linux/slab.h> 16 #include <linux/kmod.h> 17 #include <linux/kobj_map.h> 18 #include <linux/mutex.h> 19 #include <linux/idr.h> 20 #include <linux/log2.h> 21 22 #include "blk.h" 23 24 static DEFINE_MUTEX(block_class_lock); 25 struct kobject *block_depr; 26 27 /* for extended dynamic devt allocation, currently only one major is used */ 28 #define MAX_EXT_DEVT (1 << MINORBITS) 29 30 /* For extended devt allocation. ext_devt_mutex prevents look up 31 * results from going away underneath its user. 32 */ 33 static DEFINE_MUTEX(ext_devt_mutex); 34 static DEFINE_IDR(ext_devt_idr); 35 36 static struct device_type disk_type; 37 38 static void disk_alloc_events(struct gendisk *disk); 39 static void disk_add_events(struct gendisk *disk); 40 static void disk_del_events(struct gendisk *disk); 41 static void disk_release_events(struct gendisk *disk); 42 43 /** 44 * disk_get_part - get partition 45 * @disk: disk to look partition from 46 * @partno: partition number 47 * 48 * Look for partition @partno from @disk. If found, increment 49 * reference count and return it. 50 * 51 * CONTEXT: 52 * Don't care. 53 * 54 * RETURNS: 55 * Pointer to the found partition on success, NULL if not found. 56 */ 57 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 58 { 59 struct hd_struct *part = NULL; 60 struct disk_part_tbl *ptbl; 61 62 if (unlikely(partno < 0)) 63 return NULL; 64 65 rcu_read_lock(); 66 67 ptbl = rcu_dereference(disk->part_tbl); 68 if (likely(partno < ptbl->len)) { 69 part = rcu_dereference(ptbl->part[partno]); 70 if (part) 71 get_device(part_to_dev(part)); 72 } 73 74 rcu_read_unlock(); 75 76 return part; 77 } 78 EXPORT_SYMBOL_GPL(disk_get_part); 79 80 /** 81 * disk_part_iter_init - initialize partition iterator 82 * @piter: iterator to initialize 83 * @disk: disk to iterate over 84 * @flags: DISK_PITER_* flags 85 * 86 * Initialize @piter so that it iterates over partitions of @disk. 87 * 88 * CONTEXT: 89 * Don't care. 90 */ 91 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 92 unsigned int flags) 93 { 94 struct disk_part_tbl *ptbl; 95 96 rcu_read_lock(); 97 ptbl = rcu_dereference(disk->part_tbl); 98 99 piter->disk = disk; 100 piter->part = NULL; 101 102 if (flags & DISK_PITER_REVERSE) 103 piter->idx = ptbl->len - 1; 104 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 105 piter->idx = 0; 106 else 107 piter->idx = 1; 108 109 piter->flags = flags; 110 111 rcu_read_unlock(); 112 } 113 EXPORT_SYMBOL_GPL(disk_part_iter_init); 114 115 /** 116 * disk_part_iter_next - proceed iterator to the next partition and return it 117 * @piter: iterator of interest 118 * 119 * Proceed @piter to the next partition and return it. 120 * 121 * CONTEXT: 122 * Don't care. 123 */ 124 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 125 { 126 struct disk_part_tbl *ptbl; 127 int inc, end; 128 129 /* put the last partition */ 130 disk_put_part(piter->part); 131 piter->part = NULL; 132 133 /* get part_tbl */ 134 rcu_read_lock(); 135 ptbl = rcu_dereference(piter->disk->part_tbl); 136 137 /* determine iteration parameters */ 138 if (piter->flags & DISK_PITER_REVERSE) { 139 inc = -1; 140 if (piter->flags & (DISK_PITER_INCL_PART0 | 141 DISK_PITER_INCL_EMPTY_PART0)) 142 end = -1; 143 else 144 end = 0; 145 } else { 146 inc = 1; 147 end = ptbl->len; 148 } 149 150 /* iterate to the next partition */ 151 for (; piter->idx != end; piter->idx += inc) { 152 struct hd_struct *part; 153 154 part = rcu_dereference(ptbl->part[piter->idx]); 155 if (!part) 156 continue; 157 if (!part->nr_sects && 158 !(piter->flags & DISK_PITER_INCL_EMPTY) && 159 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 160 piter->idx == 0)) 161 continue; 162 163 get_device(part_to_dev(part)); 164 piter->part = part; 165 piter->idx += inc; 166 break; 167 } 168 169 rcu_read_unlock(); 170 171 return piter->part; 172 } 173 EXPORT_SYMBOL_GPL(disk_part_iter_next); 174 175 /** 176 * disk_part_iter_exit - finish up partition iteration 177 * @piter: iter of interest 178 * 179 * Called when iteration is over. Cleans up @piter. 180 * 181 * CONTEXT: 182 * Don't care. 183 */ 184 void disk_part_iter_exit(struct disk_part_iter *piter) 185 { 186 disk_put_part(piter->part); 187 piter->part = NULL; 188 } 189 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 190 191 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 192 { 193 return part->start_sect <= sector && 194 sector < part->start_sect + part->nr_sects; 195 } 196 197 /** 198 * disk_map_sector_rcu - map sector to partition 199 * @disk: gendisk of interest 200 * @sector: sector to map 201 * 202 * Find out which partition @sector maps to on @disk. This is 203 * primarily used for stats accounting. 204 * 205 * CONTEXT: 206 * RCU read locked. The returned partition pointer is valid only 207 * while preemption is disabled. 208 * 209 * RETURNS: 210 * Found partition on success, part0 is returned if no partition matches 211 */ 212 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 213 { 214 struct disk_part_tbl *ptbl; 215 struct hd_struct *part; 216 int i; 217 218 ptbl = rcu_dereference(disk->part_tbl); 219 220 part = rcu_dereference(ptbl->last_lookup); 221 if (part && sector_in_part(part, sector)) 222 return part; 223 224 for (i = 1; i < ptbl->len; i++) { 225 part = rcu_dereference(ptbl->part[i]); 226 227 if (part && sector_in_part(part, sector)) { 228 rcu_assign_pointer(ptbl->last_lookup, part); 229 return part; 230 } 231 } 232 return &disk->part0; 233 } 234 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 235 236 /* 237 * Can be deleted altogether. Later. 238 * 239 */ 240 static struct blk_major_name { 241 struct blk_major_name *next; 242 int major; 243 char name[16]; 244 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 245 246 /* index in the above - for now: assume no multimajor ranges */ 247 static inline int major_to_index(unsigned major) 248 { 249 return major % BLKDEV_MAJOR_HASH_SIZE; 250 } 251 252 #ifdef CONFIG_PROC_FS 253 void blkdev_show(struct seq_file *seqf, off_t offset) 254 { 255 struct blk_major_name *dp; 256 257 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 258 mutex_lock(&block_class_lock); 259 for (dp = major_names[offset]; dp; dp = dp->next) 260 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 261 mutex_unlock(&block_class_lock); 262 } 263 } 264 #endif /* CONFIG_PROC_FS */ 265 266 /** 267 * register_blkdev - register a new block device 268 * 269 * @major: the requested major device number [1..255]. If @major=0, try to 270 * allocate any unused major number. 271 * @name: the name of the new block device as a zero terminated string 272 * 273 * The @name must be unique within the system. 274 * 275 * The return value depends on the @major input parameter. 276 * - if a major device number was requested in range [1..255] then the 277 * function returns zero on success, or a negative error code 278 * - if any unused major number was requested with @major=0 parameter 279 * then the return value is the allocated major number in range 280 * [1..255] or a negative error code otherwise 281 */ 282 int register_blkdev(unsigned int major, const char *name) 283 { 284 struct blk_major_name **n, *p; 285 int index, ret = 0; 286 287 mutex_lock(&block_class_lock); 288 289 /* temporary */ 290 if (major == 0) { 291 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 292 if (major_names[index] == NULL) 293 break; 294 } 295 296 if (index == 0) { 297 printk("register_blkdev: failed to get major for %s\n", 298 name); 299 ret = -EBUSY; 300 goto out; 301 } 302 major = index; 303 ret = major; 304 } 305 306 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 307 if (p == NULL) { 308 ret = -ENOMEM; 309 goto out; 310 } 311 312 p->major = major; 313 strlcpy(p->name, name, sizeof(p->name)); 314 p->next = NULL; 315 index = major_to_index(major); 316 317 for (n = &major_names[index]; *n; n = &(*n)->next) { 318 if ((*n)->major == major) 319 break; 320 } 321 if (!*n) 322 *n = p; 323 else 324 ret = -EBUSY; 325 326 if (ret < 0) { 327 printk("register_blkdev: cannot get major %d for %s\n", 328 major, name); 329 kfree(p); 330 } 331 out: 332 mutex_unlock(&block_class_lock); 333 return ret; 334 } 335 336 EXPORT_SYMBOL(register_blkdev); 337 338 void unregister_blkdev(unsigned int major, const char *name) 339 { 340 struct blk_major_name **n; 341 struct blk_major_name *p = NULL; 342 int index = major_to_index(major); 343 344 mutex_lock(&block_class_lock); 345 for (n = &major_names[index]; *n; n = &(*n)->next) 346 if ((*n)->major == major) 347 break; 348 if (!*n || strcmp((*n)->name, name)) { 349 WARN_ON(1); 350 } else { 351 p = *n; 352 *n = p->next; 353 } 354 mutex_unlock(&block_class_lock); 355 kfree(p); 356 } 357 358 EXPORT_SYMBOL(unregister_blkdev); 359 360 static struct kobj_map *bdev_map; 361 362 /** 363 * blk_mangle_minor - scatter minor numbers apart 364 * @minor: minor number to mangle 365 * 366 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 367 * is enabled. Mangling twice gives the original value. 368 * 369 * RETURNS: 370 * Mangled value. 371 * 372 * CONTEXT: 373 * Don't care. 374 */ 375 static int blk_mangle_minor(int minor) 376 { 377 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 378 int i; 379 380 for (i = 0; i < MINORBITS / 2; i++) { 381 int low = minor & (1 << i); 382 int high = minor & (1 << (MINORBITS - 1 - i)); 383 int distance = MINORBITS - 1 - 2 * i; 384 385 minor ^= low | high; /* clear both bits */ 386 low <<= distance; /* swap the positions */ 387 high >>= distance; 388 minor |= low | high; /* and set */ 389 } 390 #endif 391 return minor; 392 } 393 394 /** 395 * blk_alloc_devt - allocate a dev_t for a partition 396 * @part: partition to allocate dev_t for 397 * @devt: out parameter for resulting dev_t 398 * 399 * Allocate a dev_t for block device. 400 * 401 * RETURNS: 402 * 0 on success, allocated dev_t is returned in *@devt. -errno on 403 * failure. 404 * 405 * CONTEXT: 406 * Might sleep. 407 */ 408 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 409 { 410 struct gendisk *disk = part_to_disk(part); 411 int idx, rc; 412 413 /* in consecutive minor range? */ 414 if (part->partno < disk->minors) { 415 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 416 return 0; 417 } 418 419 /* allocate ext devt */ 420 do { 421 if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL)) 422 return -ENOMEM; 423 rc = idr_get_new(&ext_devt_idr, part, &idx); 424 } while (rc == -EAGAIN); 425 426 if (rc) 427 return rc; 428 429 if (idx > MAX_EXT_DEVT) { 430 idr_remove(&ext_devt_idr, idx); 431 return -EBUSY; 432 } 433 434 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 435 return 0; 436 } 437 438 /** 439 * blk_free_devt - free a dev_t 440 * @devt: dev_t to free 441 * 442 * Free @devt which was allocated using blk_alloc_devt(). 443 * 444 * CONTEXT: 445 * Might sleep. 446 */ 447 void blk_free_devt(dev_t devt) 448 { 449 might_sleep(); 450 451 if (devt == MKDEV(0, 0)) 452 return; 453 454 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 455 mutex_lock(&ext_devt_mutex); 456 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 457 mutex_unlock(&ext_devt_mutex); 458 } 459 } 460 461 static char *bdevt_str(dev_t devt, char *buf) 462 { 463 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 464 char tbuf[BDEVT_SIZE]; 465 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 466 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 467 } else 468 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 469 470 return buf; 471 } 472 473 /* 474 * Register device numbers dev..(dev+range-1) 475 * range must be nonzero 476 * The hash chain is sorted on range, so that subranges can override. 477 */ 478 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 479 struct kobject *(*probe)(dev_t, int *, void *), 480 int (*lock)(dev_t, void *), void *data) 481 { 482 kobj_map(bdev_map, devt, range, module, probe, lock, data); 483 } 484 485 EXPORT_SYMBOL(blk_register_region); 486 487 void blk_unregister_region(dev_t devt, unsigned long range) 488 { 489 kobj_unmap(bdev_map, devt, range); 490 } 491 492 EXPORT_SYMBOL(blk_unregister_region); 493 494 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 495 { 496 struct gendisk *p = data; 497 498 return &disk_to_dev(p)->kobj; 499 } 500 501 static int exact_lock(dev_t devt, void *data) 502 { 503 struct gendisk *p = data; 504 505 if (!get_disk(p)) 506 return -1; 507 return 0; 508 } 509 510 static void register_disk(struct gendisk *disk) 511 { 512 struct device *ddev = disk_to_dev(disk); 513 struct block_device *bdev; 514 struct disk_part_iter piter; 515 struct hd_struct *part; 516 int err; 517 518 ddev->parent = disk->driverfs_dev; 519 520 dev_set_name(ddev, disk->disk_name); 521 522 /* delay uevents, until we scanned partition table */ 523 dev_set_uevent_suppress(ddev, 1); 524 525 if (device_add(ddev)) 526 return; 527 if (!sysfs_deprecated) { 528 err = sysfs_create_link(block_depr, &ddev->kobj, 529 kobject_name(&ddev->kobj)); 530 if (err) { 531 device_del(ddev); 532 return; 533 } 534 } 535 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 536 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 537 538 /* No minors to use for partitions */ 539 if (!disk_part_scan_enabled(disk)) 540 goto exit; 541 542 /* No such device (e.g., media were just removed) */ 543 if (!get_capacity(disk)) 544 goto exit; 545 546 bdev = bdget_disk(disk, 0); 547 if (!bdev) 548 goto exit; 549 550 bdev->bd_invalidated = 1; 551 err = blkdev_get(bdev, FMODE_READ, NULL); 552 if (err < 0) 553 goto exit; 554 blkdev_put(bdev, FMODE_READ); 555 556 exit: 557 /* announce disk after possible partitions are created */ 558 dev_set_uevent_suppress(ddev, 0); 559 kobject_uevent(&ddev->kobj, KOBJ_ADD); 560 561 /* announce possible partitions */ 562 disk_part_iter_init(&piter, disk, 0); 563 while ((part = disk_part_iter_next(&piter))) 564 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 565 disk_part_iter_exit(&piter); 566 } 567 568 /** 569 * add_disk - add partitioning information to kernel list 570 * @disk: per-device partitioning information 571 * 572 * This function registers the partitioning information in @disk 573 * with the kernel. 574 * 575 * FIXME: error handling 576 */ 577 void add_disk(struct gendisk *disk) 578 { 579 struct backing_dev_info *bdi; 580 dev_t devt; 581 int retval; 582 583 /* minors == 0 indicates to use ext devt from part0 and should 584 * be accompanied with EXT_DEVT flag. Make sure all 585 * parameters make sense. 586 */ 587 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 588 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 589 590 disk->flags |= GENHD_FL_UP; 591 592 retval = blk_alloc_devt(&disk->part0, &devt); 593 if (retval) { 594 WARN_ON(1); 595 return; 596 } 597 disk_to_dev(disk)->devt = devt; 598 599 /* ->major and ->first_minor aren't supposed to be 600 * dereferenced from here on, but set them just in case. 601 */ 602 disk->major = MAJOR(devt); 603 disk->first_minor = MINOR(devt); 604 605 disk_alloc_events(disk); 606 607 /* Register BDI before referencing it from bdev */ 608 bdi = &disk->queue->backing_dev_info; 609 bdi_register_dev(bdi, disk_devt(disk)); 610 611 blk_register_region(disk_devt(disk), disk->minors, NULL, 612 exact_match, exact_lock, disk); 613 register_disk(disk); 614 blk_register_queue(disk); 615 616 /* 617 * Take an extra ref on queue which will be put on disk_release() 618 * so that it sticks around as long as @disk is there. 619 */ 620 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 621 622 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 623 "bdi"); 624 WARN_ON(retval); 625 626 disk_add_events(disk); 627 } 628 EXPORT_SYMBOL(add_disk); 629 630 void del_gendisk(struct gendisk *disk) 631 { 632 struct disk_part_iter piter; 633 struct hd_struct *part; 634 635 disk_del_events(disk); 636 637 /* invalidate stuff */ 638 disk_part_iter_init(&piter, disk, 639 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 640 while ((part = disk_part_iter_next(&piter))) { 641 invalidate_partition(disk, part->partno); 642 delete_partition(disk, part->partno); 643 } 644 disk_part_iter_exit(&piter); 645 646 invalidate_partition(disk, 0); 647 blk_free_devt(disk_to_dev(disk)->devt); 648 set_capacity(disk, 0); 649 disk->flags &= ~GENHD_FL_UP; 650 651 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 652 bdi_unregister(&disk->queue->backing_dev_info); 653 blk_unregister_queue(disk); 654 blk_unregister_region(disk_devt(disk), disk->minors); 655 656 part_stat_set_all(&disk->part0, 0); 657 disk->part0.stamp = 0; 658 659 kobject_put(disk->part0.holder_dir); 660 kobject_put(disk->slave_dir); 661 disk->driverfs_dev = NULL; 662 if (!sysfs_deprecated) 663 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 664 device_del(disk_to_dev(disk)); 665 } 666 EXPORT_SYMBOL(del_gendisk); 667 668 /** 669 * get_gendisk - get partitioning information for a given device 670 * @devt: device to get partitioning information for 671 * @partno: returned partition index 672 * 673 * This function gets the structure containing partitioning 674 * information for the given device @devt. 675 */ 676 struct gendisk *get_gendisk(dev_t devt, int *partno) 677 { 678 struct gendisk *disk = NULL; 679 680 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 681 struct kobject *kobj; 682 683 kobj = kobj_lookup(bdev_map, devt, partno); 684 if (kobj) 685 disk = dev_to_disk(kobj_to_dev(kobj)); 686 } else { 687 struct hd_struct *part; 688 689 mutex_lock(&ext_devt_mutex); 690 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 691 if (part && get_disk(part_to_disk(part))) { 692 *partno = part->partno; 693 disk = part_to_disk(part); 694 } 695 mutex_unlock(&ext_devt_mutex); 696 } 697 698 return disk; 699 } 700 EXPORT_SYMBOL(get_gendisk); 701 702 /** 703 * bdget_disk - do bdget() by gendisk and partition number 704 * @disk: gendisk of interest 705 * @partno: partition number 706 * 707 * Find partition @partno from @disk, do bdget() on it. 708 * 709 * CONTEXT: 710 * Don't care. 711 * 712 * RETURNS: 713 * Resulting block_device on success, NULL on failure. 714 */ 715 struct block_device *bdget_disk(struct gendisk *disk, int partno) 716 { 717 struct hd_struct *part; 718 struct block_device *bdev = NULL; 719 720 part = disk_get_part(disk, partno); 721 if (part) 722 bdev = bdget(part_devt(part)); 723 disk_put_part(part); 724 725 return bdev; 726 } 727 EXPORT_SYMBOL(bdget_disk); 728 729 /* 730 * print a full list of all partitions - intended for places where the root 731 * filesystem can't be mounted and thus to give the victim some idea of what 732 * went wrong 733 */ 734 void __init printk_all_partitions(void) 735 { 736 struct class_dev_iter iter; 737 struct device *dev; 738 739 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 740 while ((dev = class_dev_iter_next(&iter))) { 741 struct gendisk *disk = dev_to_disk(dev); 742 struct disk_part_iter piter; 743 struct hd_struct *part; 744 char name_buf[BDEVNAME_SIZE]; 745 char devt_buf[BDEVT_SIZE]; 746 u8 uuid[PARTITION_META_INFO_UUIDLTH * 2 + 1]; 747 748 /* 749 * Don't show empty devices or things that have been 750 * suppressed 751 */ 752 if (get_capacity(disk) == 0 || 753 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 754 continue; 755 756 /* 757 * Note, unlike /proc/partitions, I am showing the 758 * numbers in hex - the same format as the root= 759 * option takes. 760 */ 761 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 762 while ((part = disk_part_iter_next(&piter))) { 763 bool is_part0 = part == &disk->part0; 764 765 uuid[0] = 0; 766 if (part->info) 767 part_unpack_uuid(part->info->uuid, uuid); 768 769 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 770 bdevt_str(part_devt(part), devt_buf), 771 (unsigned long long)part->nr_sects >> 1, 772 disk_name(disk, part->partno, name_buf), uuid); 773 if (is_part0) { 774 if (disk->driverfs_dev != NULL && 775 disk->driverfs_dev->driver != NULL) 776 printk(" driver: %s\n", 777 disk->driverfs_dev->driver->name); 778 else 779 printk(" (driver?)\n"); 780 } else 781 printk("\n"); 782 } 783 disk_part_iter_exit(&piter); 784 } 785 class_dev_iter_exit(&iter); 786 } 787 788 #ifdef CONFIG_PROC_FS 789 /* iterator */ 790 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 791 { 792 loff_t skip = *pos; 793 struct class_dev_iter *iter; 794 struct device *dev; 795 796 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 797 if (!iter) 798 return ERR_PTR(-ENOMEM); 799 800 seqf->private = iter; 801 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 802 do { 803 dev = class_dev_iter_next(iter); 804 if (!dev) 805 return NULL; 806 } while (skip--); 807 808 return dev_to_disk(dev); 809 } 810 811 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 812 { 813 struct device *dev; 814 815 (*pos)++; 816 dev = class_dev_iter_next(seqf->private); 817 if (dev) 818 return dev_to_disk(dev); 819 820 return NULL; 821 } 822 823 static void disk_seqf_stop(struct seq_file *seqf, void *v) 824 { 825 struct class_dev_iter *iter = seqf->private; 826 827 /* stop is called even after start failed :-( */ 828 if (iter) { 829 class_dev_iter_exit(iter); 830 kfree(iter); 831 } 832 } 833 834 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 835 { 836 static void *p; 837 838 p = disk_seqf_start(seqf, pos); 839 if (!IS_ERR_OR_NULL(p) && !*pos) 840 seq_puts(seqf, "major minor #blocks name\n\n"); 841 return p; 842 } 843 844 static int show_partition(struct seq_file *seqf, void *v) 845 { 846 struct gendisk *sgp = v; 847 struct disk_part_iter piter; 848 struct hd_struct *part; 849 char buf[BDEVNAME_SIZE]; 850 851 /* Don't show non-partitionable removeable devices or empty devices */ 852 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 853 (sgp->flags & GENHD_FL_REMOVABLE))) 854 return 0; 855 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 856 return 0; 857 858 /* show the full disk and all non-0 size partitions of it */ 859 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 860 while ((part = disk_part_iter_next(&piter))) 861 seq_printf(seqf, "%4d %7d %10llu %s\n", 862 MAJOR(part_devt(part)), MINOR(part_devt(part)), 863 (unsigned long long)part->nr_sects >> 1, 864 disk_name(sgp, part->partno, buf)); 865 disk_part_iter_exit(&piter); 866 867 return 0; 868 } 869 870 static const struct seq_operations partitions_op = { 871 .start = show_partition_start, 872 .next = disk_seqf_next, 873 .stop = disk_seqf_stop, 874 .show = show_partition 875 }; 876 877 static int partitions_open(struct inode *inode, struct file *file) 878 { 879 return seq_open(file, &partitions_op); 880 } 881 882 static const struct file_operations proc_partitions_operations = { 883 .open = partitions_open, 884 .read = seq_read, 885 .llseek = seq_lseek, 886 .release = seq_release, 887 }; 888 #endif 889 890 891 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 892 { 893 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 894 /* Make old-style 2.4 aliases work */ 895 request_module("block-major-%d", MAJOR(devt)); 896 return NULL; 897 } 898 899 static int __init genhd_device_init(void) 900 { 901 int error; 902 903 block_class.dev_kobj = sysfs_dev_block_kobj; 904 error = class_register(&block_class); 905 if (unlikely(error)) 906 return error; 907 bdev_map = kobj_map_init(base_probe, &block_class_lock); 908 blk_dev_init(); 909 910 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 911 912 /* create top-level block dir */ 913 if (!sysfs_deprecated) 914 block_depr = kobject_create_and_add("block", NULL); 915 return 0; 916 } 917 918 subsys_initcall(genhd_device_init); 919 920 static ssize_t disk_range_show(struct device *dev, 921 struct device_attribute *attr, char *buf) 922 { 923 struct gendisk *disk = dev_to_disk(dev); 924 925 return sprintf(buf, "%d\n", disk->minors); 926 } 927 928 static ssize_t disk_ext_range_show(struct device *dev, 929 struct device_attribute *attr, char *buf) 930 { 931 struct gendisk *disk = dev_to_disk(dev); 932 933 return sprintf(buf, "%d\n", disk_max_parts(disk)); 934 } 935 936 static ssize_t disk_removable_show(struct device *dev, 937 struct device_attribute *attr, char *buf) 938 { 939 struct gendisk *disk = dev_to_disk(dev); 940 941 return sprintf(buf, "%d\n", 942 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 943 } 944 945 static ssize_t disk_ro_show(struct device *dev, 946 struct device_attribute *attr, char *buf) 947 { 948 struct gendisk *disk = dev_to_disk(dev); 949 950 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 951 } 952 953 static ssize_t disk_capability_show(struct device *dev, 954 struct device_attribute *attr, char *buf) 955 { 956 struct gendisk *disk = dev_to_disk(dev); 957 958 return sprintf(buf, "%x\n", disk->flags); 959 } 960 961 static ssize_t disk_alignment_offset_show(struct device *dev, 962 struct device_attribute *attr, 963 char *buf) 964 { 965 struct gendisk *disk = dev_to_disk(dev); 966 967 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 968 } 969 970 static ssize_t disk_discard_alignment_show(struct device *dev, 971 struct device_attribute *attr, 972 char *buf) 973 { 974 struct gendisk *disk = dev_to_disk(dev); 975 976 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 977 } 978 979 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 980 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 981 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 982 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 983 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 984 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 985 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 986 NULL); 987 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 988 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 989 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 990 #ifdef CONFIG_FAIL_MAKE_REQUEST 991 static struct device_attribute dev_attr_fail = 992 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 993 #endif 994 #ifdef CONFIG_FAIL_IO_TIMEOUT 995 static struct device_attribute dev_attr_fail_timeout = 996 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 997 part_timeout_store); 998 #endif 999 1000 static struct attribute *disk_attrs[] = { 1001 &dev_attr_range.attr, 1002 &dev_attr_ext_range.attr, 1003 &dev_attr_removable.attr, 1004 &dev_attr_ro.attr, 1005 &dev_attr_size.attr, 1006 &dev_attr_alignment_offset.attr, 1007 &dev_attr_discard_alignment.attr, 1008 &dev_attr_capability.attr, 1009 &dev_attr_stat.attr, 1010 &dev_attr_inflight.attr, 1011 #ifdef CONFIG_FAIL_MAKE_REQUEST 1012 &dev_attr_fail.attr, 1013 #endif 1014 #ifdef CONFIG_FAIL_IO_TIMEOUT 1015 &dev_attr_fail_timeout.attr, 1016 #endif 1017 NULL 1018 }; 1019 1020 static struct attribute_group disk_attr_group = { 1021 .attrs = disk_attrs, 1022 }; 1023 1024 static const struct attribute_group *disk_attr_groups[] = { 1025 &disk_attr_group, 1026 NULL 1027 }; 1028 1029 /** 1030 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1031 * @disk: disk to replace part_tbl for 1032 * @new_ptbl: new part_tbl to install 1033 * 1034 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1035 * original ptbl is freed using RCU callback. 1036 * 1037 * LOCKING: 1038 * Matching bd_mutx locked. 1039 */ 1040 static void disk_replace_part_tbl(struct gendisk *disk, 1041 struct disk_part_tbl *new_ptbl) 1042 { 1043 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1044 1045 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1046 1047 if (old_ptbl) { 1048 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1049 kfree_rcu(old_ptbl, rcu_head); 1050 } 1051 } 1052 1053 /** 1054 * disk_expand_part_tbl - expand disk->part_tbl 1055 * @disk: disk to expand part_tbl for 1056 * @partno: expand such that this partno can fit in 1057 * 1058 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1059 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1060 * 1061 * LOCKING: 1062 * Matching bd_mutex locked, might sleep. 1063 * 1064 * RETURNS: 1065 * 0 on success, -errno on failure. 1066 */ 1067 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1068 { 1069 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1070 struct disk_part_tbl *new_ptbl; 1071 int len = old_ptbl ? old_ptbl->len : 0; 1072 int target = partno + 1; 1073 size_t size; 1074 int i; 1075 1076 /* disk_max_parts() is zero during initialization, ignore if so */ 1077 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1078 return -EINVAL; 1079 1080 if (target <= len) 1081 return 0; 1082 1083 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1084 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1085 if (!new_ptbl) 1086 return -ENOMEM; 1087 1088 new_ptbl->len = target; 1089 1090 for (i = 0; i < len; i++) 1091 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1092 1093 disk_replace_part_tbl(disk, new_ptbl); 1094 return 0; 1095 } 1096 1097 static void disk_release(struct device *dev) 1098 { 1099 struct gendisk *disk = dev_to_disk(dev); 1100 1101 disk_release_events(disk); 1102 kfree(disk->random); 1103 disk_replace_part_tbl(disk, NULL); 1104 free_part_stats(&disk->part0); 1105 free_part_info(&disk->part0); 1106 if (disk->queue) 1107 blk_put_queue(disk->queue); 1108 kfree(disk); 1109 } 1110 struct class block_class = { 1111 .name = "block", 1112 }; 1113 1114 static char *block_devnode(struct device *dev, umode_t *mode) 1115 { 1116 struct gendisk *disk = dev_to_disk(dev); 1117 1118 if (disk->devnode) 1119 return disk->devnode(disk, mode); 1120 return NULL; 1121 } 1122 1123 static struct device_type disk_type = { 1124 .name = "disk", 1125 .groups = disk_attr_groups, 1126 .release = disk_release, 1127 .devnode = block_devnode, 1128 }; 1129 1130 #ifdef CONFIG_PROC_FS 1131 /* 1132 * aggregate disk stat collector. Uses the same stats that the sysfs 1133 * entries do, above, but makes them available through one seq_file. 1134 * 1135 * The output looks suspiciously like /proc/partitions with a bunch of 1136 * extra fields. 1137 */ 1138 static int diskstats_show(struct seq_file *seqf, void *v) 1139 { 1140 struct gendisk *gp = v; 1141 struct disk_part_iter piter; 1142 struct hd_struct *hd; 1143 char buf[BDEVNAME_SIZE]; 1144 int cpu; 1145 1146 /* 1147 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1148 seq_puts(seqf, "major minor name" 1149 " rio rmerge rsect ruse wio wmerge " 1150 "wsect wuse running use aveq" 1151 "\n\n"); 1152 */ 1153 1154 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1155 while ((hd = disk_part_iter_next(&piter))) { 1156 cpu = part_stat_lock(); 1157 part_round_stats(cpu, hd); 1158 part_stat_unlock(); 1159 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1160 "%u %lu %lu %lu %u %u %u %u\n", 1161 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1162 disk_name(gp, hd->partno, buf), 1163 part_stat_read(hd, ios[READ]), 1164 part_stat_read(hd, merges[READ]), 1165 part_stat_read(hd, sectors[READ]), 1166 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1167 part_stat_read(hd, ios[WRITE]), 1168 part_stat_read(hd, merges[WRITE]), 1169 part_stat_read(hd, sectors[WRITE]), 1170 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1171 part_in_flight(hd), 1172 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1173 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1174 ); 1175 } 1176 disk_part_iter_exit(&piter); 1177 1178 return 0; 1179 } 1180 1181 static const struct seq_operations diskstats_op = { 1182 .start = disk_seqf_start, 1183 .next = disk_seqf_next, 1184 .stop = disk_seqf_stop, 1185 .show = diskstats_show 1186 }; 1187 1188 static int diskstats_open(struct inode *inode, struct file *file) 1189 { 1190 return seq_open(file, &diskstats_op); 1191 } 1192 1193 static const struct file_operations proc_diskstats_operations = { 1194 .open = diskstats_open, 1195 .read = seq_read, 1196 .llseek = seq_lseek, 1197 .release = seq_release, 1198 }; 1199 1200 static int __init proc_genhd_init(void) 1201 { 1202 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1203 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1204 return 0; 1205 } 1206 module_init(proc_genhd_init); 1207 #endif /* CONFIG_PROC_FS */ 1208 1209 dev_t blk_lookup_devt(const char *name, int partno) 1210 { 1211 dev_t devt = MKDEV(0, 0); 1212 struct class_dev_iter iter; 1213 struct device *dev; 1214 1215 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1216 while ((dev = class_dev_iter_next(&iter))) { 1217 struct gendisk *disk = dev_to_disk(dev); 1218 struct hd_struct *part; 1219 1220 if (strcmp(dev_name(dev), name)) 1221 continue; 1222 1223 if (partno < disk->minors) { 1224 /* We need to return the right devno, even 1225 * if the partition doesn't exist yet. 1226 */ 1227 devt = MKDEV(MAJOR(dev->devt), 1228 MINOR(dev->devt) + partno); 1229 break; 1230 } 1231 part = disk_get_part(disk, partno); 1232 if (part) { 1233 devt = part_devt(part); 1234 disk_put_part(part); 1235 break; 1236 } 1237 disk_put_part(part); 1238 } 1239 class_dev_iter_exit(&iter); 1240 return devt; 1241 } 1242 EXPORT_SYMBOL(blk_lookup_devt); 1243 1244 struct gendisk *alloc_disk(int minors) 1245 { 1246 return alloc_disk_node(minors, -1); 1247 } 1248 EXPORT_SYMBOL(alloc_disk); 1249 1250 struct gendisk *alloc_disk_node(int minors, int node_id) 1251 { 1252 struct gendisk *disk; 1253 1254 disk = kmalloc_node(sizeof(struct gendisk), 1255 GFP_KERNEL | __GFP_ZERO, node_id); 1256 if (disk) { 1257 if (!init_part_stats(&disk->part0)) { 1258 kfree(disk); 1259 return NULL; 1260 } 1261 disk->node_id = node_id; 1262 if (disk_expand_part_tbl(disk, 0)) { 1263 free_part_stats(&disk->part0); 1264 kfree(disk); 1265 return NULL; 1266 } 1267 disk->part_tbl->part[0] = &disk->part0; 1268 1269 hd_ref_init(&disk->part0); 1270 1271 disk->minors = minors; 1272 rand_initialize_disk(disk); 1273 disk_to_dev(disk)->class = &block_class; 1274 disk_to_dev(disk)->type = &disk_type; 1275 device_initialize(disk_to_dev(disk)); 1276 } 1277 return disk; 1278 } 1279 EXPORT_SYMBOL(alloc_disk_node); 1280 1281 struct kobject *get_disk(struct gendisk *disk) 1282 { 1283 struct module *owner; 1284 struct kobject *kobj; 1285 1286 if (!disk->fops) 1287 return NULL; 1288 owner = disk->fops->owner; 1289 if (owner && !try_module_get(owner)) 1290 return NULL; 1291 kobj = kobject_get(&disk_to_dev(disk)->kobj); 1292 if (kobj == NULL) { 1293 module_put(owner); 1294 return NULL; 1295 } 1296 return kobj; 1297 1298 } 1299 1300 EXPORT_SYMBOL(get_disk); 1301 1302 void put_disk(struct gendisk *disk) 1303 { 1304 if (disk) 1305 kobject_put(&disk_to_dev(disk)->kobj); 1306 } 1307 1308 EXPORT_SYMBOL(put_disk); 1309 1310 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1311 { 1312 char event[] = "DISK_RO=1"; 1313 char *envp[] = { event, NULL }; 1314 1315 if (!ro) 1316 event[8] = '0'; 1317 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1318 } 1319 1320 void set_device_ro(struct block_device *bdev, int flag) 1321 { 1322 bdev->bd_part->policy = flag; 1323 } 1324 1325 EXPORT_SYMBOL(set_device_ro); 1326 1327 void set_disk_ro(struct gendisk *disk, int flag) 1328 { 1329 struct disk_part_iter piter; 1330 struct hd_struct *part; 1331 1332 if (disk->part0.policy != flag) { 1333 set_disk_ro_uevent(disk, flag); 1334 disk->part0.policy = flag; 1335 } 1336 1337 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1338 while ((part = disk_part_iter_next(&piter))) 1339 part->policy = flag; 1340 disk_part_iter_exit(&piter); 1341 } 1342 1343 EXPORT_SYMBOL(set_disk_ro); 1344 1345 int bdev_read_only(struct block_device *bdev) 1346 { 1347 if (!bdev) 1348 return 0; 1349 return bdev->bd_part->policy; 1350 } 1351 1352 EXPORT_SYMBOL(bdev_read_only); 1353 1354 int invalidate_partition(struct gendisk *disk, int partno) 1355 { 1356 int res = 0; 1357 struct block_device *bdev = bdget_disk(disk, partno); 1358 if (bdev) { 1359 fsync_bdev(bdev); 1360 res = __invalidate_device(bdev, true); 1361 bdput(bdev); 1362 } 1363 return res; 1364 } 1365 1366 EXPORT_SYMBOL(invalidate_partition); 1367 1368 /* 1369 * Disk events - monitor disk events like media change and eject request. 1370 */ 1371 struct disk_events { 1372 struct list_head node; /* all disk_event's */ 1373 struct gendisk *disk; /* the associated disk */ 1374 spinlock_t lock; 1375 1376 struct mutex block_mutex; /* protects blocking */ 1377 int block; /* event blocking depth */ 1378 unsigned int pending; /* events already sent out */ 1379 unsigned int clearing; /* events being cleared */ 1380 1381 long poll_msecs; /* interval, -1 for default */ 1382 struct delayed_work dwork; 1383 }; 1384 1385 static const char *disk_events_strs[] = { 1386 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1387 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1388 }; 1389 1390 static char *disk_uevents[] = { 1391 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1392 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1393 }; 1394 1395 /* list of all disk_events */ 1396 static DEFINE_MUTEX(disk_events_mutex); 1397 static LIST_HEAD(disk_events); 1398 1399 /* disable in-kernel polling by default */ 1400 static unsigned long disk_events_dfl_poll_msecs = 0; 1401 1402 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1403 { 1404 struct disk_events *ev = disk->ev; 1405 long intv_msecs = 0; 1406 1407 /* 1408 * If device-specific poll interval is set, always use it. If 1409 * the default is being used, poll iff there are events which 1410 * can't be monitored asynchronously. 1411 */ 1412 if (ev->poll_msecs >= 0) 1413 intv_msecs = ev->poll_msecs; 1414 else if (disk->events & ~disk->async_events) 1415 intv_msecs = disk_events_dfl_poll_msecs; 1416 1417 return msecs_to_jiffies(intv_msecs); 1418 } 1419 1420 /** 1421 * disk_block_events - block and flush disk event checking 1422 * @disk: disk to block events for 1423 * 1424 * On return from this function, it is guaranteed that event checking 1425 * isn't in progress and won't happen until unblocked by 1426 * disk_unblock_events(). Events blocking is counted and the actual 1427 * unblocking happens after the matching number of unblocks are done. 1428 * 1429 * Note that this intentionally does not block event checking from 1430 * disk_clear_events(). 1431 * 1432 * CONTEXT: 1433 * Might sleep. 1434 */ 1435 void disk_block_events(struct gendisk *disk) 1436 { 1437 struct disk_events *ev = disk->ev; 1438 unsigned long flags; 1439 bool cancel; 1440 1441 if (!ev) 1442 return; 1443 1444 /* 1445 * Outer mutex ensures that the first blocker completes canceling 1446 * the event work before further blockers are allowed to finish. 1447 */ 1448 mutex_lock(&ev->block_mutex); 1449 1450 spin_lock_irqsave(&ev->lock, flags); 1451 cancel = !ev->block++; 1452 spin_unlock_irqrestore(&ev->lock, flags); 1453 1454 if (cancel) 1455 cancel_delayed_work_sync(&disk->ev->dwork); 1456 1457 mutex_unlock(&ev->block_mutex); 1458 } 1459 1460 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1461 { 1462 struct disk_events *ev = disk->ev; 1463 unsigned long intv; 1464 unsigned long flags; 1465 1466 spin_lock_irqsave(&ev->lock, flags); 1467 1468 if (WARN_ON_ONCE(ev->block <= 0)) 1469 goto out_unlock; 1470 1471 if (--ev->block) 1472 goto out_unlock; 1473 1474 /* 1475 * Not exactly a latency critical operation, set poll timer 1476 * slack to 25% and kick event check. 1477 */ 1478 intv = disk_events_poll_jiffies(disk); 1479 set_timer_slack(&ev->dwork.timer, intv / 4); 1480 if (check_now) 1481 queue_delayed_work(system_nrt_freezable_wq, &ev->dwork, 0); 1482 else if (intv) 1483 queue_delayed_work(system_nrt_freezable_wq, &ev->dwork, intv); 1484 out_unlock: 1485 spin_unlock_irqrestore(&ev->lock, flags); 1486 } 1487 1488 /** 1489 * disk_unblock_events - unblock disk event checking 1490 * @disk: disk to unblock events for 1491 * 1492 * Undo disk_block_events(). When the block count reaches zero, it 1493 * starts events polling if configured. 1494 * 1495 * CONTEXT: 1496 * Don't care. Safe to call from irq context. 1497 */ 1498 void disk_unblock_events(struct gendisk *disk) 1499 { 1500 if (disk->ev) 1501 __disk_unblock_events(disk, false); 1502 } 1503 1504 /** 1505 * disk_flush_events - schedule immediate event checking and flushing 1506 * @disk: disk to check and flush events for 1507 * @mask: events to flush 1508 * 1509 * Schedule immediate event checking on @disk if not blocked. Events in 1510 * @mask are scheduled to be cleared from the driver. Note that this 1511 * doesn't clear the events from @disk->ev. 1512 * 1513 * CONTEXT: 1514 * If @mask is non-zero must be called with bdev->bd_mutex held. 1515 */ 1516 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1517 { 1518 struct disk_events *ev = disk->ev; 1519 1520 if (!ev) 1521 return; 1522 1523 spin_lock_irq(&ev->lock); 1524 ev->clearing |= mask; 1525 if (!ev->block) { 1526 cancel_delayed_work(&ev->dwork); 1527 queue_delayed_work(system_nrt_freezable_wq, &ev->dwork, 0); 1528 } 1529 spin_unlock_irq(&ev->lock); 1530 } 1531 1532 /** 1533 * disk_clear_events - synchronously check, clear and return pending events 1534 * @disk: disk to fetch and clear events from 1535 * @mask: mask of events to be fetched and clearted 1536 * 1537 * Disk events are synchronously checked and pending events in @mask 1538 * are cleared and returned. This ignores the block count. 1539 * 1540 * CONTEXT: 1541 * Might sleep. 1542 */ 1543 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1544 { 1545 const struct block_device_operations *bdops = disk->fops; 1546 struct disk_events *ev = disk->ev; 1547 unsigned int pending; 1548 1549 if (!ev) { 1550 /* for drivers still using the old ->media_changed method */ 1551 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1552 bdops->media_changed && bdops->media_changed(disk)) 1553 return DISK_EVENT_MEDIA_CHANGE; 1554 return 0; 1555 } 1556 1557 /* tell the workfn about the events being cleared */ 1558 spin_lock_irq(&ev->lock); 1559 ev->clearing |= mask; 1560 spin_unlock_irq(&ev->lock); 1561 1562 /* uncondtionally schedule event check and wait for it to finish */ 1563 disk_block_events(disk); 1564 queue_delayed_work(system_nrt_freezable_wq, &ev->dwork, 0); 1565 flush_delayed_work(&ev->dwork); 1566 __disk_unblock_events(disk, false); 1567 1568 /* then, fetch and clear pending events */ 1569 spin_lock_irq(&ev->lock); 1570 WARN_ON_ONCE(ev->clearing & mask); /* cleared by workfn */ 1571 pending = ev->pending & mask; 1572 ev->pending &= ~mask; 1573 spin_unlock_irq(&ev->lock); 1574 1575 return pending; 1576 } 1577 1578 static void disk_events_workfn(struct work_struct *work) 1579 { 1580 struct delayed_work *dwork = to_delayed_work(work); 1581 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1582 struct gendisk *disk = ev->disk; 1583 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1584 unsigned int clearing = ev->clearing; 1585 unsigned int events; 1586 unsigned long intv; 1587 int nr_events = 0, i; 1588 1589 /* check events */ 1590 events = disk->fops->check_events(disk, clearing); 1591 1592 /* accumulate pending events and schedule next poll if necessary */ 1593 spin_lock_irq(&ev->lock); 1594 1595 events &= ~ev->pending; 1596 ev->pending |= events; 1597 ev->clearing &= ~clearing; 1598 1599 intv = disk_events_poll_jiffies(disk); 1600 if (!ev->block && intv) 1601 queue_delayed_work(system_nrt_freezable_wq, &ev->dwork, intv); 1602 1603 spin_unlock_irq(&ev->lock); 1604 1605 /* 1606 * Tell userland about new events. Only the events listed in 1607 * @disk->events are reported. Unlisted events are processed the 1608 * same internally but never get reported to userland. 1609 */ 1610 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1611 if (events & disk->events & (1 << i)) 1612 envp[nr_events++] = disk_uevents[i]; 1613 1614 if (nr_events) 1615 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1616 } 1617 1618 /* 1619 * A disk events enabled device has the following sysfs nodes under 1620 * its /sys/block/X/ directory. 1621 * 1622 * events : list of all supported events 1623 * events_async : list of events which can be detected w/o polling 1624 * events_poll_msecs : polling interval, 0: disable, -1: system default 1625 */ 1626 static ssize_t __disk_events_show(unsigned int events, char *buf) 1627 { 1628 const char *delim = ""; 1629 ssize_t pos = 0; 1630 int i; 1631 1632 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1633 if (events & (1 << i)) { 1634 pos += sprintf(buf + pos, "%s%s", 1635 delim, disk_events_strs[i]); 1636 delim = " "; 1637 } 1638 if (pos) 1639 pos += sprintf(buf + pos, "\n"); 1640 return pos; 1641 } 1642 1643 static ssize_t disk_events_show(struct device *dev, 1644 struct device_attribute *attr, char *buf) 1645 { 1646 struct gendisk *disk = dev_to_disk(dev); 1647 1648 return __disk_events_show(disk->events, buf); 1649 } 1650 1651 static ssize_t disk_events_async_show(struct device *dev, 1652 struct device_attribute *attr, char *buf) 1653 { 1654 struct gendisk *disk = dev_to_disk(dev); 1655 1656 return __disk_events_show(disk->async_events, buf); 1657 } 1658 1659 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1660 struct device_attribute *attr, 1661 char *buf) 1662 { 1663 struct gendisk *disk = dev_to_disk(dev); 1664 1665 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1666 } 1667 1668 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1669 struct device_attribute *attr, 1670 const char *buf, size_t count) 1671 { 1672 struct gendisk *disk = dev_to_disk(dev); 1673 long intv; 1674 1675 if (!count || !sscanf(buf, "%ld", &intv)) 1676 return -EINVAL; 1677 1678 if (intv < 0 && intv != -1) 1679 return -EINVAL; 1680 1681 disk_block_events(disk); 1682 disk->ev->poll_msecs = intv; 1683 __disk_unblock_events(disk, true); 1684 1685 return count; 1686 } 1687 1688 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1689 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1690 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1691 disk_events_poll_msecs_show, 1692 disk_events_poll_msecs_store); 1693 1694 static const struct attribute *disk_events_attrs[] = { 1695 &dev_attr_events.attr, 1696 &dev_attr_events_async.attr, 1697 &dev_attr_events_poll_msecs.attr, 1698 NULL, 1699 }; 1700 1701 /* 1702 * The default polling interval can be specified by the kernel 1703 * parameter block.events_dfl_poll_msecs which defaults to 0 1704 * (disable). This can also be modified runtime by writing to 1705 * /sys/module/block/events_dfl_poll_msecs. 1706 */ 1707 static int disk_events_set_dfl_poll_msecs(const char *val, 1708 const struct kernel_param *kp) 1709 { 1710 struct disk_events *ev; 1711 int ret; 1712 1713 ret = param_set_ulong(val, kp); 1714 if (ret < 0) 1715 return ret; 1716 1717 mutex_lock(&disk_events_mutex); 1718 1719 list_for_each_entry(ev, &disk_events, node) 1720 disk_flush_events(ev->disk, 0); 1721 1722 mutex_unlock(&disk_events_mutex); 1723 1724 return 0; 1725 } 1726 1727 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1728 .set = disk_events_set_dfl_poll_msecs, 1729 .get = param_get_ulong, 1730 }; 1731 1732 #undef MODULE_PARAM_PREFIX 1733 #define MODULE_PARAM_PREFIX "block." 1734 1735 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1736 &disk_events_dfl_poll_msecs, 0644); 1737 1738 /* 1739 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1740 */ 1741 static void disk_alloc_events(struct gendisk *disk) 1742 { 1743 struct disk_events *ev; 1744 1745 if (!disk->fops->check_events) 1746 return; 1747 1748 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1749 if (!ev) { 1750 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1751 return; 1752 } 1753 1754 INIT_LIST_HEAD(&ev->node); 1755 ev->disk = disk; 1756 spin_lock_init(&ev->lock); 1757 mutex_init(&ev->block_mutex); 1758 ev->block = 1; 1759 ev->poll_msecs = -1; 1760 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1761 1762 disk->ev = ev; 1763 } 1764 1765 static void disk_add_events(struct gendisk *disk) 1766 { 1767 if (!disk->ev) 1768 return; 1769 1770 /* FIXME: error handling */ 1771 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 1772 pr_warn("%s: failed to create sysfs files for events\n", 1773 disk->disk_name); 1774 1775 mutex_lock(&disk_events_mutex); 1776 list_add_tail(&disk->ev->node, &disk_events); 1777 mutex_unlock(&disk_events_mutex); 1778 1779 /* 1780 * Block count is initialized to 1 and the following initial 1781 * unblock kicks it into action. 1782 */ 1783 __disk_unblock_events(disk, true); 1784 } 1785 1786 static void disk_del_events(struct gendisk *disk) 1787 { 1788 if (!disk->ev) 1789 return; 1790 1791 disk_block_events(disk); 1792 1793 mutex_lock(&disk_events_mutex); 1794 list_del_init(&disk->ev->node); 1795 mutex_unlock(&disk_events_mutex); 1796 1797 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1798 } 1799 1800 static void disk_release_events(struct gendisk *disk) 1801 { 1802 /* the block count should be 1 from disk_del_events() */ 1803 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1804 kfree(disk->ev); 1805 } 1806