1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/backing-dev.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include <linux/slab.h> 17 #include <linux/kmod.h> 18 #include <linux/kobj_map.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/badblocks.h> 24 25 #include "blk.h" 26 27 static DEFINE_MUTEX(block_class_lock); 28 struct kobject *block_depr; 29 30 /* for extended dynamic devt allocation, currently only one major is used */ 31 #define NR_EXT_DEVT (1 << MINORBITS) 32 33 /* For extended devt allocation. ext_devt_lock prevents look up 34 * results from going away underneath its user. 35 */ 36 static DEFINE_SPINLOCK(ext_devt_lock); 37 static DEFINE_IDR(ext_devt_idr); 38 39 static const struct device_type disk_type; 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 49 { 50 if (q->mq_ops) 51 return; 52 53 atomic_inc(&part->in_flight[rw]); 54 if (part->partno) 55 atomic_inc(&part_to_disk(part)->part0.in_flight[rw]); 56 } 57 58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw) 59 { 60 if (q->mq_ops) 61 return; 62 63 atomic_dec(&part->in_flight[rw]); 64 if (part->partno) 65 atomic_dec(&part_to_disk(part)->part0.in_flight[rw]); 66 } 67 68 void part_in_flight(struct request_queue *q, struct hd_struct *part, 69 unsigned int inflight[2]) 70 { 71 if (q->mq_ops) { 72 blk_mq_in_flight(q, part, inflight); 73 return; 74 } 75 76 inflight[0] = atomic_read(&part->in_flight[0]) + 77 atomic_read(&part->in_flight[1]); 78 if (part->partno) { 79 part = &part_to_disk(part)->part0; 80 inflight[1] = atomic_read(&part->in_flight[0]) + 81 atomic_read(&part->in_flight[1]); 82 } 83 } 84 85 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part, 86 unsigned int inflight[2]) 87 { 88 if (q->mq_ops) { 89 blk_mq_in_flight_rw(q, part, inflight); 90 return; 91 } 92 93 inflight[0] = atomic_read(&part->in_flight[0]); 94 inflight[1] = atomic_read(&part->in_flight[1]); 95 } 96 97 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno) 98 { 99 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl); 100 101 if (unlikely(partno < 0 || partno >= ptbl->len)) 102 return NULL; 103 return rcu_dereference(ptbl->part[partno]); 104 } 105 106 /** 107 * disk_get_part - get partition 108 * @disk: disk to look partition from 109 * @partno: partition number 110 * 111 * Look for partition @partno from @disk. If found, increment 112 * reference count and return it. 113 * 114 * CONTEXT: 115 * Don't care. 116 * 117 * RETURNS: 118 * Pointer to the found partition on success, NULL if not found. 119 */ 120 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 121 { 122 struct hd_struct *part; 123 124 rcu_read_lock(); 125 part = __disk_get_part(disk, partno); 126 if (part) 127 get_device(part_to_dev(part)); 128 rcu_read_unlock(); 129 130 return part; 131 } 132 EXPORT_SYMBOL_GPL(disk_get_part); 133 134 /** 135 * disk_part_iter_init - initialize partition iterator 136 * @piter: iterator to initialize 137 * @disk: disk to iterate over 138 * @flags: DISK_PITER_* flags 139 * 140 * Initialize @piter so that it iterates over partitions of @disk. 141 * 142 * CONTEXT: 143 * Don't care. 144 */ 145 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 146 unsigned int flags) 147 { 148 struct disk_part_tbl *ptbl; 149 150 rcu_read_lock(); 151 ptbl = rcu_dereference(disk->part_tbl); 152 153 piter->disk = disk; 154 piter->part = NULL; 155 156 if (flags & DISK_PITER_REVERSE) 157 piter->idx = ptbl->len - 1; 158 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 159 piter->idx = 0; 160 else 161 piter->idx = 1; 162 163 piter->flags = flags; 164 165 rcu_read_unlock(); 166 } 167 EXPORT_SYMBOL_GPL(disk_part_iter_init); 168 169 /** 170 * disk_part_iter_next - proceed iterator to the next partition and return it 171 * @piter: iterator of interest 172 * 173 * Proceed @piter to the next partition and return it. 174 * 175 * CONTEXT: 176 * Don't care. 177 */ 178 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 179 { 180 struct disk_part_tbl *ptbl; 181 int inc, end; 182 183 /* put the last partition */ 184 disk_put_part(piter->part); 185 piter->part = NULL; 186 187 /* get part_tbl */ 188 rcu_read_lock(); 189 ptbl = rcu_dereference(piter->disk->part_tbl); 190 191 /* determine iteration parameters */ 192 if (piter->flags & DISK_PITER_REVERSE) { 193 inc = -1; 194 if (piter->flags & (DISK_PITER_INCL_PART0 | 195 DISK_PITER_INCL_EMPTY_PART0)) 196 end = -1; 197 else 198 end = 0; 199 } else { 200 inc = 1; 201 end = ptbl->len; 202 } 203 204 /* iterate to the next partition */ 205 for (; piter->idx != end; piter->idx += inc) { 206 struct hd_struct *part; 207 208 part = rcu_dereference(ptbl->part[piter->idx]); 209 if (!part) 210 continue; 211 if (!part_nr_sects_read(part) && 212 !(piter->flags & DISK_PITER_INCL_EMPTY) && 213 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 214 piter->idx == 0)) 215 continue; 216 217 get_device(part_to_dev(part)); 218 piter->part = part; 219 piter->idx += inc; 220 break; 221 } 222 223 rcu_read_unlock(); 224 225 return piter->part; 226 } 227 EXPORT_SYMBOL_GPL(disk_part_iter_next); 228 229 /** 230 * disk_part_iter_exit - finish up partition iteration 231 * @piter: iter of interest 232 * 233 * Called when iteration is over. Cleans up @piter. 234 * 235 * CONTEXT: 236 * Don't care. 237 */ 238 void disk_part_iter_exit(struct disk_part_iter *piter) 239 { 240 disk_put_part(piter->part); 241 piter->part = NULL; 242 } 243 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 244 245 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 246 { 247 return part->start_sect <= sector && 248 sector < part->start_sect + part_nr_sects_read(part); 249 } 250 251 /** 252 * disk_map_sector_rcu - map sector to partition 253 * @disk: gendisk of interest 254 * @sector: sector to map 255 * 256 * Find out which partition @sector maps to on @disk. This is 257 * primarily used for stats accounting. 258 * 259 * CONTEXT: 260 * RCU read locked. The returned partition pointer is valid only 261 * while preemption is disabled. 262 * 263 * RETURNS: 264 * Found partition on success, part0 is returned if no partition matches 265 */ 266 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 267 { 268 struct disk_part_tbl *ptbl; 269 struct hd_struct *part; 270 int i; 271 272 ptbl = rcu_dereference(disk->part_tbl); 273 274 part = rcu_dereference(ptbl->last_lookup); 275 if (part && sector_in_part(part, sector)) 276 return part; 277 278 for (i = 1; i < ptbl->len; i++) { 279 part = rcu_dereference(ptbl->part[i]); 280 281 if (part && sector_in_part(part, sector)) { 282 rcu_assign_pointer(ptbl->last_lookup, part); 283 return part; 284 } 285 } 286 return &disk->part0; 287 } 288 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 289 290 /* 291 * Can be deleted altogether. Later. 292 * 293 */ 294 #define BLKDEV_MAJOR_HASH_SIZE 255 295 static struct blk_major_name { 296 struct blk_major_name *next; 297 int major; 298 char name[16]; 299 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 300 301 /* index in the above - for now: assume no multimajor ranges */ 302 static inline int major_to_index(unsigned major) 303 { 304 return major % BLKDEV_MAJOR_HASH_SIZE; 305 } 306 307 #ifdef CONFIG_PROC_FS 308 void blkdev_show(struct seq_file *seqf, off_t offset) 309 { 310 struct blk_major_name *dp; 311 312 mutex_lock(&block_class_lock); 313 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) 314 if (dp->major == offset) 315 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 316 mutex_unlock(&block_class_lock); 317 } 318 #endif /* CONFIG_PROC_FS */ 319 320 /** 321 * register_blkdev - register a new block device 322 * 323 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If 324 * @major = 0, try to allocate any unused major number. 325 * @name: the name of the new block device as a zero terminated string 326 * 327 * The @name must be unique within the system. 328 * 329 * The return value depends on the @major input parameter: 330 * 331 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] 332 * then the function returns zero on success, or a negative error code 333 * - if any unused major number was requested with @major = 0 parameter 334 * then the return value is the allocated major number in range 335 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise 336 * 337 * See Documentation/admin-guide/devices.txt for the list of allocated 338 * major numbers. 339 */ 340 int register_blkdev(unsigned int major, const char *name) 341 { 342 struct blk_major_name **n, *p; 343 int index, ret = 0; 344 345 mutex_lock(&block_class_lock); 346 347 /* temporary */ 348 if (major == 0) { 349 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 350 if (major_names[index] == NULL) 351 break; 352 } 353 354 if (index == 0) { 355 printk("register_blkdev: failed to get major for %s\n", 356 name); 357 ret = -EBUSY; 358 goto out; 359 } 360 major = index; 361 ret = major; 362 } 363 364 if (major >= BLKDEV_MAJOR_MAX) { 365 pr_err("register_blkdev: major requested (%u) is greater than the maximum (%u) for %s\n", 366 major, BLKDEV_MAJOR_MAX-1, name); 367 368 ret = -EINVAL; 369 goto out; 370 } 371 372 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 373 if (p == NULL) { 374 ret = -ENOMEM; 375 goto out; 376 } 377 378 p->major = major; 379 strlcpy(p->name, name, sizeof(p->name)); 380 p->next = NULL; 381 index = major_to_index(major); 382 383 for (n = &major_names[index]; *n; n = &(*n)->next) { 384 if ((*n)->major == major) 385 break; 386 } 387 if (!*n) 388 *n = p; 389 else 390 ret = -EBUSY; 391 392 if (ret < 0) { 393 printk("register_blkdev: cannot get major %u for %s\n", 394 major, name); 395 kfree(p); 396 } 397 out: 398 mutex_unlock(&block_class_lock); 399 return ret; 400 } 401 402 EXPORT_SYMBOL(register_blkdev); 403 404 void unregister_blkdev(unsigned int major, const char *name) 405 { 406 struct blk_major_name **n; 407 struct blk_major_name *p = NULL; 408 int index = major_to_index(major); 409 410 mutex_lock(&block_class_lock); 411 for (n = &major_names[index]; *n; n = &(*n)->next) 412 if ((*n)->major == major) 413 break; 414 if (!*n || strcmp((*n)->name, name)) { 415 WARN_ON(1); 416 } else { 417 p = *n; 418 *n = p->next; 419 } 420 mutex_unlock(&block_class_lock); 421 kfree(p); 422 } 423 424 EXPORT_SYMBOL(unregister_blkdev); 425 426 static struct kobj_map *bdev_map; 427 428 /** 429 * blk_mangle_minor - scatter minor numbers apart 430 * @minor: minor number to mangle 431 * 432 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 433 * is enabled. Mangling twice gives the original value. 434 * 435 * RETURNS: 436 * Mangled value. 437 * 438 * CONTEXT: 439 * Don't care. 440 */ 441 static int blk_mangle_minor(int minor) 442 { 443 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 444 int i; 445 446 for (i = 0; i < MINORBITS / 2; i++) { 447 int low = minor & (1 << i); 448 int high = minor & (1 << (MINORBITS - 1 - i)); 449 int distance = MINORBITS - 1 - 2 * i; 450 451 minor ^= low | high; /* clear both bits */ 452 low <<= distance; /* swap the positions */ 453 high >>= distance; 454 minor |= low | high; /* and set */ 455 } 456 #endif 457 return minor; 458 } 459 460 /** 461 * blk_alloc_devt - allocate a dev_t for a partition 462 * @part: partition to allocate dev_t for 463 * @devt: out parameter for resulting dev_t 464 * 465 * Allocate a dev_t for block device. 466 * 467 * RETURNS: 468 * 0 on success, allocated dev_t is returned in *@devt. -errno on 469 * failure. 470 * 471 * CONTEXT: 472 * Might sleep. 473 */ 474 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 475 { 476 struct gendisk *disk = part_to_disk(part); 477 int idx; 478 479 /* in consecutive minor range? */ 480 if (part->partno < disk->minors) { 481 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 482 return 0; 483 } 484 485 /* allocate ext devt */ 486 idr_preload(GFP_KERNEL); 487 488 spin_lock_bh(&ext_devt_lock); 489 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 490 spin_unlock_bh(&ext_devt_lock); 491 492 idr_preload_end(); 493 if (idx < 0) 494 return idx == -ENOSPC ? -EBUSY : idx; 495 496 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 497 return 0; 498 } 499 500 /** 501 * blk_free_devt - free a dev_t 502 * @devt: dev_t to free 503 * 504 * Free @devt which was allocated using blk_alloc_devt(). 505 * 506 * CONTEXT: 507 * Might sleep. 508 */ 509 void blk_free_devt(dev_t devt) 510 { 511 if (devt == MKDEV(0, 0)) 512 return; 513 514 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 515 spin_lock_bh(&ext_devt_lock); 516 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 517 spin_unlock_bh(&ext_devt_lock); 518 } 519 } 520 521 static char *bdevt_str(dev_t devt, char *buf) 522 { 523 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 524 char tbuf[BDEVT_SIZE]; 525 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 526 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 527 } else 528 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 529 530 return buf; 531 } 532 533 /* 534 * Register device numbers dev..(dev+range-1) 535 * range must be nonzero 536 * The hash chain is sorted on range, so that subranges can override. 537 */ 538 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 539 struct kobject *(*probe)(dev_t, int *, void *), 540 int (*lock)(dev_t, void *), void *data) 541 { 542 kobj_map(bdev_map, devt, range, module, probe, lock, data); 543 } 544 545 EXPORT_SYMBOL(blk_register_region); 546 547 void blk_unregister_region(dev_t devt, unsigned long range) 548 { 549 kobj_unmap(bdev_map, devt, range); 550 } 551 552 EXPORT_SYMBOL(blk_unregister_region); 553 554 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 555 { 556 struct gendisk *p = data; 557 558 return &disk_to_dev(p)->kobj; 559 } 560 561 static int exact_lock(dev_t devt, void *data) 562 { 563 struct gendisk *p = data; 564 565 if (!get_disk_and_module(p)) 566 return -1; 567 return 0; 568 } 569 570 static void register_disk(struct device *parent, struct gendisk *disk) 571 { 572 struct device *ddev = disk_to_dev(disk); 573 struct block_device *bdev; 574 struct disk_part_iter piter; 575 struct hd_struct *part; 576 int err; 577 578 ddev->parent = parent; 579 580 dev_set_name(ddev, "%s", disk->disk_name); 581 582 /* delay uevents, until we scanned partition table */ 583 dev_set_uevent_suppress(ddev, 1); 584 585 if (device_add(ddev)) 586 return; 587 if (!sysfs_deprecated) { 588 err = sysfs_create_link(block_depr, &ddev->kobj, 589 kobject_name(&ddev->kobj)); 590 if (err) { 591 device_del(ddev); 592 return; 593 } 594 } 595 596 /* 597 * avoid probable deadlock caused by allocating memory with 598 * GFP_KERNEL in runtime_resume callback of its all ancestor 599 * devices 600 */ 601 pm_runtime_set_memalloc_noio(ddev, true); 602 603 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 604 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 605 606 if (disk->flags & GENHD_FL_HIDDEN) { 607 dev_set_uevent_suppress(ddev, 0); 608 return; 609 } 610 611 /* No minors to use for partitions */ 612 if (!disk_part_scan_enabled(disk)) 613 goto exit; 614 615 /* No such device (e.g., media were just removed) */ 616 if (!get_capacity(disk)) 617 goto exit; 618 619 bdev = bdget_disk(disk, 0); 620 if (!bdev) 621 goto exit; 622 623 bdev->bd_invalidated = 1; 624 err = blkdev_get(bdev, FMODE_READ, NULL); 625 if (err < 0) 626 goto exit; 627 blkdev_put(bdev, FMODE_READ); 628 629 exit: 630 /* announce disk after possible partitions are created */ 631 dev_set_uevent_suppress(ddev, 0); 632 kobject_uevent(&ddev->kobj, KOBJ_ADD); 633 634 /* announce possible partitions */ 635 disk_part_iter_init(&piter, disk, 0); 636 while ((part = disk_part_iter_next(&piter))) 637 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 638 disk_part_iter_exit(&piter); 639 640 err = sysfs_create_link(&ddev->kobj, 641 &disk->queue->backing_dev_info->dev->kobj, 642 "bdi"); 643 WARN_ON(err); 644 } 645 646 /** 647 * __device_add_disk - add disk information to kernel list 648 * @parent: parent device for the disk 649 * @disk: per-device partitioning information 650 * @register_queue: register the queue if set to true 651 * 652 * This function registers the partitioning information in @disk 653 * with the kernel. 654 * 655 * FIXME: error handling 656 */ 657 static void __device_add_disk(struct device *parent, struct gendisk *disk, 658 bool register_queue) 659 { 660 dev_t devt; 661 int retval; 662 663 /* minors == 0 indicates to use ext devt from part0 and should 664 * be accompanied with EXT_DEVT flag. Make sure all 665 * parameters make sense. 666 */ 667 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 668 WARN_ON(!disk->minors && 669 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN))); 670 671 disk->flags |= GENHD_FL_UP; 672 673 retval = blk_alloc_devt(&disk->part0, &devt); 674 if (retval) { 675 WARN_ON(1); 676 return; 677 } 678 disk->major = MAJOR(devt); 679 disk->first_minor = MINOR(devt); 680 681 disk_alloc_events(disk); 682 683 if (disk->flags & GENHD_FL_HIDDEN) { 684 /* 685 * Don't let hidden disks show up in /proc/partitions, 686 * and don't bother scanning for partitions either. 687 */ 688 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 689 disk->flags |= GENHD_FL_NO_PART_SCAN; 690 } else { 691 int ret; 692 693 /* Register BDI before referencing it from bdev */ 694 disk_to_dev(disk)->devt = devt; 695 ret = bdi_register_owner(disk->queue->backing_dev_info, 696 disk_to_dev(disk)); 697 WARN_ON(ret); 698 blk_register_region(disk_devt(disk), disk->minors, NULL, 699 exact_match, exact_lock, disk); 700 } 701 register_disk(parent, disk); 702 if (register_queue) 703 blk_register_queue(disk); 704 705 /* 706 * Take an extra ref on queue which will be put on disk_release() 707 * so that it sticks around as long as @disk is there. 708 */ 709 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 710 711 disk_add_events(disk); 712 blk_integrity_add(disk); 713 } 714 715 void device_add_disk(struct device *parent, struct gendisk *disk) 716 { 717 __device_add_disk(parent, disk, true); 718 } 719 EXPORT_SYMBOL(device_add_disk); 720 721 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk) 722 { 723 __device_add_disk(parent, disk, false); 724 } 725 EXPORT_SYMBOL(device_add_disk_no_queue_reg); 726 727 void del_gendisk(struct gendisk *disk) 728 { 729 struct disk_part_iter piter; 730 struct hd_struct *part; 731 732 blk_integrity_del(disk); 733 disk_del_events(disk); 734 735 /* 736 * Block lookups of the disk until all bdevs are unhashed and the 737 * disk is marked as dead (GENHD_FL_UP cleared). 738 */ 739 down_write(&disk->lookup_sem); 740 /* invalidate stuff */ 741 disk_part_iter_init(&piter, disk, 742 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 743 while ((part = disk_part_iter_next(&piter))) { 744 invalidate_partition(disk, part->partno); 745 bdev_unhash_inode(part_devt(part)); 746 delete_partition(disk, part->partno); 747 } 748 disk_part_iter_exit(&piter); 749 750 invalidate_partition(disk, 0); 751 bdev_unhash_inode(disk_devt(disk)); 752 set_capacity(disk, 0); 753 disk->flags &= ~GENHD_FL_UP; 754 up_write(&disk->lookup_sem); 755 756 if (!(disk->flags & GENHD_FL_HIDDEN)) 757 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 758 if (disk->queue) { 759 /* 760 * Unregister bdi before releasing device numbers (as they can 761 * get reused and we'd get clashes in sysfs). 762 */ 763 if (!(disk->flags & GENHD_FL_HIDDEN)) 764 bdi_unregister(disk->queue->backing_dev_info); 765 blk_unregister_queue(disk); 766 } else { 767 WARN_ON(1); 768 } 769 770 if (!(disk->flags & GENHD_FL_HIDDEN)) 771 blk_unregister_region(disk_devt(disk), disk->minors); 772 773 kobject_put(disk->part0.holder_dir); 774 kobject_put(disk->slave_dir); 775 776 part_stat_set_all(&disk->part0, 0); 777 disk->part0.stamp = 0; 778 if (!sysfs_deprecated) 779 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 780 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 781 device_del(disk_to_dev(disk)); 782 } 783 EXPORT_SYMBOL(del_gendisk); 784 785 /* sysfs access to bad-blocks list. */ 786 static ssize_t disk_badblocks_show(struct device *dev, 787 struct device_attribute *attr, 788 char *page) 789 { 790 struct gendisk *disk = dev_to_disk(dev); 791 792 if (!disk->bb) 793 return sprintf(page, "\n"); 794 795 return badblocks_show(disk->bb, page, 0); 796 } 797 798 static ssize_t disk_badblocks_store(struct device *dev, 799 struct device_attribute *attr, 800 const char *page, size_t len) 801 { 802 struct gendisk *disk = dev_to_disk(dev); 803 804 if (!disk->bb) 805 return -ENXIO; 806 807 return badblocks_store(disk->bb, page, len, 0); 808 } 809 810 /** 811 * get_gendisk - get partitioning information for a given device 812 * @devt: device to get partitioning information for 813 * @partno: returned partition index 814 * 815 * This function gets the structure containing partitioning 816 * information for the given device @devt. 817 */ 818 struct gendisk *get_gendisk(dev_t devt, int *partno) 819 { 820 struct gendisk *disk = NULL; 821 822 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 823 struct kobject *kobj; 824 825 kobj = kobj_lookup(bdev_map, devt, partno); 826 if (kobj) 827 disk = dev_to_disk(kobj_to_dev(kobj)); 828 } else { 829 struct hd_struct *part; 830 831 spin_lock_bh(&ext_devt_lock); 832 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 833 if (part && get_disk_and_module(part_to_disk(part))) { 834 *partno = part->partno; 835 disk = part_to_disk(part); 836 } 837 spin_unlock_bh(&ext_devt_lock); 838 } 839 840 if (!disk) 841 return NULL; 842 843 /* 844 * Synchronize with del_gendisk() to not return disk that is being 845 * destroyed. 846 */ 847 down_read(&disk->lookup_sem); 848 if (unlikely((disk->flags & GENHD_FL_HIDDEN) || 849 !(disk->flags & GENHD_FL_UP))) { 850 up_read(&disk->lookup_sem); 851 put_disk_and_module(disk); 852 disk = NULL; 853 } else { 854 up_read(&disk->lookup_sem); 855 } 856 return disk; 857 } 858 EXPORT_SYMBOL(get_gendisk); 859 860 /** 861 * bdget_disk - do bdget() by gendisk and partition number 862 * @disk: gendisk of interest 863 * @partno: partition number 864 * 865 * Find partition @partno from @disk, do bdget() on it. 866 * 867 * CONTEXT: 868 * Don't care. 869 * 870 * RETURNS: 871 * Resulting block_device on success, NULL on failure. 872 */ 873 struct block_device *bdget_disk(struct gendisk *disk, int partno) 874 { 875 struct hd_struct *part; 876 struct block_device *bdev = NULL; 877 878 part = disk_get_part(disk, partno); 879 if (part) 880 bdev = bdget(part_devt(part)); 881 disk_put_part(part); 882 883 return bdev; 884 } 885 EXPORT_SYMBOL(bdget_disk); 886 887 /* 888 * print a full list of all partitions - intended for places where the root 889 * filesystem can't be mounted and thus to give the victim some idea of what 890 * went wrong 891 */ 892 void __init printk_all_partitions(void) 893 { 894 struct class_dev_iter iter; 895 struct device *dev; 896 897 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 898 while ((dev = class_dev_iter_next(&iter))) { 899 struct gendisk *disk = dev_to_disk(dev); 900 struct disk_part_iter piter; 901 struct hd_struct *part; 902 char name_buf[BDEVNAME_SIZE]; 903 char devt_buf[BDEVT_SIZE]; 904 905 /* 906 * Don't show empty devices or things that have been 907 * suppressed 908 */ 909 if (get_capacity(disk) == 0 || 910 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 911 continue; 912 913 /* 914 * Note, unlike /proc/partitions, I am showing the 915 * numbers in hex - the same format as the root= 916 * option takes. 917 */ 918 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 919 while ((part = disk_part_iter_next(&piter))) { 920 bool is_part0 = part == &disk->part0; 921 922 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 923 bdevt_str(part_devt(part), devt_buf), 924 (unsigned long long)part_nr_sects_read(part) >> 1 925 , disk_name(disk, part->partno, name_buf), 926 part->info ? part->info->uuid : ""); 927 if (is_part0) { 928 if (dev->parent && dev->parent->driver) 929 printk(" driver: %s\n", 930 dev->parent->driver->name); 931 else 932 printk(" (driver?)\n"); 933 } else 934 printk("\n"); 935 } 936 disk_part_iter_exit(&piter); 937 } 938 class_dev_iter_exit(&iter); 939 } 940 941 #ifdef CONFIG_PROC_FS 942 /* iterator */ 943 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 944 { 945 loff_t skip = *pos; 946 struct class_dev_iter *iter; 947 struct device *dev; 948 949 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 950 if (!iter) 951 return ERR_PTR(-ENOMEM); 952 953 seqf->private = iter; 954 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 955 do { 956 dev = class_dev_iter_next(iter); 957 if (!dev) 958 return NULL; 959 } while (skip--); 960 961 return dev_to_disk(dev); 962 } 963 964 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 965 { 966 struct device *dev; 967 968 (*pos)++; 969 dev = class_dev_iter_next(seqf->private); 970 if (dev) 971 return dev_to_disk(dev); 972 973 return NULL; 974 } 975 976 static void disk_seqf_stop(struct seq_file *seqf, void *v) 977 { 978 struct class_dev_iter *iter = seqf->private; 979 980 /* stop is called even after start failed :-( */ 981 if (iter) { 982 class_dev_iter_exit(iter); 983 kfree(iter); 984 seqf->private = NULL; 985 } 986 } 987 988 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 989 { 990 void *p; 991 992 p = disk_seqf_start(seqf, pos); 993 if (!IS_ERR_OR_NULL(p) && !*pos) 994 seq_puts(seqf, "major minor #blocks name\n\n"); 995 return p; 996 } 997 998 static int show_partition(struct seq_file *seqf, void *v) 999 { 1000 struct gendisk *sgp = v; 1001 struct disk_part_iter piter; 1002 struct hd_struct *part; 1003 char buf[BDEVNAME_SIZE]; 1004 1005 /* Don't show non-partitionable removeable devices or empty devices */ 1006 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 1007 (sgp->flags & GENHD_FL_REMOVABLE))) 1008 return 0; 1009 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 1010 return 0; 1011 1012 /* show the full disk and all non-0 size partitions of it */ 1013 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 1014 while ((part = disk_part_iter_next(&piter))) 1015 seq_printf(seqf, "%4d %7d %10llu %s\n", 1016 MAJOR(part_devt(part)), MINOR(part_devt(part)), 1017 (unsigned long long)part_nr_sects_read(part) >> 1, 1018 disk_name(sgp, part->partno, buf)); 1019 disk_part_iter_exit(&piter); 1020 1021 return 0; 1022 } 1023 1024 static const struct seq_operations partitions_op = { 1025 .start = show_partition_start, 1026 .next = disk_seqf_next, 1027 .stop = disk_seqf_stop, 1028 .show = show_partition 1029 }; 1030 1031 static int partitions_open(struct inode *inode, struct file *file) 1032 { 1033 return seq_open(file, &partitions_op); 1034 } 1035 1036 static const struct file_operations proc_partitions_operations = { 1037 .open = partitions_open, 1038 .read = seq_read, 1039 .llseek = seq_lseek, 1040 .release = seq_release, 1041 }; 1042 #endif 1043 1044 1045 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 1046 { 1047 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 1048 /* Make old-style 2.4 aliases work */ 1049 request_module("block-major-%d", MAJOR(devt)); 1050 return NULL; 1051 } 1052 1053 static int __init genhd_device_init(void) 1054 { 1055 int error; 1056 1057 block_class.dev_kobj = sysfs_dev_block_kobj; 1058 error = class_register(&block_class); 1059 if (unlikely(error)) 1060 return error; 1061 bdev_map = kobj_map_init(base_probe, &block_class_lock); 1062 blk_dev_init(); 1063 1064 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 1065 1066 /* create top-level block dir */ 1067 if (!sysfs_deprecated) 1068 block_depr = kobject_create_and_add("block", NULL); 1069 return 0; 1070 } 1071 1072 subsys_initcall(genhd_device_init); 1073 1074 static ssize_t disk_range_show(struct device *dev, 1075 struct device_attribute *attr, char *buf) 1076 { 1077 struct gendisk *disk = dev_to_disk(dev); 1078 1079 return sprintf(buf, "%d\n", disk->minors); 1080 } 1081 1082 static ssize_t disk_ext_range_show(struct device *dev, 1083 struct device_attribute *attr, char *buf) 1084 { 1085 struct gendisk *disk = dev_to_disk(dev); 1086 1087 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1088 } 1089 1090 static ssize_t disk_removable_show(struct device *dev, 1091 struct device_attribute *attr, char *buf) 1092 { 1093 struct gendisk *disk = dev_to_disk(dev); 1094 1095 return sprintf(buf, "%d\n", 1096 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1097 } 1098 1099 static ssize_t disk_hidden_show(struct device *dev, 1100 struct device_attribute *attr, char *buf) 1101 { 1102 struct gendisk *disk = dev_to_disk(dev); 1103 1104 return sprintf(buf, "%d\n", 1105 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); 1106 } 1107 1108 static ssize_t disk_ro_show(struct device *dev, 1109 struct device_attribute *attr, char *buf) 1110 { 1111 struct gendisk *disk = dev_to_disk(dev); 1112 1113 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1114 } 1115 1116 static ssize_t disk_capability_show(struct device *dev, 1117 struct device_attribute *attr, char *buf) 1118 { 1119 struct gendisk *disk = dev_to_disk(dev); 1120 1121 return sprintf(buf, "%x\n", disk->flags); 1122 } 1123 1124 static ssize_t disk_alignment_offset_show(struct device *dev, 1125 struct device_attribute *attr, 1126 char *buf) 1127 { 1128 struct gendisk *disk = dev_to_disk(dev); 1129 1130 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1131 } 1132 1133 static ssize_t disk_discard_alignment_show(struct device *dev, 1134 struct device_attribute *attr, 1135 char *buf) 1136 { 1137 struct gendisk *disk = dev_to_disk(dev); 1138 1139 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1140 } 1141 1142 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 1143 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 1144 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 1145 static DEVICE_ATTR(hidden, S_IRUGO, disk_hidden_show, NULL); 1146 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 1147 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 1148 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 1149 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 1150 NULL); 1151 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 1152 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 1153 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 1154 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show, 1155 disk_badblocks_store); 1156 #ifdef CONFIG_FAIL_MAKE_REQUEST 1157 static struct device_attribute dev_attr_fail = 1158 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 1159 #endif 1160 #ifdef CONFIG_FAIL_IO_TIMEOUT 1161 static struct device_attribute dev_attr_fail_timeout = 1162 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 1163 part_timeout_store); 1164 #endif 1165 1166 static struct attribute *disk_attrs[] = { 1167 &dev_attr_range.attr, 1168 &dev_attr_ext_range.attr, 1169 &dev_attr_removable.attr, 1170 &dev_attr_hidden.attr, 1171 &dev_attr_ro.attr, 1172 &dev_attr_size.attr, 1173 &dev_attr_alignment_offset.attr, 1174 &dev_attr_discard_alignment.attr, 1175 &dev_attr_capability.attr, 1176 &dev_attr_stat.attr, 1177 &dev_attr_inflight.attr, 1178 &dev_attr_badblocks.attr, 1179 #ifdef CONFIG_FAIL_MAKE_REQUEST 1180 &dev_attr_fail.attr, 1181 #endif 1182 #ifdef CONFIG_FAIL_IO_TIMEOUT 1183 &dev_attr_fail_timeout.attr, 1184 #endif 1185 NULL 1186 }; 1187 1188 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1189 { 1190 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1191 struct gendisk *disk = dev_to_disk(dev); 1192 1193 if (a == &dev_attr_badblocks.attr && !disk->bb) 1194 return 0; 1195 return a->mode; 1196 } 1197 1198 static struct attribute_group disk_attr_group = { 1199 .attrs = disk_attrs, 1200 .is_visible = disk_visible, 1201 }; 1202 1203 static const struct attribute_group *disk_attr_groups[] = { 1204 &disk_attr_group, 1205 NULL 1206 }; 1207 1208 /** 1209 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1210 * @disk: disk to replace part_tbl for 1211 * @new_ptbl: new part_tbl to install 1212 * 1213 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1214 * original ptbl is freed using RCU callback. 1215 * 1216 * LOCKING: 1217 * Matching bd_mutex locked or the caller is the only user of @disk. 1218 */ 1219 static void disk_replace_part_tbl(struct gendisk *disk, 1220 struct disk_part_tbl *new_ptbl) 1221 { 1222 struct disk_part_tbl *old_ptbl = 1223 rcu_dereference_protected(disk->part_tbl, 1); 1224 1225 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1226 1227 if (old_ptbl) { 1228 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1229 kfree_rcu(old_ptbl, rcu_head); 1230 } 1231 } 1232 1233 /** 1234 * disk_expand_part_tbl - expand disk->part_tbl 1235 * @disk: disk to expand part_tbl for 1236 * @partno: expand such that this partno can fit in 1237 * 1238 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1239 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1240 * 1241 * LOCKING: 1242 * Matching bd_mutex locked or the caller is the only user of @disk. 1243 * Might sleep. 1244 * 1245 * RETURNS: 1246 * 0 on success, -errno on failure. 1247 */ 1248 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1249 { 1250 struct disk_part_tbl *old_ptbl = 1251 rcu_dereference_protected(disk->part_tbl, 1); 1252 struct disk_part_tbl *new_ptbl; 1253 int len = old_ptbl ? old_ptbl->len : 0; 1254 int i, target; 1255 size_t size; 1256 1257 /* 1258 * check for int overflow, since we can get here from blkpg_ioctl() 1259 * with a user passed 'partno'. 1260 */ 1261 target = partno + 1; 1262 if (target < 0) 1263 return -EINVAL; 1264 1265 /* disk_max_parts() is zero during initialization, ignore if so */ 1266 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1267 return -EINVAL; 1268 1269 if (target <= len) 1270 return 0; 1271 1272 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1273 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1274 if (!new_ptbl) 1275 return -ENOMEM; 1276 1277 new_ptbl->len = target; 1278 1279 for (i = 0; i < len; i++) 1280 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1281 1282 disk_replace_part_tbl(disk, new_ptbl); 1283 return 0; 1284 } 1285 1286 static void disk_release(struct device *dev) 1287 { 1288 struct gendisk *disk = dev_to_disk(dev); 1289 1290 blk_free_devt(dev->devt); 1291 disk_release_events(disk); 1292 kfree(disk->random); 1293 disk_replace_part_tbl(disk, NULL); 1294 hd_free_part(&disk->part0); 1295 if (disk->queue) 1296 blk_put_queue(disk->queue); 1297 kfree(disk); 1298 } 1299 struct class block_class = { 1300 .name = "block", 1301 }; 1302 1303 static char *block_devnode(struct device *dev, umode_t *mode, 1304 kuid_t *uid, kgid_t *gid) 1305 { 1306 struct gendisk *disk = dev_to_disk(dev); 1307 1308 if (disk->devnode) 1309 return disk->devnode(disk, mode); 1310 return NULL; 1311 } 1312 1313 static const struct device_type disk_type = { 1314 .name = "disk", 1315 .groups = disk_attr_groups, 1316 .release = disk_release, 1317 .devnode = block_devnode, 1318 }; 1319 1320 #ifdef CONFIG_PROC_FS 1321 /* 1322 * aggregate disk stat collector. Uses the same stats that the sysfs 1323 * entries do, above, but makes them available through one seq_file. 1324 * 1325 * The output looks suspiciously like /proc/partitions with a bunch of 1326 * extra fields. 1327 */ 1328 static int diskstats_show(struct seq_file *seqf, void *v) 1329 { 1330 struct gendisk *gp = v; 1331 struct disk_part_iter piter; 1332 struct hd_struct *hd; 1333 char buf[BDEVNAME_SIZE]; 1334 unsigned int inflight[2]; 1335 int cpu; 1336 1337 /* 1338 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1339 seq_puts(seqf, "major minor name" 1340 " rio rmerge rsect ruse wio wmerge " 1341 "wsect wuse running use aveq" 1342 "\n\n"); 1343 */ 1344 1345 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1346 while ((hd = disk_part_iter_next(&piter))) { 1347 cpu = part_stat_lock(); 1348 part_round_stats(gp->queue, cpu, hd); 1349 part_stat_unlock(); 1350 part_in_flight(gp->queue, hd, inflight); 1351 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1352 "%u %lu %lu %lu %u %u %u %u\n", 1353 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1354 disk_name(gp, hd->partno, buf), 1355 part_stat_read(hd, ios[READ]), 1356 part_stat_read(hd, merges[READ]), 1357 part_stat_read(hd, sectors[READ]), 1358 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1359 part_stat_read(hd, ios[WRITE]), 1360 part_stat_read(hd, merges[WRITE]), 1361 part_stat_read(hd, sectors[WRITE]), 1362 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1363 inflight[0], 1364 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1365 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1366 ); 1367 } 1368 disk_part_iter_exit(&piter); 1369 1370 return 0; 1371 } 1372 1373 static const struct seq_operations diskstats_op = { 1374 .start = disk_seqf_start, 1375 .next = disk_seqf_next, 1376 .stop = disk_seqf_stop, 1377 .show = diskstats_show 1378 }; 1379 1380 static int diskstats_open(struct inode *inode, struct file *file) 1381 { 1382 return seq_open(file, &diskstats_op); 1383 } 1384 1385 static const struct file_operations proc_diskstats_operations = { 1386 .open = diskstats_open, 1387 .read = seq_read, 1388 .llseek = seq_lseek, 1389 .release = seq_release, 1390 }; 1391 1392 static int __init proc_genhd_init(void) 1393 { 1394 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1395 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1396 return 0; 1397 } 1398 module_init(proc_genhd_init); 1399 #endif /* CONFIG_PROC_FS */ 1400 1401 dev_t blk_lookup_devt(const char *name, int partno) 1402 { 1403 dev_t devt = MKDEV(0, 0); 1404 struct class_dev_iter iter; 1405 struct device *dev; 1406 1407 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1408 while ((dev = class_dev_iter_next(&iter))) { 1409 struct gendisk *disk = dev_to_disk(dev); 1410 struct hd_struct *part; 1411 1412 if (strcmp(dev_name(dev), name)) 1413 continue; 1414 1415 if (partno < disk->minors) { 1416 /* We need to return the right devno, even 1417 * if the partition doesn't exist yet. 1418 */ 1419 devt = MKDEV(MAJOR(dev->devt), 1420 MINOR(dev->devt) + partno); 1421 break; 1422 } 1423 part = disk_get_part(disk, partno); 1424 if (part) { 1425 devt = part_devt(part); 1426 disk_put_part(part); 1427 break; 1428 } 1429 disk_put_part(part); 1430 } 1431 class_dev_iter_exit(&iter); 1432 return devt; 1433 } 1434 EXPORT_SYMBOL(blk_lookup_devt); 1435 1436 struct gendisk *__alloc_disk_node(int minors, int node_id) 1437 { 1438 struct gendisk *disk; 1439 struct disk_part_tbl *ptbl; 1440 1441 if (minors > DISK_MAX_PARTS) { 1442 printk(KERN_ERR 1443 "block: can't allocate more than %d partitions\n", 1444 DISK_MAX_PARTS); 1445 minors = DISK_MAX_PARTS; 1446 } 1447 1448 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1449 if (disk) { 1450 if (!init_part_stats(&disk->part0)) { 1451 kfree(disk); 1452 return NULL; 1453 } 1454 init_rwsem(&disk->lookup_sem); 1455 disk->node_id = node_id; 1456 if (disk_expand_part_tbl(disk, 0)) { 1457 free_part_stats(&disk->part0); 1458 kfree(disk); 1459 return NULL; 1460 } 1461 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 1462 rcu_assign_pointer(ptbl->part[0], &disk->part0); 1463 1464 /* 1465 * set_capacity() and get_capacity() currently don't use 1466 * seqcounter to read/update the part0->nr_sects. Still init 1467 * the counter as we can read the sectors in IO submission 1468 * patch using seqence counters. 1469 * 1470 * TODO: Ideally set_capacity() and get_capacity() should be 1471 * converted to make use of bd_mutex and sequence counters. 1472 */ 1473 seqcount_init(&disk->part0.nr_sects_seq); 1474 if (hd_ref_init(&disk->part0)) { 1475 hd_free_part(&disk->part0); 1476 kfree(disk); 1477 return NULL; 1478 } 1479 1480 disk->minors = minors; 1481 rand_initialize_disk(disk); 1482 disk_to_dev(disk)->class = &block_class; 1483 disk_to_dev(disk)->type = &disk_type; 1484 device_initialize(disk_to_dev(disk)); 1485 } 1486 return disk; 1487 } 1488 EXPORT_SYMBOL(__alloc_disk_node); 1489 1490 struct kobject *get_disk_and_module(struct gendisk *disk) 1491 { 1492 struct module *owner; 1493 struct kobject *kobj; 1494 1495 if (!disk->fops) 1496 return NULL; 1497 owner = disk->fops->owner; 1498 if (owner && !try_module_get(owner)) 1499 return NULL; 1500 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1501 if (kobj == NULL) { 1502 module_put(owner); 1503 return NULL; 1504 } 1505 return kobj; 1506 1507 } 1508 EXPORT_SYMBOL(get_disk_and_module); 1509 1510 void put_disk(struct gendisk *disk) 1511 { 1512 if (disk) 1513 kobject_put(&disk_to_dev(disk)->kobj); 1514 } 1515 EXPORT_SYMBOL(put_disk); 1516 1517 /* 1518 * This is a counterpart of get_disk_and_module() and thus also of 1519 * get_gendisk(). 1520 */ 1521 void put_disk_and_module(struct gendisk *disk) 1522 { 1523 if (disk) { 1524 struct module *owner = disk->fops->owner; 1525 1526 put_disk(disk); 1527 module_put(owner); 1528 } 1529 } 1530 EXPORT_SYMBOL(put_disk_and_module); 1531 1532 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1533 { 1534 char event[] = "DISK_RO=1"; 1535 char *envp[] = { event, NULL }; 1536 1537 if (!ro) 1538 event[8] = '0'; 1539 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1540 } 1541 1542 void set_device_ro(struct block_device *bdev, int flag) 1543 { 1544 bdev->bd_part->policy = flag; 1545 } 1546 1547 EXPORT_SYMBOL(set_device_ro); 1548 1549 void set_disk_ro(struct gendisk *disk, int flag) 1550 { 1551 struct disk_part_iter piter; 1552 struct hd_struct *part; 1553 1554 if (disk->part0.policy != flag) { 1555 set_disk_ro_uevent(disk, flag); 1556 disk->part0.policy = flag; 1557 } 1558 1559 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1560 while ((part = disk_part_iter_next(&piter))) 1561 part->policy = flag; 1562 disk_part_iter_exit(&piter); 1563 } 1564 1565 EXPORT_SYMBOL(set_disk_ro); 1566 1567 int bdev_read_only(struct block_device *bdev) 1568 { 1569 if (!bdev) 1570 return 0; 1571 return bdev->bd_part->policy; 1572 } 1573 1574 EXPORT_SYMBOL(bdev_read_only); 1575 1576 int invalidate_partition(struct gendisk *disk, int partno) 1577 { 1578 int res = 0; 1579 struct block_device *bdev = bdget_disk(disk, partno); 1580 if (bdev) { 1581 fsync_bdev(bdev); 1582 res = __invalidate_device(bdev, true); 1583 bdput(bdev); 1584 } 1585 return res; 1586 } 1587 1588 EXPORT_SYMBOL(invalidate_partition); 1589 1590 /* 1591 * Disk events - monitor disk events like media change and eject request. 1592 */ 1593 struct disk_events { 1594 struct list_head node; /* all disk_event's */ 1595 struct gendisk *disk; /* the associated disk */ 1596 spinlock_t lock; 1597 1598 struct mutex block_mutex; /* protects blocking */ 1599 int block; /* event blocking depth */ 1600 unsigned int pending; /* events already sent out */ 1601 unsigned int clearing; /* events being cleared */ 1602 1603 long poll_msecs; /* interval, -1 for default */ 1604 struct delayed_work dwork; 1605 }; 1606 1607 static const char *disk_events_strs[] = { 1608 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1609 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1610 }; 1611 1612 static char *disk_uevents[] = { 1613 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1614 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1615 }; 1616 1617 /* list of all disk_events */ 1618 static DEFINE_MUTEX(disk_events_mutex); 1619 static LIST_HEAD(disk_events); 1620 1621 /* disable in-kernel polling by default */ 1622 static unsigned long disk_events_dfl_poll_msecs; 1623 1624 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1625 { 1626 struct disk_events *ev = disk->ev; 1627 long intv_msecs = 0; 1628 1629 /* 1630 * If device-specific poll interval is set, always use it. If 1631 * the default is being used, poll iff there are events which 1632 * can't be monitored asynchronously. 1633 */ 1634 if (ev->poll_msecs >= 0) 1635 intv_msecs = ev->poll_msecs; 1636 else if (disk->events & ~disk->async_events) 1637 intv_msecs = disk_events_dfl_poll_msecs; 1638 1639 return msecs_to_jiffies(intv_msecs); 1640 } 1641 1642 /** 1643 * disk_block_events - block and flush disk event checking 1644 * @disk: disk to block events for 1645 * 1646 * On return from this function, it is guaranteed that event checking 1647 * isn't in progress and won't happen until unblocked by 1648 * disk_unblock_events(). Events blocking is counted and the actual 1649 * unblocking happens after the matching number of unblocks are done. 1650 * 1651 * Note that this intentionally does not block event checking from 1652 * disk_clear_events(). 1653 * 1654 * CONTEXT: 1655 * Might sleep. 1656 */ 1657 void disk_block_events(struct gendisk *disk) 1658 { 1659 struct disk_events *ev = disk->ev; 1660 unsigned long flags; 1661 bool cancel; 1662 1663 if (!ev) 1664 return; 1665 1666 /* 1667 * Outer mutex ensures that the first blocker completes canceling 1668 * the event work before further blockers are allowed to finish. 1669 */ 1670 mutex_lock(&ev->block_mutex); 1671 1672 spin_lock_irqsave(&ev->lock, flags); 1673 cancel = !ev->block++; 1674 spin_unlock_irqrestore(&ev->lock, flags); 1675 1676 if (cancel) 1677 cancel_delayed_work_sync(&disk->ev->dwork); 1678 1679 mutex_unlock(&ev->block_mutex); 1680 } 1681 1682 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1683 { 1684 struct disk_events *ev = disk->ev; 1685 unsigned long intv; 1686 unsigned long flags; 1687 1688 spin_lock_irqsave(&ev->lock, flags); 1689 1690 if (WARN_ON_ONCE(ev->block <= 0)) 1691 goto out_unlock; 1692 1693 if (--ev->block) 1694 goto out_unlock; 1695 1696 intv = disk_events_poll_jiffies(disk); 1697 if (check_now) 1698 queue_delayed_work(system_freezable_power_efficient_wq, 1699 &ev->dwork, 0); 1700 else if (intv) 1701 queue_delayed_work(system_freezable_power_efficient_wq, 1702 &ev->dwork, intv); 1703 out_unlock: 1704 spin_unlock_irqrestore(&ev->lock, flags); 1705 } 1706 1707 /** 1708 * disk_unblock_events - unblock disk event checking 1709 * @disk: disk to unblock events for 1710 * 1711 * Undo disk_block_events(). When the block count reaches zero, it 1712 * starts events polling if configured. 1713 * 1714 * CONTEXT: 1715 * Don't care. Safe to call from irq context. 1716 */ 1717 void disk_unblock_events(struct gendisk *disk) 1718 { 1719 if (disk->ev) 1720 __disk_unblock_events(disk, false); 1721 } 1722 1723 /** 1724 * disk_flush_events - schedule immediate event checking and flushing 1725 * @disk: disk to check and flush events for 1726 * @mask: events to flush 1727 * 1728 * Schedule immediate event checking on @disk if not blocked. Events in 1729 * @mask are scheduled to be cleared from the driver. Note that this 1730 * doesn't clear the events from @disk->ev. 1731 * 1732 * CONTEXT: 1733 * If @mask is non-zero must be called with bdev->bd_mutex held. 1734 */ 1735 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1736 { 1737 struct disk_events *ev = disk->ev; 1738 1739 if (!ev) 1740 return; 1741 1742 spin_lock_irq(&ev->lock); 1743 ev->clearing |= mask; 1744 if (!ev->block) 1745 mod_delayed_work(system_freezable_power_efficient_wq, 1746 &ev->dwork, 0); 1747 spin_unlock_irq(&ev->lock); 1748 } 1749 1750 /** 1751 * disk_clear_events - synchronously check, clear and return pending events 1752 * @disk: disk to fetch and clear events from 1753 * @mask: mask of events to be fetched and cleared 1754 * 1755 * Disk events are synchronously checked and pending events in @mask 1756 * are cleared and returned. This ignores the block count. 1757 * 1758 * CONTEXT: 1759 * Might sleep. 1760 */ 1761 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1762 { 1763 const struct block_device_operations *bdops = disk->fops; 1764 struct disk_events *ev = disk->ev; 1765 unsigned int pending; 1766 unsigned int clearing = mask; 1767 1768 if (!ev) { 1769 /* for drivers still using the old ->media_changed method */ 1770 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1771 bdops->media_changed && bdops->media_changed(disk)) 1772 return DISK_EVENT_MEDIA_CHANGE; 1773 return 0; 1774 } 1775 1776 disk_block_events(disk); 1777 1778 /* 1779 * store the union of mask and ev->clearing on the stack so that the 1780 * race with disk_flush_events does not cause ambiguity (ev->clearing 1781 * can still be modified even if events are blocked). 1782 */ 1783 spin_lock_irq(&ev->lock); 1784 clearing |= ev->clearing; 1785 ev->clearing = 0; 1786 spin_unlock_irq(&ev->lock); 1787 1788 disk_check_events(ev, &clearing); 1789 /* 1790 * if ev->clearing is not 0, the disk_flush_events got called in the 1791 * middle of this function, so we want to run the workfn without delay. 1792 */ 1793 __disk_unblock_events(disk, ev->clearing ? true : false); 1794 1795 /* then, fetch and clear pending events */ 1796 spin_lock_irq(&ev->lock); 1797 pending = ev->pending & mask; 1798 ev->pending &= ~mask; 1799 spin_unlock_irq(&ev->lock); 1800 WARN_ON_ONCE(clearing & mask); 1801 1802 return pending; 1803 } 1804 1805 /* 1806 * Separate this part out so that a different pointer for clearing_ptr can be 1807 * passed in for disk_clear_events. 1808 */ 1809 static void disk_events_workfn(struct work_struct *work) 1810 { 1811 struct delayed_work *dwork = to_delayed_work(work); 1812 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1813 1814 disk_check_events(ev, &ev->clearing); 1815 } 1816 1817 static void disk_check_events(struct disk_events *ev, 1818 unsigned int *clearing_ptr) 1819 { 1820 struct gendisk *disk = ev->disk; 1821 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1822 unsigned int clearing = *clearing_ptr; 1823 unsigned int events; 1824 unsigned long intv; 1825 int nr_events = 0, i; 1826 1827 /* check events */ 1828 events = disk->fops->check_events(disk, clearing); 1829 1830 /* accumulate pending events and schedule next poll if necessary */ 1831 spin_lock_irq(&ev->lock); 1832 1833 events &= ~ev->pending; 1834 ev->pending |= events; 1835 *clearing_ptr &= ~clearing; 1836 1837 intv = disk_events_poll_jiffies(disk); 1838 if (!ev->block && intv) 1839 queue_delayed_work(system_freezable_power_efficient_wq, 1840 &ev->dwork, intv); 1841 1842 spin_unlock_irq(&ev->lock); 1843 1844 /* 1845 * Tell userland about new events. Only the events listed in 1846 * @disk->events are reported. Unlisted events are processed the 1847 * same internally but never get reported to userland. 1848 */ 1849 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1850 if (events & disk->events & (1 << i)) 1851 envp[nr_events++] = disk_uevents[i]; 1852 1853 if (nr_events) 1854 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1855 } 1856 1857 /* 1858 * A disk events enabled device has the following sysfs nodes under 1859 * its /sys/block/X/ directory. 1860 * 1861 * events : list of all supported events 1862 * events_async : list of events which can be detected w/o polling 1863 * events_poll_msecs : polling interval, 0: disable, -1: system default 1864 */ 1865 static ssize_t __disk_events_show(unsigned int events, char *buf) 1866 { 1867 const char *delim = ""; 1868 ssize_t pos = 0; 1869 int i; 1870 1871 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1872 if (events & (1 << i)) { 1873 pos += sprintf(buf + pos, "%s%s", 1874 delim, disk_events_strs[i]); 1875 delim = " "; 1876 } 1877 if (pos) 1878 pos += sprintf(buf + pos, "\n"); 1879 return pos; 1880 } 1881 1882 static ssize_t disk_events_show(struct device *dev, 1883 struct device_attribute *attr, char *buf) 1884 { 1885 struct gendisk *disk = dev_to_disk(dev); 1886 1887 return __disk_events_show(disk->events, buf); 1888 } 1889 1890 static ssize_t disk_events_async_show(struct device *dev, 1891 struct device_attribute *attr, char *buf) 1892 { 1893 struct gendisk *disk = dev_to_disk(dev); 1894 1895 return __disk_events_show(disk->async_events, buf); 1896 } 1897 1898 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1899 struct device_attribute *attr, 1900 char *buf) 1901 { 1902 struct gendisk *disk = dev_to_disk(dev); 1903 1904 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1905 } 1906 1907 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1908 struct device_attribute *attr, 1909 const char *buf, size_t count) 1910 { 1911 struct gendisk *disk = dev_to_disk(dev); 1912 long intv; 1913 1914 if (!count || !sscanf(buf, "%ld", &intv)) 1915 return -EINVAL; 1916 1917 if (intv < 0 && intv != -1) 1918 return -EINVAL; 1919 1920 disk_block_events(disk); 1921 disk->ev->poll_msecs = intv; 1922 __disk_unblock_events(disk, true); 1923 1924 return count; 1925 } 1926 1927 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1928 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1929 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1930 disk_events_poll_msecs_show, 1931 disk_events_poll_msecs_store); 1932 1933 static const struct attribute *disk_events_attrs[] = { 1934 &dev_attr_events.attr, 1935 &dev_attr_events_async.attr, 1936 &dev_attr_events_poll_msecs.attr, 1937 NULL, 1938 }; 1939 1940 /* 1941 * The default polling interval can be specified by the kernel 1942 * parameter block.events_dfl_poll_msecs which defaults to 0 1943 * (disable). This can also be modified runtime by writing to 1944 * /sys/module/block/events_dfl_poll_msecs. 1945 */ 1946 static int disk_events_set_dfl_poll_msecs(const char *val, 1947 const struct kernel_param *kp) 1948 { 1949 struct disk_events *ev; 1950 int ret; 1951 1952 ret = param_set_ulong(val, kp); 1953 if (ret < 0) 1954 return ret; 1955 1956 mutex_lock(&disk_events_mutex); 1957 1958 list_for_each_entry(ev, &disk_events, node) 1959 disk_flush_events(ev->disk, 0); 1960 1961 mutex_unlock(&disk_events_mutex); 1962 1963 return 0; 1964 } 1965 1966 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1967 .set = disk_events_set_dfl_poll_msecs, 1968 .get = param_get_ulong, 1969 }; 1970 1971 #undef MODULE_PARAM_PREFIX 1972 #define MODULE_PARAM_PREFIX "block." 1973 1974 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1975 &disk_events_dfl_poll_msecs, 0644); 1976 1977 /* 1978 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1979 */ 1980 static void disk_alloc_events(struct gendisk *disk) 1981 { 1982 struct disk_events *ev; 1983 1984 if (!disk->fops->check_events) 1985 return; 1986 1987 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1988 if (!ev) { 1989 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1990 return; 1991 } 1992 1993 INIT_LIST_HEAD(&ev->node); 1994 ev->disk = disk; 1995 spin_lock_init(&ev->lock); 1996 mutex_init(&ev->block_mutex); 1997 ev->block = 1; 1998 ev->poll_msecs = -1; 1999 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 2000 2001 disk->ev = ev; 2002 } 2003 2004 static void disk_add_events(struct gendisk *disk) 2005 { 2006 if (!disk->ev) 2007 return; 2008 2009 /* FIXME: error handling */ 2010 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 2011 pr_warn("%s: failed to create sysfs files for events\n", 2012 disk->disk_name); 2013 2014 mutex_lock(&disk_events_mutex); 2015 list_add_tail(&disk->ev->node, &disk_events); 2016 mutex_unlock(&disk_events_mutex); 2017 2018 /* 2019 * Block count is initialized to 1 and the following initial 2020 * unblock kicks it into action. 2021 */ 2022 __disk_unblock_events(disk, true); 2023 } 2024 2025 static void disk_del_events(struct gendisk *disk) 2026 { 2027 if (!disk->ev) 2028 return; 2029 2030 disk_block_events(disk); 2031 2032 mutex_lock(&disk_events_mutex); 2033 list_del_init(&disk->ev->node); 2034 mutex_unlock(&disk_events_mutex); 2035 2036 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 2037 } 2038 2039 static void disk_release_events(struct gendisk *disk) 2040 { 2041 /* the block count should be 1 from disk_del_events() */ 2042 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 2043 kfree(disk->ev); 2044 } 2045