xref: /openbmc/linux/block/genhd.c (revision 3a83e4e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  gendisk handling
4  */
5 
6 #include <linux/module.h>
7 #include <linux/ctype.h>
8 #include <linux/fs.h>
9 #include <linux/genhd.h>
10 #include <linux/kdev_t.h>
11 #include <linux/kernel.h>
12 #include <linux/blkdev.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/kmod.h>
20 #include <linux/kobj_map.h>
21 #include <linux/mutex.h>
22 #include <linux/idr.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/badblocks.h>
26 
27 #include "blk.h"
28 
29 static DEFINE_MUTEX(block_class_lock);
30 static struct kobject *block_depr;
31 
32 /* for extended dynamic devt allocation, currently only one major is used */
33 #define NR_EXT_DEVT		(1 << MINORBITS)
34 
35 /* For extended devt allocation.  ext_devt_lock prevents look up
36  * results from going away underneath its user.
37  */
38 static DEFINE_SPINLOCK(ext_devt_lock);
39 static DEFINE_IDR(ext_devt_idr);
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 /*
49  * Set disk capacity and notify if the size is not currently
50  * zero and will not be set to zero
51  */
52 void set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size,
53 					bool revalidate)
54 {
55 	sector_t capacity = get_capacity(disk);
56 
57 	set_capacity(disk, size);
58 
59 	if (revalidate)
60 		revalidate_disk(disk);
61 
62 	if (capacity != size && capacity != 0 && size != 0) {
63 		char *envp[] = { "RESIZE=1", NULL };
64 
65 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
66 	}
67 }
68 
69 EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify);
70 
71 /*
72  * Format the device name of the indicated disk into the supplied buffer and
73  * return a pointer to that same buffer for convenience.
74  */
75 char *disk_name(struct gendisk *hd, int partno, char *buf)
76 {
77 	if (!partno)
78 		snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
79 	else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
80 		snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
81 	else
82 		snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
83 
84 	return buf;
85 }
86 
87 const char *bdevname(struct block_device *bdev, char *buf)
88 {
89 	return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
90 }
91 EXPORT_SYMBOL(bdevname);
92 
93 static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
94 {
95 	int cpu;
96 
97 	memset(stat, 0, sizeof(struct disk_stats));
98 	for_each_possible_cpu(cpu) {
99 		struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu);
100 		int group;
101 
102 		for (group = 0; group < NR_STAT_GROUPS; group++) {
103 			stat->nsecs[group] += ptr->nsecs[group];
104 			stat->sectors[group] += ptr->sectors[group];
105 			stat->ios[group] += ptr->ios[group];
106 			stat->merges[group] += ptr->merges[group];
107 		}
108 
109 		stat->io_ticks += ptr->io_ticks;
110 	}
111 }
112 
113 static unsigned int part_in_flight(struct request_queue *q,
114 		struct hd_struct *part)
115 {
116 	unsigned int inflight = 0;
117 	int cpu;
118 
119 	for_each_possible_cpu(cpu) {
120 		inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
121 			    part_stat_local_read_cpu(part, in_flight[1], cpu);
122 	}
123 	if ((int)inflight < 0)
124 		inflight = 0;
125 
126 	return inflight;
127 }
128 
129 static void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130 		unsigned int inflight[2])
131 {
132 	int cpu;
133 
134 	inflight[0] = 0;
135 	inflight[1] = 0;
136 	for_each_possible_cpu(cpu) {
137 		inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
138 		inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
139 	}
140 	if ((int)inflight[0] < 0)
141 		inflight[0] = 0;
142 	if ((int)inflight[1] < 0)
143 		inflight[1] = 0;
144 }
145 
146 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
147 {
148 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
149 
150 	if (unlikely(partno < 0 || partno >= ptbl->len))
151 		return NULL;
152 	return rcu_dereference(ptbl->part[partno]);
153 }
154 
155 /**
156  * disk_get_part - get partition
157  * @disk: disk to look partition from
158  * @partno: partition number
159  *
160  * Look for partition @partno from @disk.  If found, increment
161  * reference count and return it.
162  *
163  * CONTEXT:
164  * Don't care.
165  *
166  * RETURNS:
167  * Pointer to the found partition on success, NULL if not found.
168  */
169 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
170 {
171 	struct hd_struct *part;
172 
173 	rcu_read_lock();
174 	part = __disk_get_part(disk, partno);
175 	if (part)
176 		get_device(part_to_dev(part));
177 	rcu_read_unlock();
178 
179 	return part;
180 }
181 
182 /**
183  * disk_part_iter_init - initialize partition iterator
184  * @piter: iterator to initialize
185  * @disk: disk to iterate over
186  * @flags: DISK_PITER_* flags
187  *
188  * Initialize @piter so that it iterates over partitions of @disk.
189  *
190  * CONTEXT:
191  * Don't care.
192  */
193 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
194 			  unsigned int flags)
195 {
196 	struct disk_part_tbl *ptbl;
197 
198 	rcu_read_lock();
199 	ptbl = rcu_dereference(disk->part_tbl);
200 
201 	piter->disk = disk;
202 	piter->part = NULL;
203 
204 	if (flags & DISK_PITER_REVERSE)
205 		piter->idx = ptbl->len - 1;
206 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
207 		piter->idx = 0;
208 	else
209 		piter->idx = 1;
210 
211 	piter->flags = flags;
212 
213 	rcu_read_unlock();
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_init);
216 
217 /**
218  * disk_part_iter_next - proceed iterator to the next partition and return it
219  * @piter: iterator of interest
220  *
221  * Proceed @piter to the next partition and return it.
222  *
223  * CONTEXT:
224  * Don't care.
225  */
226 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
227 {
228 	struct disk_part_tbl *ptbl;
229 	int inc, end;
230 
231 	/* put the last partition */
232 	disk_put_part(piter->part);
233 	piter->part = NULL;
234 
235 	/* get part_tbl */
236 	rcu_read_lock();
237 	ptbl = rcu_dereference(piter->disk->part_tbl);
238 
239 	/* determine iteration parameters */
240 	if (piter->flags & DISK_PITER_REVERSE) {
241 		inc = -1;
242 		if (piter->flags & (DISK_PITER_INCL_PART0 |
243 				    DISK_PITER_INCL_EMPTY_PART0))
244 			end = -1;
245 		else
246 			end = 0;
247 	} else {
248 		inc = 1;
249 		end = ptbl->len;
250 	}
251 
252 	/* iterate to the next partition */
253 	for (; piter->idx != end; piter->idx += inc) {
254 		struct hd_struct *part;
255 
256 		part = rcu_dereference(ptbl->part[piter->idx]);
257 		if (!part)
258 			continue;
259 		if (!part_nr_sects_read(part) &&
260 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
261 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
262 		      piter->idx == 0))
263 			continue;
264 
265 		get_device(part_to_dev(part));
266 		piter->part = part;
267 		piter->idx += inc;
268 		break;
269 	}
270 
271 	rcu_read_unlock();
272 
273 	return piter->part;
274 }
275 EXPORT_SYMBOL_GPL(disk_part_iter_next);
276 
277 /**
278  * disk_part_iter_exit - finish up partition iteration
279  * @piter: iter of interest
280  *
281  * Called when iteration is over.  Cleans up @piter.
282  *
283  * CONTEXT:
284  * Don't care.
285  */
286 void disk_part_iter_exit(struct disk_part_iter *piter)
287 {
288 	disk_put_part(piter->part);
289 	piter->part = NULL;
290 }
291 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
292 
293 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
294 {
295 	return part->start_sect <= sector &&
296 		sector < part->start_sect + part_nr_sects_read(part);
297 }
298 
299 /**
300  * disk_map_sector_rcu - map sector to partition
301  * @disk: gendisk of interest
302  * @sector: sector to map
303  *
304  * Find out which partition @sector maps to on @disk.  This is
305  * primarily used for stats accounting.
306  *
307  * CONTEXT:
308  * RCU read locked.  The returned partition pointer is always valid
309  * because its refcount is grabbed except for part0, which lifetime
310  * is same with the disk.
311  *
312  * RETURNS:
313  * Found partition on success, part0 is returned if no partition matches
314  * or the matched partition is being deleted.
315  */
316 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
317 {
318 	struct disk_part_tbl *ptbl;
319 	struct hd_struct *part;
320 	int i;
321 
322 	rcu_read_lock();
323 	ptbl = rcu_dereference(disk->part_tbl);
324 
325 	part = rcu_dereference(ptbl->last_lookup);
326 	if (part && sector_in_part(part, sector) && hd_struct_try_get(part))
327 		goto out_unlock;
328 
329 	for (i = 1; i < ptbl->len; i++) {
330 		part = rcu_dereference(ptbl->part[i]);
331 
332 		if (part && sector_in_part(part, sector)) {
333 			/*
334 			 * only live partition can be cached for lookup,
335 			 * so use-after-free on cached & deleting partition
336 			 * can be avoided
337 			 */
338 			if (!hd_struct_try_get(part))
339 				break;
340 			rcu_assign_pointer(ptbl->last_lookup, part);
341 			goto out_unlock;
342 		}
343 	}
344 
345 	part = &disk->part0;
346 out_unlock:
347 	rcu_read_unlock();
348 	return part;
349 }
350 
351 /**
352  * disk_has_partitions
353  * @disk: gendisk of interest
354  *
355  * Walk through the partition table and check if valid partition exists.
356  *
357  * CONTEXT:
358  * Don't care.
359  *
360  * RETURNS:
361  * True if the gendisk has at least one valid non-zero size partition.
362  * Otherwise false.
363  */
364 bool disk_has_partitions(struct gendisk *disk)
365 {
366 	struct disk_part_tbl *ptbl;
367 	int i;
368 	bool ret = false;
369 
370 	rcu_read_lock();
371 	ptbl = rcu_dereference(disk->part_tbl);
372 
373 	/* Iterate partitions skipping the whole device at index 0 */
374 	for (i = 1; i < ptbl->len; i++) {
375 		if (rcu_dereference(ptbl->part[i])) {
376 			ret = true;
377 			break;
378 		}
379 	}
380 
381 	rcu_read_unlock();
382 
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(disk_has_partitions);
386 
387 /*
388  * Can be deleted altogether. Later.
389  *
390  */
391 #define BLKDEV_MAJOR_HASH_SIZE 255
392 static struct blk_major_name {
393 	struct blk_major_name *next;
394 	int major;
395 	char name[16];
396 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
397 
398 /* index in the above - for now: assume no multimajor ranges */
399 static inline int major_to_index(unsigned major)
400 {
401 	return major % BLKDEV_MAJOR_HASH_SIZE;
402 }
403 
404 #ifdef CONFIG_PROC_FS
405 void blkdev_show(struct seq_file *seqf, off_t offset)
406 {
407 	struct blk_major_name *dp;
408 
409 	mutex_lock(&block_class_lock);
410 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
411 		if (dp->major == offset)
412 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
413 	mutex_unlock(&block_class_lock);
414 }
415 #endif /* CONFIG_PROC_FS */
416 
417 /**
418  * register_blkdev - register a new block device
419  *
420  * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
421  *         @major = 0, try to allocate any unused major number.
422  * @name: the name of the new block device as a zero terminated string
423  *
424  * The @name must be unique within the system.
425  *
426  * The return value depends on the @major input parameter:
427  *
428  *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
429  *    then the function returns zero on success, or a negative error code
430  *  - if any unused major number was requested with @major = 0 parameter
431  *    then the return value is the allocated major number in range
432  *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
433  *
434  * See Documentation/admin-guide/devices.txt for the list of allocated
435  * major numbers.
436  */
437 int register_blkdev(unsigned int major, const char *name)
438 {
439 	struct blk_major_name **n, *p;
440 	int index, ret = 0;
441 
442 	mutex_lock(&block_class_lock);
443 
444 	/* temporary */
445 	if (major == 0) {
446 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
447 			if (major_names[index] == NULL)
448 				break;
449 		}
450 
451 		if (index == 0) {
452 			printk("%s: failed to get major for %s\n",
453 			       __func__, name);
454 			ret = -EBUSY;
455 			goto out;
456 		}
457 		major = index;
458 		ret = major;
459 	}
460 
461 	if (major >= BLKDEV_MAJOR_MAX) {
462 		pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
463 		       __func__, major, BLKDEV_MAJOR_MAX-1, name);
464 
465 		ret = -EINVAL;
466 		goto out;
467 	}
468 
469 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
470 	if (p == NULL) {
471 		ret = -ENOMEM;
472 		goto out;
473 	}
474 
475 	p->major = major;
476 	strlcpy(p->name, name, sizeof(p->name));
477 	p->next = NULL;
478 	index = major_to_index(major);
479 
480 	for (n = &major_names[index]; *n; n = &(*n)->next) {
481 		if ((*n)->major == major)
482 			break;
483 	}
484 	if (!*n)
485 		*n = p;
486 	else
487 		ret = -EBUSY;
488 
489 	if (ret < 0) {
490 		printk("register_blkdev: cannot get major %u for %s\n",
491 		       major, name);
492 		kfree(p);
493 	}
494 out:
495 	mutex_unlock(&block_class_lock);
496 	return ret;
497 }
498 
499 EXPORT_SYMBOL(register_blkdev);
500 
501 void unregister_blkdev(unsigned int major, const char *name)
502 {
503 	struct blk_major_name **n;
504 	struct blk_major_name *p = NULL;
505 	int index = major_to_index(major);
506 
507 	mutex_lock(&block_class_lock);
508 	for (n = &major_names[index]; *n; n = &(*n)->next)
509 		if ((*n)->major == major)
510 			break;
511 	if (!*n || strcmp((*n)->name, name)) {
512 		WARN_ON(1);
513 	} else {
514 		p = *n;
515 		*n = p->next;
516 	}
517 	mutex_unlock(&block_class_lock);
518 	kfree(p);
519 }
520 
521 EXPORT_SYMBOL(unregister_blkdev);
522 
523 static struct kobj_map *bdev_map;
524 
525 /**
526  * blk_mangle_minor - scatter minor numbers apart
527  * @minor: minor number to mangle
528  *
529  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
530  * is enabled.  Mangling twice gives the original value.
531  *
532  * RETURNS:
533  * Mangled value.
534  *
535  * CONTEXT:
536  * Don't care.
537  */
538 static int blk_mangle_minor(int minor)
539 {
540 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
541 	int i;
542 
543 	for (i = 0; i < MINORBITS / 2; i++) {
544 		int low = minor & (1 << i);
545 		int high = minor & (1 << (MINORBITS - 1 - i));
546 		int distance = MINORBITS - 1 - 2 * i;
547 
548 		minor ^= low | high;	/* clear both bits */
549 		low <<= distance;	/* swap the positions */
550 		high >>= distance;
551 		minor |= low | high;	/* and set */
552 	}
553 #endif
554 	return minor;
555 }
556 
557 /**
558  * blk_alloc_devt - allocate a dev_t for a partition
559  * @part: partition to allocate dev_t for
560  * @devt: out parameter for resulting dev_t
561  *
562  * Allocate a dev_t for block device.
563  *
564  * RETURNS:
565  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
566  * failure.
567  *
568  * CONTEXT:
569  * Might sleep.
570  */
571 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
572 {
573 	struct gendisk *disk = part_to_disk(part);
574 	int idx;
575 
576 	/* in consecutive minor range? */
577 	if (part->partno < disk->minors) {
578 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
579 		return 0;
580 	}
581 
582 	/* allocate ext devt */
583 	idr_preload(GFP_KERNEL);
584 
585 	spin_lock_bh(&ext_devt_lock);
586 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
587 	spin_unlock_bh(&ext_devt_lock);
588 
589 	idr_preload_end();
590 	if (idx < 0)
591 		return idx == -ENOSPC ? -EBUSY : idx;
592 
593 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
594 	return 0;
595 }
596 
597 /**
598  * blk_free_devt - free a dev_t
599  * @devt: dev_t to free
600  *
601  * Free @devt which was allocated using blk_alloc_devt().
602  *
603  * CONTEXT:
604  * Might sleep.
605  */
606 void blk_free_devt(dev_t devt)
607 {
608 	if (devt == MKDEV(0, 0))
609 		return;
610 
611 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
612 		spin_lock_bh(&ext_devt_lock);
613 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
614 		spin_unlock_bh(&ext_devt_lock);
615 	}
616 }
617 
618 /*
619  * We invalidate devt by assigning NULL pointer for devt in idr.
620  */
621 void blk_invalidate_devt(dev_t devt)
622 {
623 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
624 		spin_lock_bh(&ext_devt_lock);
625 		idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
626 		spin_unlock_bh(&ext_devt_lock);
627 	}
628 }
629 
630 static char *bdevt_str(dev_t devt, char *buf)
631 {
632 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
633 		char tbuf[BDEVT_SIZE];
634 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
635 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
636 	} else
637 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
638 
639 	return buf;
640 }
641 
642 /*
643  * Register device numbers dev..(dev+range-1)
644  * range must be nonzero
645  * The hash chain is sorted on range, so that subranges can override.
646  */
647 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
648 			 struct kobject *(*probe)(dev_t, int *, void *),
649 			 int (*lock)(dev_t, void *), void *data)
650 {
651 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
652 }
653 
654 EXPORT_SYMBOL(blk_register_region);
655 
656 void blk_unregister_region(dev_t devt, unsigned long range)
657 {
658 	kobj_unmap(bdev_map, devt, range);
659 }
660 
661 EXPORT_SYMBOL(blk_unregister_region);
662 
663 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
664 {
665 	struct gendisk *p = data;
666 
667 	return &disk_to_dev(p)->kobj;
668 }
669 
670 static int exact_lock(dev_t devt, void *data)
671 {
672 	struct gendisk *p = data;
673 
674 	if (!get_disk_and_module(p))
675 		return -1;
676 	return 0;
677 }
678 
679 static void register_disk(struct device *parent, struct gendisk *disk,
680 			  const struct attribute_group **groups)
681 {
682 	struct device *ddev = disk_to_dev(disk);
683 	struct block_device *bdev;
684 	struct disk_part_iter piter;
685 	struct hd_struct *part;
686 	int err;
687 
688 	ddev->parent = parent;
689 
690 	dev_set_name(ddev, "%s", disk->disk_name);
691 
692 	/* delay uevents, until we scanned partition table */
693 	dev_set_uevent_suppress(ddev, 1);
694 
695 	if (groups) {
696 		WARN_ON(ddev->groups);
697 		ddev->groups = groups;
698 	}
699 	if (device_add(ddev))
700 		return;
701 	if (!sysfs_deprecated) {
702 		err = sysfs_create_link(block_depr, &ddev->kobj,
703 					kobject_name(&ddev->kobj));
704 		if (err) {
705 			device_del(ddev);
706 			return;
707 		}
708 	}
709 
710 	/*
711 	 * avoid probable deadlock caused by allocating memory with
712 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
713 	 * devices
714 	 */
715 	pm_runtime_set_memalloc_noio(ddev, true);
716 
717 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
718 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
719 
720 	if (disk->flags & GENHD_FL_HIDDEN) {
721 		dev_set_uevent_suppress(ddev, 0);
722 		return;
723 	}
724 
725 	/* No minors to use for partitions */
726 	if (!disk_part_scan_enabled(disk))
727 		goto exit;
728 
729 	/* No such device (e.g., media were just removed) */
730 	if (!get_capacity(disk))
731 		goto exit;
732 
733 	bdev = bdget_disk(disk, 0);
734 	if (!bdev)
735 		goto exit;
736 
737 	bdev->bd_invalidated = 1;
738 	err = blkdev_get(bdev, FMODE_READ, NULL);
739 	if (err < 0)
740 		goto exit;
741 	blkdev_put(bdev, FMODE_READ);
742 
743 exit:
744 	/* announce disk after possible partitions are created */
745 	dev_set_uevent_suppress(ddev, 0);
746 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
747 
748 	/* announce possible partitions */
749 	disk_part_iter_init(&piter, disk, 0);
750 	while ((part = disk_part_iter_next(&piter)))
751 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
752 	disk_part_iter_exit(&piter);
753 
754 	if (disk->queue->backing_dev_info->dev) {
755 		err = sysfs_create_link(&ddev->kobj,
756 			  &disk->queue->backing_dev_info->dev->kobj,
757 			  "bdi");
758 		WARN_ON(err);
759 	}
760 }
761 
762 /**
763  * __device_add_disk - add disk information to kernel list
764  * @parent: parent device for the disk
765  * @disk: per-device partitioning information
766  * @groups: Additional per-device sysfs groups
767  * @register_queue: register the queue if set to true
768  *
769  * This function registers the partitioning information in @disk
770  * with the kernel.
771  *
772  * FIXME: error handling
773  */
774 static void __device_add_disk(struct device *parent, struct gendisk *disk,
775 			      const struct attribute_group **groups,
776 			      bool register_queue)
777 {
778 	dev_t devt;
779 	int retval;
780 
781 	/*
782 	 * The disk queue should now be all set with enough information about
783 	 * the device for the elevator code to pick an adequate default
784 	 * elevator if one is needed, that is, for devices requesting queue
785 	 * registration.
786 	 */
787 	if (register_queue)
788 		elevator_init_mq(disk->queue);
789 
790 	/* minors == 0 indicates to use ext devt from part0 and should
791 	 * be accompanied with EXT_DEVT flag.  Make sure all
792 	 * parameters make sense.
793 	 */
794 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
795 	WARN_ON(!disk->minors &&
796 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
797 
798 	disk->flags |= GENHD_FL_UP;
799 
800 	retval = blk_alloc_devt(&disk->part0, &devt);
801 	if (retval) {
802 		WARN_ON(1);
803 		return;
804 	}
805 	disk->major = MAJOR(devt);
806 	disk->first_minor = MINOR(devt);
807 
808 	disk_alloc_events(disk);
809 
810 	if (disk->flags & GENHD_FL_HIDDEN) {
811 		/*
812 		 * Don't let hidden disks show up in /proc/partitions,
813 		 * and don't bother scanning for partitions either.
814 		 */
815 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
816 		disk->flags |= GENHD_FL_NO_PART_SCAN;
817 	} else {
818 		struct backing_dev_info *bdi = disk->queue->backing_dev_info;
819 		struct device *dev = disk_to_dev(disk);
820 		int ret;
821 
822 		/* Register BDI before referencing it from bdev */
823 		dev->devt = devt;
824 		ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt));
825 		WARN_ON(ret);
826 		bdi_set_owner(bdi, dev);
827 		blk_register_region(disk_devt(disk), disk->minors, NULL,
828 				    exact_match, exact_lock, disk);
829 	}
830 	register_disk(parent, disk, groups);
831 	if (register_queue)
832 		blk_register_queue(disk);
833 
834 	/*
835 	 * Take an extra ref on queue which will be put on disk_release()
836 	 * so that it sticks around as long as @disk is there.
837 	 */
838 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
839 
840 	disk_add_events(disk);
841 	blk_integrity_add(disk);
842 }
843 
844 void device_add_disk(struct device *parent, struct gendisk *disk,
845 		     const struct attribute_group **groups)
846 
847 {
848 	__device_add_disk(parent, disk, groups, true);
849 }
850 EXPORT_SYMBOL(device_add_disk);
851 
852 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
853 {
854 	__device_add_disk(parent, disk, NULL, false);
855 }
856 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
857 
858 static void invalidate_partition(struct gendisk *disk, int partno)
859 {
860 	struct block_device *bdev;
861 
862 	bdev = bdget_disk(disk, partno);
863 	if (!bdev)
864 		return;
865 
866 	fsync_bdev(bdev);
867 	__invalidate_device(bdev, true);
868 
869 	/*
870 	 * Unhash the bdev inode for this device so that it gets evicted as soon
871 	 * as last inode reference is dropped.
872 	 */
873 	remove_inode_hash(bdev->bd_inode);
874 	bdput(bdev);
875 }
876 
877 /**
878  * del_gendisk - remove the gendisk
879  * @disk: the struct gendisk to remove
880  *
881  * Removes the gendisk and all its associated resources. This deletes the
882  * partitions associated with the gendisk, and unregisters the associated
883  * request_queue.
884  *
885  * This is the counter to the respective __device_add_disk() call.
886  *
887  * The final removal of the struct gendisk happens when its refcount reaches 0
888  * with put_disk(), which should be called after del_gendisk(), if
889  * __device_add_disk() was used.
890  *
891  * Drivers exist which depend on the release of the gendisk to be synchronous,
892  * it should not be deferred.
893  *
894  * Context: can sleep
895  */
896 void del_gendisk(struct gendisk *disk)
897 {
898 	struct disk_part_iter piter;
899 	struct hd_struct *part;
900 
901 	might_sleep();
902 
903 	blk_integrity_del(disk);
904 	disk_del_events(disk);
905 
906 	/*
907 	 * Block lookups of the disk until all bdevs are unhashed and the
908 	 * disk is marked as dead (GENHD_FL_UP cleared).
909 	 */
910 	down_write(&disk->lookup_sem);
911 	/* invalidate stuff */
912 	disk_part_iter_init(&piter, disk,
913 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
914 	while ((part = disk_part_iter_next(&piter))) {
915 		invalidate_partition(disk, part->partno);
916 		delete_partition(disk, part);
917 	}
918 	disk_part_iter_exit(&piter);
919 
920 	invalidate_partition(disk, 0);
921 	set_capacity(disk, 0);
922 	disk->flags &= ~GENHD_FL_UP;
923 	up_write(&disk->lookup_sem);
924 
925 	if (!(disk->flags & GENHD_FL_HIDDEN))
926 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
927 	if (disk->queue) {
928 		/*
929 		 * Unregister bdi before releasing device numbers (as they can
930 		 * get reused and we'd get clashes in sysfs).
931 		 */
932 		if (!(disk->flags & GENHD_FL_HIDDEN))
933 			bdi_unregister(disk->queue->backing_dev_info);
934 		blk_unregister_queue(disk);
935 	} else {
936 		WARN_ON(1);
937 	}
938 
939 	if (!(disk->flags & GENHD_FL_HIDDEN))
940 		blk_unregister_region(disk_devt(disk), disk->minors);
941 	/*
942 	 * Remove gendisk pointer from idr so that it cannot be looked up
943 	 * while RCU period before freeing gendisk is running to prevent
944 	 * use-after-free issues. Note that the device number stays
945 	 * "in-use" until we really free the gendisk.
946 	 */
947 	blk_invalidate_devt(disk_devt(disk));
948 
949 	kobject_put(disk->part0.holder_dir);
950 	kobject_put(disk->slave_dir);
951 
952 	part_stat_set_all(&disk->part0, 0);
953 	disk->part0.stamp = 0;
954 	if (!sysfs_deprecated)
955 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
956 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
957 	device_del(disk_to_dev(disk));
958 }
959 EXPORT_SYMBOL(del_gendisk);
960 
961 /* sysfs access to bad-blocks list. */
962 static ssize_t disk_badblocks_show(struct device *dev,
963 					struct device_attribute *attr,
964 					char *page)
965 {
966 	struct gendisk *disk = dev_to_disk(dev);
967 
968 	if (!disk->bb)
969 		return sprintf(page, "\n");
970 
971 	return badblocks_show(disk->bb, page, 0);
972 }
973 
974 static ssize_t disk_badblocks_store(struct device *dev,
975 					struct device_attribute *attr,
976 					const char *page, size_t len)
977 {
978 	struct gendisk *disk = dev_to_disk(dev);
979 
980 	if (!disk->bb)
981 		return -ENXIO;
982 
983 	return badblocks_store(disk->bb, page, len, 0);
984 }
985 
986 /**
987  * get_gendisk - get partitioning information for a given device
988  * @devt: device to get partitioning information for
989  * @partno: returned partition index
990  *
991  * This function gets the structure containing partitioning
992  * information for the given device @devt.
993  *
994  * Context: can sleep
995  */
996 struct gendisk *get_gendisk(dev_t devt, int *partno)
997 {
998 	struct gendisk *disk = NULL;
999 
1000 	might_sleep();
1001 
1002 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
1003 		struct kobject *kobj;
1004 
1005 		kobj = kobj_lookup(bdev_map, devt, partno);
1006 		if (kobj)
1007 			disk = dev_to_disk(kobj_to_dev(kobj));
1008 	} else {
1009 		struct hd_struct *part;
1010 
1011 		spin_lock_bh(&ext_devt_lock);
1012 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
1013 		if (part && get_disk_and_module(part_to_disk(part))) {
1014 			*partno = part->partno;
1015 			disk = part_to_disk(part);
1016 		}
1017 		spin_unlock_bh(&ext_devt_lock);
1018 	}
1019 
1020 	if (!disk)
1021 		return NULL;
1022 
1023 	/*
1024 	 * Synchronize with del_gendisk() to not return disk that is being
1025 	 * destroyed.
1026 	 */
1027 	down_read(&disk->lookup_sem);
1028 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
1029 		     !(disk->flags & GENHD_FL_UP))) {
1030 		up_read(&disk->lookup_sem);
1031 		put_disk_and_module(disk);
1032 		disk = NULL;
1033 	} else {
1034 		up_read(&disk->lookup_sem);
1035 	}
1036 	return disk;
1037 }
1038 
1039 /**
1040  * bdget_disk - do bdget() by gendisk and partition number
1041  * @disk: gendisk of interest
1042  * @partno: partition number
1043  *
1044  * Find partition @partno from @disk, do bdget() on it.
1045  *
1046  * CONTEXT:
1047  * Don't care.
1048  *
1049  * RETURNS:
1050  * Resulting block_device on success, NULL on failure.
1051  */
1052 struct block_device *bdget_disk(struct gendisk *disk, int partno)
1053 {
1054 	struct hd_struct *part;
1055 	struct block_device *bdev = NULL;
1056 
1057 	part = disk_get_part(disk, partno);
1058 	if (part)
1059 		bdev = bdget(part_devt(part));
1060 	disk_put_part(part);
1061 
1062 	return bdev;
1063 }
1064 EXPORT_SYMBOL(bdget_disk);
1065 
1066 /*
1067  * print a full list of all partitions - intended for places where the root
1068  * filesystem can't be mounted and thus to give the victim some idea of what
1069  * went wrong
1070  */
1071 void __init printk_all_partitions(void)
1072 {
1073 	struct class_dev_iter iter;
1074 	struct device *dev;
1075 
1076 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1077 	while ((dev = class_dev_iter_next(&iter))) {
1078 		struct gendisk *disk = dev_to_disk(dev);
1079 		struct disk_part_iter piter;
1080 		struct hd_struct *part;
1081 		char name_buf[BDEVNAME_SIZE];
1082 		char devt_buf[BDEVT_SIZE];
1083 
1084 		/*
1085 		 * Don't show empty devices or things that have been
1086 		 * suppressed
1087 		 */
1088 		if (get_capacity(disk) == 0 ||
1089 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
1090 			continue;
1091 
1092 		/*
1093 		 * Note, unlike /proc/partitions, I am showing the
1094 		 * numbers in hex - the same format as the root=
1095 		 * option takes.
1096 		 */
1097 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
1098 		while ((part = disk_part_iter_next(&piter))) {
1099 			bool is_part0 = part == &disk->part0;
1100 
1101 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
1102 			       bdevt_str(part_devt(part), devt_buf),
1103 			       (unsigned long long)part_nr_sects_read(part) >> 1
1104 			       , disk_name(disk, part->partno, name_buf),
1105 			       part->info ? part->info->uuid : "");
1106 			if (is_part0) {
1107 				if (dev->parent && dev->parent->driver)
1108 					printk(" driver: %s\n",
1109 					      dev->parent->driver->name);
1110 				else
1111 					printk(" (driver?)\n");
1112 			} else
1113 				printk("\n");
1114 		}
1115 		disk_part_iter_exit(&piter);
1116 	}
1117 	class_dev_iter_exit(&iter);
1118 }
1119 
1120 #ifdef CONFIG_PROC_FS
1121 /* iterator */
1122 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
1123 {
1124 	loff_t skip = *pos;
1125 	struct class_dev_iter *iter;
1126 	struct device *dev;
1127 
1128 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1129 	if (!iter)
1130 		return ERR_PTR(-ENOMEM);
1131 
1132 	seqf->private = iter;
1133 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1134 	do {
1135 		dev = class_dev_iter_next(iter);
1136 		if (!dev)
1137 			return NULL;
1138 	} while (skip--);
1139 
1140 	return dev_to_disk(dev);
1141 }
1142 
1143 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1144 {
1145 	struct device *dev;
1146 
1147 	(*pos)++;
1148 	dev = class_dev_iter_next(seqf->private);
1149 	if (dev)
1150 		return dev_to_disk(dev);
1151 
1152 	return NULL;
1153 }
1154 
1155 static void disk_seqf_stop(struct seq_file *seqf, void *v)
1156 {
1157 	struct class_dev_iter *iter = seqf->private;
1158 
1159 	/* stop is called even after start failed :-( */
1160 	if (iter) {
1161 		class_dev_iter_exit(iter);
1162 		kfree(iter);
1163 		seqf->private = NULL;
1164 	}
1165 }
1166 
1167 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1168 {
1169 	void *p;
1170 
1171 	p = disk_seqf_start(seqf, pos);
1172 	if (!IS_ERR_OR_NULL(p) && !*pos)
1173 		seq_puts(seqf, "major minor  #blocks  name\n\n");
1174 	return p;
1175 }
1176 
1177 static int show_partition(struct seq_file *seqf, void *v)
1178 {
1179 	struct gendisk *sgp = v;
1180 	struct disk_part_iter piter;
1181 	struct hd_struct *part;
1182 	char buf[BDEVNAME_SIZE];
1183 
1184 	/* Don't show non-partitionable removeable devices or empty devices */
1185 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1186 				   (sgp->flags & GENHD_FL_REMOVABLE)))
1187 		return 0;
1188 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1189 		return 0;
1190 
1191 	/* show the full disk and all non-0 size partitions of it */
1192 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1193 	while ((part = disk_part_iter_next(&piter)))
1194 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1195 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1196 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1197 			   disk_name(sgp, part->partno, buf));
1198 	disk_part_iter_exit(&piter);
1199 
1200 	return 0;
1201 }
1202 
1203 static const struct seq_operations partitions_op = {
1204 	.start	= show_partition_start,
1205 	.next	= disk_seqf_next,
1206 	.stop	= disk_seqf_stop,
1207 	.show	= show_partition
1208 };
1209 #endif
1210 
1211 
1212 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1213 {
1214 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1215 		/* Make old-style 2.4 aliases work */
1216 		request_module("block-major-%d", MAJOR(devt));
1217 	return NULL;
1218 }
1219 
1220 static int __init genhd_device_init(void)
1221 {
1222 	int error;
1223 
1224 	block_class.dev_kobj = sysfs_dev_block_kobj;
1225 	error = class_register(&block_class);
1226 	if (unlikely(error))
1227 		return error;
1228 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1229 	blk_dev_init();
1230 
1231 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1232 
1233 	/* create top-level block dir */
1234 	if (!sysfs_deprecated)
1235 		block_depr = kobject_create_and_add("block", NULL);
1236 	return 0;
1237 }
1238 
1239 subsys_initcall(genhd_device_init);
1240 
1241 static ssize_t disk_range_show(struct device *dev,
1242 			       struct device_attribute *attr, char *buf)
1243 {
1244 	struct gendisk *disk = dev_to_disk(dev);
1245 
1246 	return sprintf(buf, "%d\n", disk->minors);
1247 }
1248 
1249 static ssize_t disk_ext_range_show(struct device *dev,
1250 				   struct device_attribute *attr, char *buf)
1251 {
1252 	struct gendisk *disk = dev_to_disk(dev);
1253 
1254 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1255 }
1256 
1257 static ssize_t disk_removable_show(struct device *dev,
1258 				   struct device_attribute *attr, char *buf)
1259 {
1260 	struct gendisk *disk = dev_to_disk(dev);
1261 
1262 	return sprintf(buf, "%d\n",
1263 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1264 }
1265 
1266 static ssize_t disk_hidden_show(struct device *dev,
1267 				   struct device_attribute *attr, char *buf)
1268 {
1269 	struct gendisk *disk = dev_to_disk(dev);
1270 
1271 	return sprintf(buf, "%d\n",
1272 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1273 }
1274 
1275 static ssize_t disk_ro_show(struct device *dev,
1276 				   struct device_attribute *attr, char *buf)
1277 {
1278 	struct gendisk *disk = dev_to_disk(dev);
1279 
1280 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1281 }
1282 
1283 ssize_t part_size_show(struct device *dev,
1284 		       struct device_attribute *attr, char *buf)
1285 {
1286 	struct hd_struct *p = dev_to_part(dev);
1287 
1288 	return sprintf(buf, "%llu\n",
1289 		(unsigned long long)part_nr_sects_read(p));
1290 }
1291 
1292 ssize_t part_stat_show(struct device *dev,
1293 		       struct device_attribute *attr, char *buf)
1294 {
1295 	struct hd_struct *p = dev_to_part(dev);
1296 	struct request_queue *q = part_to_disk(p)->queue;
1297 	struct disk_stats stat;
1298 	unsigned int inflight;
1299 
1300 	part_stat_read_all(p, &stat);
1301 	if (queue_is_mq(q))
1302 		inflight = blk_mq_in_flight(q, p);
1303 	else
1304 		inflight = part_in_flight(q, p);
1305 
1306 	return sprintf(buf,
1307 		"%8lu %8lu %8llu %8u "
1308 		"%8lu %8lu %8llu %8u "
1309 		"%8u %8u %8u "
1310 		"%8lu %8lu %8llu %8u "
1311 		"%8lu %8u"
1312 		"\n",
1313 		stat.ios[STAT_READ],
1314 		stat.merges[STAT_READ],
1315 		(unsigned long long)stat.sectors[STAT_READ],
1316 		(unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
1317 		stat.ios[STAT_WRITE],
1318 		stat.merges[STAT_WRITE],
1319 		(unsigned long long)stat.sectors[STAT_WRITE],
1320 		(unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
1321 		inflight,
1322 		jiffies_to_msecs(stat.io_ticks),
1323 		(unsigned int)div_u64(stat.nsecs[STAT_READ] +
1324 				      stat.nsecs[STAT_WRITE] +
1325 				      stat.nsecs[STAT_DISCARD] +
1326 				      stat.nsecs[STAT_FLUSH],
1327 						NSEC_PER_MSEC),
1328 		stat.ios[STAT_DISCARD],
1329 		stat.merges[STAT_DISCARD],
1330 		(unsigned long long)stat.sectors[STAT_DISCARD],
1331 		(unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
1332 		stat.ios[STAT_FLUSH],
1333 		(unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
1334 }
1335 
1336 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
1337 			   char *buf)
1338 {
1339 	struct hd_struct *p = dev_to_part(dev);
1340 	struct request_queue *q = part_to_disk(p)->queue;
1341 	unsigned int inflight[2];
1342 
1343 	if (queue_is_mq(q))
1344 		blk_mq_in_flight_rw(q, p, inflight);
1345 	else
1346 		part_in_flight_rw(q, p, inflight);
1347 
1348 	return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
1349 }
1350 
1351 static ssize_t disk_capability_show(struct device *dev,
1352 				    struct device_attribute *attr, char *buf)
1353 {
1354 	struct gendisk *disk = dev_to_disk(dev);
1355 
1356 	return sprintf(buf, "%x\n", disk->flags);
1357 }
1358 
1359 static ssize_t disk_alignment_offset_show(struct device *dev,
1360 					  struct device_attribute *attr,
1361 					  char *buf)
1362 {
1363 	struct gendisk *disk = dev_to_disk(dev);
1364 
1365 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1366 }
1367 
1368 static ssize_t disk_discard_alignment_show(struct device *dev,
1369 					   struct device_attribute *attr,
1370 					   char *buf)
1371 {
1372 	struct gendisk *disk = dev_to_disk(dev);
1373 
1374 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1375 }
1376 
1377 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1378 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1379 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1380 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1381 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1382 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1383 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1384 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1385 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1386 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1387 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1388 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1389 
1390 #ifdef CONFIG_FAIL_MAKE_REQUEST
1391 ssize_t part_fail_show(struct device *dev,
1392 		       struct device_attribute *attr, char *buf)
1393 {
1394 	struct hd_struct *p = dev_to_part(dev);
1395 
1396 	return sprintf(buf, "%d\n", p->make_it_fail);
1397 }
1398 
1399 ssize_t part_fail_store(struct device *dev,
1400 			struct device_attribute *attr,
1401 			const char *buf, size_t count)
1402 {
1403 	struct hd_struct *p = dev_to_part(dev);
1404 	int i;
1405 
1406 	if (count > 0 && sscanf(buf, "%d", &i) > 0)
1407 		p->make_it_fail = (i == 0) ? 0 : 1;
1408 
1409 	return count;
1410 }
1411 
1412 static struct device_attribute dev_attr_fail =
1413 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1414 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1415 
1416 #ifdef CONFIG_FAIL_IO_TIMEOUT
1417 static struct device_attribute dev_attr_fail_timeout =
1418 	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1419 #endif
1420 
1421 static struct attribute *disk_attrs[] = {
1422 	&dev_attr_range.attr,
1423 	&dev_attr_ext_range.attr,
1424 	&dev_attr_removable.attr,
1425 	&dev_attr_hidden.attr,
1426 	&dev_attr_ro.attr,
1427 	&dev_attr_size.attr,
1428 	&dev_attr_alignment_offset.attr,
1429 	&dev_attr_discard_alignment.attr,
1430 	&dev_attr_capability.attr,
1431 	&dev_attr_stat.attr,
1432 	&dev_attr_inflight.attr,
1433 	&dev_attr_badblocks.attr,
1434 #ifdef CONFIG_FAIL_MAKE_REQUEST
1435 	&dev_attr_fail.attr,
1436 #endif
1437 #ifdef CONFIG_FAIL_IO_TIMEOUT
1438 	&dev_attr_fail_timeout.attr,
1439 #endif
1440 	NULL
1441 };
1442 
1443 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1444 {
1445 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1446 	struct gendisk *disk = dev_to_disk(dev);
1447 
1448 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1449 		return 0;
1450 	return a->mode;
1451 }
1452 
1453 static struct attribute_group disk_attr_group = {
1454 	.attrs = disk_attrs,
1455 	.is_visible = disk_visible,
1456 };
1457 
1458 static const struct attribute_group *disk_attr_groups[] = {
1459 	&disk_attr_group,
1460 	NULL
1461 };
1462 
1463 /**
1464  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1465  * @disk: disk to replace part_tbl for
1466  * @new_ptbl: new part_tbl to install
1467  *
1468  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1469  * original ptbl is freed using RCU callback.
1470  *
1471  * LOCKING:
1472  * Matching bd_mutex locked or the caller is the only user of @disk.
1473  */
1474 static void disk_replace_part_tbl(struct gendisk *disk,
1475 				  struct disk_part_tbl *new_ptbl)
1476 {
1477 	struct disk_part_tbl *old_ptbl =
1478 		rcu_dereference_protected(disk->part_tbl, 1);
1479 
1480 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1481 
1482 	if (old_ptbl) {
1483 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1484 		kfree_rcu(old_ptbl, rcu_head);
1485 	}
1486 }
1487 
1488 /**
1489  * disk_expand_part_tbl - expand disk->part_tbl
1490  * @disk: disk to expand part_tbl for
1491  * @partno: expand such that this partno can fit in
1492  *
1493  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1494  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1495  *
1496  * LOCKING:
1497  * Matching bd_mutex locked or the caller is the only user of @disk.
1498  * Might sleep.
1499  *
1500  * RETURNS:
1501  * 0 on success, -errno on failure.
1502  */
1503 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1504 {
1505 	struct disk_part_tbl *old_ptbl =
1506 		rcu_dereference_protected(disk->part_tbl, 1);
1507 	struct disk_part_tbl *new_ptbl;
1508 	int len = old_ptbl ? old_ptbl->len : 0;
1509 	int i, target;
1510 
1511 	/*
1512 	 * check for int overflow, since we can get here from blkpg_ioctl()
1513 	 * with a user passed 'partno'.
1514 	 */
1515 	target = partno + 1;
1516 	if (target < 0)
1517 		return -EINVAL;
1518 
1519 	/* disk_max_parts() is zero during initialization, ignore if so */
1520 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1521 		return -EINVAL;
1522 
1523 	if (target <= len)
1524 		return 0;
1525 
1526 	new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1527 				disk->node_id);
1528 	if (!new_ptbl)
1529 		return -ENOMEM;
1530 
1531 	new_ptbl->len = target;
1532 
1533 	for (i = 0; i < len; i++)
1534 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1535 
1536 	disk_replace_part_tbl(disk, new_ptbl);
1537 	return 0;
1538 }
1539 
1540 /**
1541  * disk_release - releases all allocated resources of the gendisk
1542  * @dev: the device representing this disk
1543  *
1544  * This function releases all allocated resources of the gendisk.
1545  *
1546  * The struct gendisk refcount is incremented with get_gendisk() or
1547  * get_disk_and_module(), and its refcount is decremented with
1548  * put_disk_and_module() or put_disk(). Once the refcount reaches 0 this
1549  * function is called.
1550  *
1551  * Drivers which used __device_add_disk() have a gendisk with a request_queue
1552  * assigned. Since the request_queue sits on top of the gendisk for these
1553  * drivers we also call blk_put_queue() for them, and we expect the
1554  * request_queue refcount to reach 0 at this point, and so the request_queue
1555  * will also be freed prior to the disk.
1556  *
1557  * Context: can sleep
1558  */
1559 static void disk_release(struct device *dev)
1560 {
1561 	struct gendisk *disk = dev_to_disk(dev);
1562 
1563 	might_sleep();
1564 
1565 	blk_free_devt(dev->devt);
1566 	disk_release_events(disk);
1567 	kfree(disk->random);
1568 	disk_replace_part_tbl(disk, NULL);
1569 	hd_free_part(&disk->part0);
1570 	if (disk->queue)
1571 		blk_put_queue(disk->queue);
1572 	kfree(disk);
1573 }
1574 struct class block_class = {
1575 	.name		= "block",
1576 };
1577 
1578 static char *block_devnode(struct device *dev, umode_t *mode,
1579 			   kuid_t *uid, kgid_t *gid)
1580 {
1581 	struct gendisk *disk = dev_to_disk(dev);
1582 
1583 	if (disk->fops->devnode)
1584 		return disk->fops->devnode(disk, mode);
1585 	return NULL;
1586 }
1587 
1588 const struct device_type disk_type = {
1589 	.name		= "disk",
1590 	.groups		= disk_attr_groups,
1591 	.release	= disk_release,
1592 	.devnode	= block_devnode,
1593 };
1594 
1595 #ifdef CONFIG_PROC_FS
1596 /*
1597  * aggregate disk stat collector.  Uses the same stats that the sysfs
1598  * entries do, above, but makes them available through one seq_file.
1599  *
1600  * The output looks suspiciously like /proc/partitions with a bunch of
1601  * extra fields.
1602  */
1603 static int diskstats_show(struct seq_file *seqf, void *v)
1604 {
1605 	struct gendisk *gp = v;
1606 	struct disk_part_iter piter;
1607 	struct hd_struct *hd;
1608 	char buf[BDEVNAME_SIZE];
1609 	unsigned int inflight;
1610 	struct disk_stats stat;
1611 
1612 	/*
1613 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1614 		seq_puts(seqf,	"major minor name"
1615 				"     rio rmerge rsect ruse wio wmerge "
1616 				"wsect wuse running use aveq"
1617 				"\n\n");
1618 	*/
1619 
1620 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1621 	while ((hd = disk_part_iter_next(&piter))) {
1622 		part_stat_read_all(hd, &stat);
1623 		if (queue_is_mq(gp->queue))
1624 			inflight = blk_mq_in_flight(gp->queue, hd);
1625 		else
1626 			inflight = part_in_flight(gp->queue, hd);
1627 
1628 		seq_printf(seqf, "%4d %7d %s "
1629 			   "%lu %lu %lu %u "
1630 			   "%lu %lu %lu %u "
1631 			   "%u %u %u "
1632 			   "%lu %lu %lu %u "
1633 			   "%lu %u"
1634 			   "\n",
1635 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1636 			   disk_name(gp, hd->partno, buf),
1637 			   stat.ios[STAT_READ],
1638 			   stat.merges[STAT_READ],
1639 			   stat.sectors[STAT_READ],
1640 			   (unsigned int)div_u64(stat.nsecs[STAT_READ],
1641 							NSEC_PER_MSEC),
1642 			   stat.ios[STAT_WRITE],
1643 			   stat.merges[STAT_WRITE],
1644 			   stat.sectors[STAT_WRITE],
1645 			   (unsigned int)div_u64(stat.nsecs[STAT_WRITE],
1646 							NSEC_PER_MSEC),
1647 			   inflight,
1648 			   jiffies_to_msecs(stat.io_ticks),
1649 			   (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1650 						 stat.nsecs[STAT_WRITE] +
1651 						 stat.nsecs[STAT_DISCARD] +
1652 						 stat.nsecs[STAT_FLUSH],
1653 							NSEC_PER_MSEC),
1654 			   stat.ios[STAT_DISCARD],
1655 			   stat.merges[STAT_DISCARD],
1656 			   stat.sectors[STAT_DISCARD],
1657 			   (unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
1658 						 NSEC_PER_MSEC),
1659 			   stat.ios[STAT_FLUSH],
1660 			   (unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
1661 						 NSEC_PER_MSEC)
1662 			);
1663 	}
1664 	disk_part_iter_exit(&piter);
1665 
1666 	return 0;
1667 }
1668 
1669 static const struct seq_operations diskstats_op = {
1670 	.start	= disk_seqf_start,
1671 	.next	= disk_seqf_next,
1672 	.stop	= disk_seqf_stop,
1673 	.show	= diskstats_show
1674 };
1675 
1676 static int __init proc_genhd_init(void)
1677 {
1678 	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1679 	proc_create_seq("partitions", 0, NULL, &partitions_op);
1680 	return 0;
1681 }
1682 module_init(proc_genhd_init);
1683 #endif /* CONFIG_PROC_FS */
1684 
1685 dev_t blk_lookup_devt(const char *name, int partno)
1686 {
1687 	dev_t devt = MKDEV(0, 0);
1688 	struct class_dev_iter iter;
1689 	struct device *dev;
1690 
1691 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1692 	while ((dev = class_dev_iter_next(&iter))) {
1693 		struct gendisk *disk = dev_to_disk(dev);
1694 		struct hd_struct *part;
1695 
1696 		if (strcmp(dev_name(dev), name))
1697 			continue;
1698 
1699 		if (partno < disk->minors) {
1700 			/* We need to return the right devno, even
1701 			 * if the partition doesn't exist yet.
1702 			 */
1703 			devt = MKDEV(MAJOR(dev->devt),
1704 				     MINOR(dev->devt) + partno);
1705 			break;
1706 		}
1707 		part = disk_get_part(disk, partno);
1708 		if (part) {
1709 			devt = part_devt(part);
1710 			disk_put_part(part);
1711 			break;
1712 		}
1713 		disk_put_part(part);
1714 	}
1715 	class_dev_iter_exit(&iter);
1716 	return devt;
1717 }
1718 
1719 struct gendisk *__alloc_disk_node(int minors, int node_id)
1720 {
1721 	struct gendisk *disk;
1722 	struct disk_part_tbl *ptbl;
1723 
1724 	if (minors > DISK_MAX_PARTS) {
1725 		printk(KERN_ERR
1726 			"block: can't allocate more than %d partitions\n",
1727 			DISK_MAX_PARTS);
1728 		minors = DISK_MAX_PARTS;
1729 	}
1730 
1731 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1732 	if (disk) {
1733 		disk->part0.dkstats = alloc_percpu(struct disk_stats);
1734 		if (!disk->part0.dkstats) {
1735 			kfree(disk);
1736 			return NULL;
1737 		}
1738 		init_rwsem(&disk->lookup_sem);
1739 		disk->node_id = node_id;
1740 		if (disk_expand_part_tbl(disk, 0)) {
1741 			free_percpu(disk->part0.dkstats);
1742 			kfree(disk);
1743 			return NULL;
1744 		}
1745 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1746 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1747 
1748 		/*
1749 		 * set_capacity() and get_capacity() currently don't use
1750 		 * seqcounter to read/update the part0->nr_sects. Still init
1751 		 * the counter as we can read the sectors in IO submission
1752 		 * patch using seqence counters.
1753 		 *
1754 		 * TODO: Ideally set_capacity() and get_capacity() should be
1755 		 * converted to make use of bd_mutex and sequence counters.
1756 		 */
1757 		hd_sects_seq_init(&disk->part0);
1758 		if (hd_ref_init(&disk->part0)) {
1759 			hd_free_part(&disk->part0);
1760 			kfree(disk);
1761 			return NULL;
1762 		}
1763 
1764 		disk->minors = minors;
1765 		rand_initialize_disk(disk);
1766 		disk_to_dev(disk)->class = &block_class;
1767 		disk_to_dev(disk)->type = &disk_type;
1768 		device_initialize(disk_to_dev(disk));
1769 	}
1770 	return disk;
1771 }
1772 EXPORT_SYMBOL(__alloc_disk_node);
1773 
1774 /**
1775  * get_disk_and_module - increments the gendisk and gendisk fops module refcount
1776  * @disk: the struct gendisk to increment the refcount for
1777  *
1778  * This increments the refcount for the struct gendisk, and the gendisk's
1779  * fops module owner.
1780  *
1781  * Context: Any context.
1782  */
1783 struct kobject *get_disk_and_module(struct gendisk *disk)
1784 {
1785 	struct module *owner;
1786 	struct kobject *kobj;
1787 
1788 	if (!disk->fops)
1789 		return NULL;
1790 	owner = disk->fops->owner;
1791 	if (owner && !try_module_get(owner))
1792 		return NULL;
1793 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1794 	if (kobj == NULL) {
1795 		module_put(owner);
1796 		return NULL;
1797 	}
1798 	return kobj;
1799 
1800 }
1801 EXPORT_SYMBOL(get_disk_and_module);
1802 
1803 /**
1804  * put_disk - decrements the gendisk refcount
1805  * @disk: the struct gendisk to decrement the refcount for
1806  *
1807  * This decrements the refcount for the struct gendisk. When this reaches 0
1808  * we'll have disk_release() called.
1809  *
1810  * Context: Any context, but the last reference must not be dropped from
1811  *          atomic context.
1812  */
1813 void put_disk(struct gendisk *disk)
1814 {
1815 	if (disk)
1816 		kobject_put(&disk_to_dev(disk)->kobj);
1817 }
1818 EXPORT_SYMBOL(put_disk);
1819 
1820 /**
1821  * put_disk_and_module - decrements the module and gendisk refcount
1822  * @disk: the struct gendisk to decrement the refcount for
1823  *
1824  * This is a counterpart of get_disk_and_module() and thus also of
1825  * get_gendisk().
1826  *
1827  * Context: Any context, but the last reference must not be dropped from
1828  *          atomic context.
1829  */
1830 void put_disk_and_module(struct gendisk *disk)
1831 {
1832 	if (disk) {
1833 		struct module *owner = disk->fops->owner;
1834 
1835 		put_disk(disk);
1836 		module_put(owner);
1837 	}
1838 }
1839 EXPORT_SYMBOL(put_disk_and_module);
1840 
1841 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1842 {
1843 	char event[] = "DISK_RO=1";
1844 	char *envp[] = { event, NULL };
1845 
1846 	if (!ro)
1847 		event[8] = '0';
1848 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1849 }
1850 
1851 void set_device_ro(struct block_device *bdev, int flag)
1852 {
1853 	bdev->bd_part->policy = flag;
1854 }
1855 
1856 EXPORT_SYMBOL(set_device_ro);
1857 
1858 void set_disk_ro(struct gendisk *disk, int flag)
1859 {
1860 	struct disk_part_iter piter;
1861 	struct hd_struct *part;
1862 
1863 	if (disk->part0.policy != flag) {
1864 		set_disk_ro_uevent(disk, flag);
1865 		disk->part0.policy = flag;
1866 	}
1867 
1868 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1869 	while ((part = disk_part_iter_next(&piter)))
1870 		part->policy = flag;
1871 	disk_part_iter_exit(&piter);
1872 }
1873 
1874 EXPORT_SYMBOL(set_disk_ro);
1875 
1876 int bdev_read_only(struct block_device *bdev)
1877 {
1878 	if (!bdev)
1879 		return 0;
1880 	return bdev->bd_part->policy;
1881 }
1882 
1883 EXPORT_SYMBOL(bdev_read_only);
1884 
1885 /*
1886  * Disk events - monitor disk events like media change and eject request.
1887  */
1888 struct disk_events {
1889 	struct list_head	node;		/* all disk_event's */
1890 	struct gendisk		*disk;		/* the associated disk */
1891 	spinlock_t		lock;
1892 
1893 	struct mutex		block_mutex;	/* protects blocking */
1894 	int			block;		/* event blocking depth */
1895 	unsigned int		pending;	/* events already sent out */
1896 	unsigned int		clearing;	/* events being cleared */
1897 
1898 	long			poll_msecs;	/* interval, -1 for default */
1899 	struct delayed_work	dwork;
1900 };
1901 
1902 static const char *disk_events_strs[] = {
1903 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1904 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1905 };
1906 
1907 static char *disk_uevents[] = {
1908 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1909 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1910 };
1911 
1912 /* list of all disk_events */
1913 static DEFINE_MUTEX(disk_events_mutex);
1914 static LIST_HEAD(disk_events);
1915 
1916 /* disable in-kernel polling by default */
1917 static unsigned long disk_events_dfl_poll_msecs;
1918 
1919 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1920 {
1921 	struct disk_events *ev = disk->ev;
1922 	long intv_msecs = 0;
1923 
1924 	/*
1925 	 * If device-specific poll interval is set, always use it.  If
1926 	 * the default is being used, poll if the POLL flag is set.
1927 	 */
1928 	if (ev->poll_msecs >= 0)
1929 		intv_msecs = ev->poll_msecs;
1930 	else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1931 		intv_msecs = disk_events_dfl_poll_msecs;
1932 
1933 	return msecs_to_jiffies(intv_msecs);
1934 }
1935 
1936 /**
1937  * disk_block_events - block and flush disk event checking
1938  * @disk: disk to block events for
1939  *
1940  * On return from this function, it is guaranteed that event checking
1941  * isn't in progress and won't happen until unblocked by
1942  * disk_unblock_events().  Events blocking is counted and the actual
1943  * unblocking happens after the matching number of unblocks are done.
1944  *
1945  * Note that this intentionally does not block event checking from
1946  * disk_clear_events().
1947  *
1948  * CONTEXT:
1949  * Might sleep.
1950  */
1951 void disk_block_events(struct gendisk *disk)
1952 {
1953 	struct disk_events *ev = disk->ev;
1954 	unsigned long flags;
1955 	bool cancel;
1956 
1957 	if (!ev)
1958 		return;
1959 
1960 	/*
1961 	 * Outer mutex ensures that the first blocker completes canceling
1962 	 * the event work before further blockers are allowed to finish.
1963 	 */
1964 	mutex_lock(&ev->block_mutex);
1965 
1966 	spin_lock_irqsave(&ev->lock, flags);
1967 	cancel = !ev->block++;
1968 	spin_unlock_irqrestore(&ev->lock, flags);
1969 
1970 	if (cancel)
1971 		cancel_delayed_work_sync(&disk->ev->dwork);
1972 
1973 	mutex_unlock(&ev->block_mutex);
1974 }
1975 
1976 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1977 {
1978 	struct disk_events *ev = disk->ev;
1979 	unsigned long intv;
1980 	unsigned long flags;
1981 
1982 	spin_lock_irqsave(&ev->lock, flags);
1983 
1984 	if (WARN_ON_ONCE(ev->block <= 0))
1985 		goto out_unlock;
1986 
1987 	if (--ev->block)
1988 		goto out_unlock;
1989 
1990 	intv = disk_events_poll_jiffies(disk);
1991 	if (check_now)
1992 		queue_delayed_work(system_freezable_power_efficient_wq,
1993 				&ev->dwork, 0);
1994 	else if (intv)
1995 		queue_delayed_work(system_freezable_power_efficient_wq,
1996 				&ev->dwork, intv);
1997 out_unlock:
1998 	spin_unlock_irqrestore(&ev->lock, flags);
1999 }
2000 
2001 /**
2002  * disk_unblock_events - unblock disk event checking
2003  * @disk: disk to unblock events for
2004  *
2005  * Undo disk_block_events().  When the block count reaches zero, it
2006  * starts events polling if configured.
2007  *
2008  * CONTEXT:
2009  * Don't care.  Safe to call from irq context.
2010  */
2011 void disk_unblock_events(struct gendisk *disk)
2012 {
2013 	if (disk->ev)
2014 		__disk_unblock_events(disk, false);
2015 }
2016 
2017 /**
2018  * disk_flush_events - schedule immediate event checking and flushing
2019  * @disk: disk to check and flush events for
2020  * @mask: events to flush
2021  *
2022  * Schedule immediate event checking on @disk if not blocked.  Events in
2023  * @mask are scheduled to be cleared from the driver.  Note that this
2024  * doesn't clear the events from @disk->ev.
2025  *
2026  * CONTEXT:
2027  * If @mask is non-zero must be called with bdev->bd_mutex held.
2028  */
2029 void disk_flush_events(struct gendisk *disk, unsigned int mask)
2030 {
2031 	struct disk_events *ev = disk->ev;
2032 
2033 	if (!ev)
2034 		return;
2035 
2036 	spin_lock_irq(&ev->lock);
2037 	ev->clearing |= mask;
2038 	if (!ev->block)
2039 		mod_delayed_work(system_freezable_power_efficient_wq,
2040 				&ev->dwork, 0);
2041 	spin_unlock_irq(&ev->lock);
2042 }
2043 
2044 /**
2045  * disk_clear_events - synchronously check, clear and return pending events
2046  * @disk: disk to fetch and clear events from
2047  * @mask: mask of events to be fetched and cleared
2048  *
2049  * Disk events are synchronously checked and pending events in @mask
2050  * are cleared and returned.  This ignores the block count.
2051  *
2052  * CONTEXT:
2053  * Might sleep.
2054  */
2055 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
2056 {
2057 	struct disk_events *ev = disk->ev;
2058 	unsigned int pending;
2059 	unsigned int clearing = mask;
2060 
2061 	if (!ev)
2062 		return 0;
2063 
2064 	disk_block_events(disk);
2065 
2066 	/*
2067 	 * store the union of mask and ev->clearing on the stack so that the
2068 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
2069 	 * can still be modified even if events are blocked).
2070 	 */
2071 	spin_lock_irq(&ev->lock);
2072 	clearing |= ev->clearing;
2073 	ev->clearing = 0;
2074 	spin_unlock_irq(&ev->lock);
2075 
2076 	disk_check_events(ev, &clearing);
2077 	/*
2078 	 * if ev->clearing is not 0, the disk_flush_events got called in the
2079 	 * middle of this function, so we want to run the workfn without delay.
2080 	 */
2081 	__disk_unblock_events(disk, ev->clearing ? true : false);
2082 
2083 	/* then, fetch and clear pending events */
2084 	spin_lock_irq(&ev->lock);
2085 	pending = ev->pending & mask;
2086 	ev->pending &= ~mask;
2087 	spin_unlock_irq(&ev->lock);
2088 	WARN_ON_ONCE(clearing & mask);
2089 
2090 	return pending;
2091 }
2092 
2093 /*
2094  * Separate this part out so that a different pointer for clearing_ptr can be
2095  * passed in for disk_clear_events.
2096  */
2097 static void disk_events_workfn(struct work_struct *work)
2098 {
2099 	struct delayed_work *dwork = to_delayed_work(work);
2100 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
2101 
2102 	disk_check_events(ev, &ev->clearing);
2103 }
2104 
2105 static void disk_check_events(struct disk_events *ev,
2106 			      unsigned int *clearing_ptr)
2107 {
2108 	struct gendisk *disk = ev->disk;
2109 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
2110 	unsigned int clearing = *clearing_ptr;
2111 	unsigned int events;
2112 	unsigned long intv;
2113 	int nr_events = 0, i;
2114 
2115 	/* check events */
2116 	events = disk->fops->check_events(disk, clearing);
2117 
2118 	/* accumulate pending events and schedule next poll if necessary */
2119 	spin_lock_irq(&ev->lock);
2120 
2121 	events &= ~ev->pending;
2122 	ev->pending |= events;
2123 	*clearing_ptr &= ~clearing;
2124 
2125 	intv = disk_events_poll_jiffies(disk);
2126 	if (!ev->block && intv)
2127 		queue_delayed_work(system_freezable_power_efficient_wq,
2128 				&ev->dwork, intv);
2129 
2130 	spin_unlock_irq(&ev->lock);
2131 
2132 	/*
2133 	 * Tell userland about new events.  Only the events listed in
2134 	 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
2135 	 * is set. Otherwise, events are processed internally but never
2136 	 * get reported to userland.
2137 	 */
2138 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
2139 		if ((events & disk->events & (1 << i)) &&
2140 		    (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2141 			envp[nr_events++] = disk_uevents[i];
2142 
2143 	if (nr_events)
2144 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
2145 }
2146 
2147 /*
2148  * A disk events enabled device has the following sysfs nodes under
2149  * its /sys/block/X/ directory.
2150  *
2151  * events		: list of all supported events
2152  * events_async		: list of events which can be detected w/o polling
2153  *			  (always empty, only for backwards compatibility)
2154  * events_poll_msecs	: polling interval, 0: disable, -1: system default
2155  */
2156 static ssize_t __disk_events_show(unsigned int events, char *buf)
2157 {
2158 	const char *delim = "";
2159 	ssize_t pos = 0;
2160 	int i;
2161 
2162 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
2163 		if (events & (1 << i)) {
2164 			pos += sprintf(buf + pos, "%s%s",
2165 				       delim, disk_events_strs[i]);
2166 			delim = " ";
2167 		}
2168 	if (pos)
2169 		pos += sprintf(buf + pos, "\n");
2170 	return pos;
2171 }
2172 
2173 static ssize_t disk_events_show(struct device *dev,
2174 				struct device_attribute *attr, char *buf)
2175 {
2176 	struct gendisk *disk = dev_to_disk(dev);
2177 
2178 	if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2179 		return 0;
2180 
2181 	return __disk_events_show(disk->events, buf);
2182 }
2183 
2184 static ssize_t disk_events_async_show(struct device *dev,
2185 				      struct device_attribute *attr, char *buf)
2186 {
2187 	return 0;
2188 }
2189 
2190 static ssize_t disk_events_poll_msecs_show(struct device *dev,
2191 					   struct device_attribute *attr,
2192 					   char *buf)
2193 {
2194 	struct gendisk *disk = dev_to_disk(dev);
2195 
2196 	if (!disk->ev)
2197 		return sprintf(buf, "-1\n");
2198 
2199 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
2200 }
2201 
2202 static ssize_t disk_events_poll_msecs_store(struct device *dev,
2203 					    struct device_attribute *attr,
2204 					    const char *buf, size_t count)
2205 {
2206 	struct gendisk *disk = dev_to_disk(dev);
2207 	long intv;
2208 
2209 	if (!count || !sscanf(buf, "%ld", &intv))
2210 		return -EINVAL;
2211 
2212 	if (intv < 0 && intv != -1)
2213 		return -EINVAL;
2214 
2215 	if (!disk->ev)
2216 		return -ENODEV;
2217 
2218 	disk_block_events(disk);
2219 	disk->ev->poll_msecs = intv;
2220 	__disk_unblock_events(disk, true);
2221 
2222 	return count;
2223 }
2224 
2225 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
2226 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
2227 static const DEVICE_ATTR(events_poll_msecs, 0644,
2228 			 disk_events_poll_msecs_show,
2229 			 disk_events_poll_msecs_store);
2230 
2231 static const struct attribute *disk_events_attrs[] = {
2232 	&dev_attr_events.attr,
2233 	&dev_attr_events_async.attr,
2234 	&dev_attr_events_poll_msecs.attr,
2235 	NULL,
2236 };
2237 
2238 /*
2239  * The default polling interval can be specified by the kernel
2240  * parameter block.events_dfl_poll_msecs which defaults to 0
2241  * (disable).  This can also be modified runtime by writing to
2242  * /sys/module/block/parameters/events_dfl_poll_msecs.
2243  */
2244 static int disk_events_set_dfl_poll_msecs(const char *val,
2245 					  const struct kernel_param *kp)
2246 {
2247 	struct disk_events *ev;
2248 	int ret;
2249 
2250 	ret = param_set_ulong(val, kp);
2251 	if (ret < 0)
2252 		return ret;
2253 
2254 	mutex_lock(&disk_events_mutex);
2255 
2256 	list_for_each_entry(ev, &disk_events, node)
2257 		disk_flush_events(ev->disk, 0);
2258 
2259 	mutex_unlock(&disk_events_mutex);
2260 
2261 	return 0;
2262 }
2263 
2264 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2265 	.set	= disk_events_set_dfl_poll_msecs,
2266 	.get	= param_get_ulong,
2267 };
2268 
2269 #undef MODULE_PARAM_PREFIX
2270 #define MODULE_PARAM_PREFIX	"block."
2271 
2272 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2273 		&disk_events_dfl_poll_msecs, 0644);
2274 
2275 /*
2276  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2277  */
2278 static void disk_alloc_events(struct gendisk *disk)
2279 {
2280 	struct disk_events *ev;
2281 
2282 	if (!disk->fops->check_events || !disk->events)
2283 		return;
2284 
2285 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2286 	if (!ev) {
2287 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
2288 		return;
2289 	}
2290 
2291 	INIT_LIST_HEAD(&ev->node);
2292 	ev->disk = disk;
2293 	spin_lock_init(&ev->lock);
2294 	mutex_init(&ev->block_mutex);
2295 	ev->block = 1;
2296 	ev->poll_msecs = -1;
2297 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2298 
2299 	disk->ev = ev;
2300 }
2301 
2302 static void disk_add_events(struct gendisk *disk)
2303 {
2304 	/* FIXME: error handling */
2305 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2306 		pr_warn("%s: failed to create sysfs files for events\n",
2307 			disk->disk_name);
2308 
2309 	if (!disk->ev)
2310 		return;
2311 
2312 	mutex_lock(&disk_events_mutex);
2313 	list_add_tail(&disk->ev->node, &disk_events);
2314 	mutex_unlock(&disk_events_mutex);
2315 
2316 	/*
2317 	 * Block count is initialized to 1 and the following initial
2318 	 * unblock kicks it into action.
2319 	 */
2320 	__disk_unblock_events(disk, true);
2321 }
2322 
2323 static void disk_del_events(struct gendisk *disk)
2324 {
2325 	if (disk->ev) {
2326 		disk_block_events(disk);
2327 
2328 		mutex_lock(&disk_events_mutex);
2329 		list_del_init(&disk->ev->node);
2330 		mutex_unlock(&disk_events_mutex);
2331 	}
2332 
2333 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2334 }
2335 
2336 static void disk_release_events(struct gendisk *disk)
2337 {
2338 	/* the block count should be 1 from disk_del_events() */
2339 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2340 	kfree(disk->ev);
2341 }
2342