1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/backing-dev.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include <linux/slab.h> 17 #include <linux/kmod.h> 18 #include <linux/kobj_map.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/badblocks.h> 24 25 #include "blk.h" 26 27 static DEFINE_MUTEX(block_class_lock); 28 struct kobject *block_depr; 29 30 /* for extended dynamic devt allocation, currently only one major is used */ 31 #define NR_EXT_DEVT (1 << MINORBITS) 32 33 /* For extended devt allocation. ext_devt_lock prevents look up 34 * results from going away underneath its user. 35 */ 36 static DEFINE_SPINLOCK(ext_devt_lock); 37 static DEFINE_IDR(ext_devt_idr); 38 39 static const struct device_type disk_type; 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 /** 49 * disk_get_part - get partition 50 * @disk: disk to look partition from 51 * @partno: partition number 52 * 53 * Look for partition @partno from @disk. If found, increment 54 * reference count and return it. 55 * 56 * CONTEXT: 57 * Don't care. 58 * 59 * RETURNS: 60 * Pointer to the found partition on success, NULL if not found. 61 */ 62 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 63 { 64 struct hd_struct *part = NULL; 65 struct disk_part_tbl *ptbl; 66 67 if (unlikely(partno < 0)) 68 return NULL; 69 70 rcu_read_lock(); 71 72 ptbl = rcu_dereference(disk->part_tbl); 73 if (likely(partno < ptbl->len)) { 74 part = rcu_dereference(ptbl->part[partno]); 75 if (part) 76 get_device(part_to_dev(part)); 77 } 78 79 rcu_read_unlock(); 80 81 return part; 82 } 83 EXPORT_SYMBOL_GPL(disk_get_part); 84 85 /** 86 * disk_part_iter_init - initialize partition iterator 87 * @piter: iterator to initialize 88 * @disk: disk to iterate over 89 * @flags: DISK_PITER_* flags 90 * 91 * Initialize @piter so that it iterates over partitions of @disk. 92 * 93 * CONTEXT: 94 * Don't care. 95 */ 96 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 97 unsigned int flags) 98 { 99 struct disk_part_tbl *ptbl; 100 101 rcu_read_lock(); 102 ptbl = rcu_dereference(disk->part_tbl); 103 104 piter->disk = disk; 105 piter->part = NULL; 106 107 if (flags & DISK_PITER_REVERSE) 108 piter->idx = ptbl->len - 1; 109 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 110 piter->idx = 0; 111 else 112 piter->idx = 1; 113 114 piter->flags = flags; 115 116 rcu_read_unlock(); 117 } 118 EXPORT_SYMBOL_GPL(disk_part_iter_init); 119 120 /** 121 * disk_part_iter_next - proceed iterator to the next partition and return it 122 * @piter: iterator of interest 123 * 124 * Proceed @piter to the next partition and return it. 125 * 126 * CONTEXT: 127 * Don't care. 128 */ 129 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 130 { 131 struct disk_part_tbl *ptbl; 132 int inc, end; 133 134 /* put the last partition */ 135 disk_put_part(piter->part); 136 piter->part = NULL; 137 138 /* get part_tbl */ 139 rcu_read_lock(); 140 ptbl = rcu_dereference(piter->disk->part_tbl); 141 142 /* determine iteration parameters */ 143 if (piter->flags & DISK_PITER_REVERSE) { 144 inc = -1; 145 if (piter->flags & (DISK_PITER_INCL_PART0 | 146 DISK_PITER_INCL_EMPTY_PART0)) 147 end = -1; 148 else 149 end = 0; 150 } else { 151 inc = 1; 152 end = ptbl->len; 153 } 154 155 /* iterate to the next partition */ 156 for (; piter->idx != end; piter->idx += inc) { 157 struct hd_struct *part; 158 159 part = rcu_dereference(ptbl->part[piter->idx]); 160 if (!part) 161 continue; 162 if (!part_nr_sects_read(part) && 163 !(piter->flags & DISK_PITER_INCL_EMPTY) && 164 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 165 piter->idx == 0)) 166 continue; 167 168 get_device(part_to_dev(part)); 169 piter->part = part; 170 piter->idx += inc; 171 break; 172 } 173 174 rcu_read_unlock(); 175 176 return piter->part; 177 } 178 EXPORT_SYMBOL_GPL(disk_part_iter_next); 179 180 /** 181 * disk_part_iter_exit - finish up partition iteration 182 * @piter: iter of interest 183 * 184 * Called when iteration is over. Cleans up @piter. 185 * 186 * CONTEXT: 187 * Don't care. 188 */ 189 void disk_part_iter_exit(struct disk_part_iter *piter) 190 { 191 disk_put_part(piter->part); 192 piter->part = NULL; 193 } 194 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 195 196 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 197 { 198 return part->start_sect <= sector && 199 sector < part->start_sect + part_nr_sects_read(part); 200 } 201 202 /** 203 * disk_map_sector_rcu - map sector to partition 204 * @disk: gendisk of interest 205 * @sector: sector to map 206 * 207 * Find out which partition @sector maps to on @disk. This is 208 * primarily used for stats accounting. 209 * 210 * CONTEXT: 211 * RCU read locked. The returned partition pointer is valid only 212 * while preemption is disabled. 213 * 214 * RETURNS: 215 * Found partition on success, part0 is returned if no partition matches 216 */ 217 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 218 { 219 struct disk_part_tbl *ptbl; 220 struct hd_struct *part; 221 int i; 222 223 ptbl = rcu_dereference(disk->part_tbl); 224 225 part = rcu_dereference(ptbl->last_lookup); 226 if (part && sector_in_part(part, sector)) 227 return part; 228 229 for (i = 1; i < ptbl->len; i++) { 230 part = rcu_dereference(ptbl->part[i]); 231 232 if (part && sector_in_part(part, sector)) { 233 rcu_assign_pointer(ptbl->last_lookup, part); 234 return part; 235 } 236 } 237 return &disk->part0; 238 } 239 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 240 241 /* 242 * Can be deleted altogether. Later. 243 * 244 */ 245 static struct blk_major_name { 246 struct blk_major_name *next; 247 int major; 248 char name[16]; 249 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 250 251 /* index in the above - for now: assume no multimajor ranges */ 252 static inline int major_to_index(unsigned major) 253 { 254 return major % BLKDEV_MAJOR_HASH_SIZE; 255 } 256 257 #ifdef CONFIG_PROC_FS 258 void blkdev_show(struct seq_file *seqf, off_t offset) 259 { 260 struct blk_major_name *dp; 261 262 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 263 mutex_lock(&block_class_lock); 264 for (dp = major_names[offset]; dp; dp = dp->next) 265 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 266 mutex_unlock(&block_class_lock); 267 } 268 } 269 #endif /* CONFIG_PROC_FS */ 270 271 /** 272 * register_blkdev - register a new block device 273 * 274 * @major: the requested major device number [1..255]. If @major = 0, try to 275 * allocate any unused major number. 276 * @name: the name of the new block device as a zero terminated string 277 * 278 * The @name must be unique within the system. 279 * 280 * The return value depends on the @major input parameter: 281 * 282 * - if a major device number was requested in range [1..255] then the 283 * function returns zero on success, or a negative error code 284 * - if any unused major number was requested with @major = 0 parameter 285 * then the return value is the allocated major number in range 286 * [1..255] or a negative error code otherwise 287 */ 288 int register_blkdev(unsigned int major, const char *name) 289 { 290 struct blk_major_name **n, *p; 291 int index, ret = 0; 292 293 mutex_lock(&block_class_lock); 294 295 /* temporary */ 296 if (major == 0) { 297 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 298 if (major_names[index] == NULL) 299 break; 300 } 301 302 if (index == 0) { 303 printk("register_blkdev: failed to get major for %s\n", 304 name); 305 ret = -EBUSY; 306 goto out; 307 } 308 major = index; 309 ret = major; 310 } 311 312 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 313 if (p == NULL) { 314 ret = -ENOMEM; 315 goto out; 316 } 317 318 p->major = major; 319 strlcpy(p->name, name, sizeof(p->name)); 320 p->next = NULL; 321 index = major_to_index(major); 322 323 for (n = &major_names[index]; *n; n = &(*n)->next) { 324 if ((*n)->major == major) 325 break; 326 } 327 if (!*n) 328 *n = p; 329 else 330 ret = -EBUSY; 331 332 if (ret < 0) { 333 printk("register_blkdev: cannot get major %d for %s\n", 334 major, name); 335 kfree(p); 336 } 337 out: 338 mutex_unlock(&block_class_lock); 339 return ret; 340 } 341 342 EXPORT_SYMBOL(register_blkdev); 343 344 void unregister_blkdev(unsigned int major, const char *name) 345 { 346 struct blk_major_name **n; 347 struct blk_major_name *p = NULL; 348 int index = major_to_index(major); 349 350 mutex_lock(&block_class_lock); 351 for (n = &major_names[index]; *n; n = &(*n)->next) 352 if ((*n)->major == major) 353 break; 354 if (!*n || strcmp((*n)->name, name)) { 355 WARN_ON(1); 356 } else { 357 p = *n; 358 *n = p->next; 359 } 360 mutex_unlock(&block_class_lock); 361 kfree(p); 362 } 363 364 EXPORT_SYMBOL(unregister_blkdev); 365 366 static struct kobj_map *bdev_map; 367 368 /** 369 * blk_mangle_minor - scatter minor numbers apart 370 * @minor: minor number to mangle 371 * 372 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 373 * is enabled. Mangling twice gives the original value. 374 * 375 * RETURNS: 376 * Mangled value. 377 * 378 * CONTEXT: 379 * Don't care. 380 */ 381 static int blk_mangle_minor(int minor) 382 { 383 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 384 int i; 385 386 for (i = 0; i < MINORBITS / 2; i++) { 387 int low = minor & (1 << i); 388 int high = minor & (1 << (MINORBITS - 1 - i)); 389 int distance = MINORBITS - 1 - 2 * i; 390 391 minor ^= low | high; /* clear both bits */ 392 low <<= distance; /* swap the positions */ 393 high >>= distance; 394 minor |= low | high; /* and set */ 395 } 396 #endif 397 return minor; 398 } 399 400 /** 401 * blk_alloc_devt - allocate a dev_t for a partition 402 * @part: partition to allocate dev_t for 403 * @devt: out parameter for resulting dev_t 404 * 405 * Allocate a dev_t for block device. 406 * 407 * RETURNS: 408 * 0 on success, allocated dev_t is returned in *@devt. -errno on 409 * failure. 410 * 411 * CONTEXT: 412 * Might sleep. 413 */ 414 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 415 { 416 struct gendisk *disk = part_to_disk(part); 417 int idx; 418 419 /* in consecutive minor range? */ 420 if (part->partno < disk->minors) { 421 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 422 return 0; 423 } 424 425 /* allocate ext devt */ 426 idr_preload(GFP_KERNEL); 427 428 spin_lock_bh(&ext_devt_lock); 429 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 430 spin_unlock_bh(&ext_devt_lock); 431 432 idr_preload_end(); 433 if (idx < 0) 434 return idx == -ENOSPC ? -EBUSY : idx; 435 436 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 437 return 0; 438 } 439 440 /** 441 * blk_free_devt - free a dev_t 442 * @devt: dev_t to free 443 * 444 * Free @devt which was allocated using blk_alloc_devt(). 445 * 446 * CONTEXT: 447 * Might sleep. 448 */ 449 void blk_free_devt(dev_t devt) 450 { 451 if (devt == MKDEV(0, 0)) 452 return; 453 454 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 455 spin_lock_bh(&ext_devt_lock); 456 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 457 spin_unlock_bh(&ext_devt_lock); 458 } 459 } 460 461 static char *bdevt_str(dev_t devt, char *buf) 462 { 463 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 464 char tbuf[BDEVT_SIZE]; 465 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 466 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 467 } else 468 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 469 470 return buf; 471 } 472 473 /* 474 * Register device numbers dev..(dev+range-1) 475 * range must be nonzero 476 * The hash chain is sorted on range, so that subranges can override. 477 */ 478 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 479 struct kobject *(*probe)(dev_t, int *, void *), 480 int (*lock)(dev_t, void *), void *data) 481 { 482 kobj_map(bdev_map, devt, range, module, probe, lock, data); 483 } 484 485 EXPORT_SYMBOL(blk_register_region); 486 487 void blk_unregister_region(dev_t devt, unsigned long range) 488 { 489 kobj_unmap(bdev_map, devt, range); 490 } 491 492 EXPORT_SYMBOL(blk_unregister_region); 493 494 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 495 { 496 struct gendisk *p = data; 497 498 return &disk_to_dev(p)->kobj; 499 } 500 501 static int exact_lock(dev_t devt, void *data) 502 { 503 struct gendisk *p = data; 504 505 if (!get_disk(p)) 506 return -1; 507 return 0; 508 } 509 510 static void register_disk(struct device *parent, struct gendisk *disk) 511 { 512 struct device *ddev = disk_to_dev(disk); 513 struct block_device *bdev; 514 struct disk_part_iter piter; 515 struct hd_struct *part; 516 int err; 517 518 ddev->parent = parent; 519 520 dev_set_name(ddev, "%s", disk->disk_name); 521 522 /* delay uevents, until we scanned partition table */ 523 dev_set_uevent_suppress(ddev, 1); 524 525 if (device_add(ddev)) 526 return; 527 if (!sysfs_deprecated) { 528 err = sysfs_create_link(block_depr, &ddev->kobj, 529 kobject_name(&ddev->kobj)); 530 if (err) { 531 device_del(ddev); 532 return; 533 } 534 } 535 536 /* 537 * avoid probable deadlock caused by allocating memory with 538 * GFP_KERNEL in runtime_resume callback of its all ancestor 539 * devices 540 */ 541 pm_runtime_set_memalloc_noio(ddev, true); 542 543 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 544 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 545 546 /* No minors to use for partitions */ 547 if (!disk_part_scan_enabled(disk)) 548 goto exit; 549 550 /* No such device (e.g., media were just removed) */ 551 if (!get_capacity(disk)) 552 goto exit; 553 554 bdev = bdget_disk(disk, 0); 555 if (!bdev) 556 goto exit; 557 558 bdev->bd_invalidated = 1; 559 err = blkdev_get(bdev, FMODE_READ, NULL); 560 if (err < 0) 561 goto exit; 562 blkdev_put(bdev, FMODE_READ); 563 564 exit: 565 /* announce disk after possible partitions are created */ 566 dev_set_uevent_suppress(ddev, 0); 567 kobject_uevent(&ddev->kobj, KOBJ_ADD); 568 569 /* announce possible partitions */ 570 disk_part_iter_init(&piter, disk, 0); 571 while ((part = disk_part_iter_next(&piter))) 572 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 573 disk_part_iter_exit(&piter); 574 } 575 576 /** 577 * device_add_disk - add partitioning information to kernel list 578 * @parent: parent device for the disk 579 * @disk: per-device partitioning information 580 * 581 * This function registers the partitioning information in @disk 582 * with the kernel. 583 * 584 * FIXME: error handling 585 */ 586 void device_add_disk(struct device *parent, struct gendisk *disk) 587 { 588 struct backing_dev_info *bdi; 589 dev_t devt; 590 int retval; 591 592 /* minors == 0 indicates to use ext devt from part0 and should 593 * be accompanied with EXT_DEVT flag. Make sure all 594 * parameters make sense. 595 */ 596 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 597 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 598 599 disk->flags |= GENHD_FL_UP; 600 601 retval = blk_alloc_devt(&disk->part0, &devt); 602 if (retval) { 603 WARN_ON(1); 604 return; 605 } 606 disk_to_dev(disk)->devt = devt; 607 608 /* ->major and ->first_minor aren't supposed to be 609 * dereferenced from here on, but set them just in case. 610 */ 611 disk->major = MAJOR(devt); 612 disk->first_minor = MINOR(devt); 613 614 disk_alloc_events(disk); 615 616 /* Register BDI before referencing it from bdev */ 617 bdi = disk->queue->backing_dev_info; 618 bdi_register_owner(bdi, disk_to_dev(disk)); 619 620 blk_register_region(disk_devt(disk), disk->minors, NULL, 621 exact_match, exact_lock, disk); 622 register_disk(parent, disk); 623 blk_register_queue(disk); 624 625 /* 626 * Take an extra ref on queue which will be put on disk_release() 627 * so that it sticks around as long as @disk is there. 628 */ 629 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 630 631 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 632 "bdi"); 633 WARN_ON(retval); 634 635 disk_add_events(disk); 636 blk_integrity_add(disk); 637 } 638 EXPORT_SYMBOL(device_add_disk); 639 640 void del_gendisk(struct gendisk *disk) 641 { 642 struct disk_part_iter piter; 643 struct hd_struct *part; 644 645 blk_integrity_del(disk); 646 disk_del_events(disk); 647 648 /* invalidate stuff */ 649 disk_part_iter_init(&piter, disk, 650 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 651 while ((part = disk_part_iter_next(&piter))) { 652 invalidate_partition(disk, part->partno); 653 bdev_unhash_inode(part_devt(part)); 654 delete_partition(disk, part->partno); 655 } 656 disk_part_iter_exit(&piter); 657 658 invalidate_partition(disk, 0); 659 bdev_unhash_inode(disk_devt(disk)); 660 set_capacity(disk, 0); 661 disk->flags &= ~GENHD_FL_UP; 662 663 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 664 if (disk->queue) { 665 /* 666 * Unregister bdi before releasing device numbers (as they can 667 * get reused and we'd get clashes in sysfs). 668 */ 669 bdi_unregister(disk->queue->backing_dev_info); 670 blk_unregister_queue(disk); 671 } else { 672 WARN_ON(1); 673 } 674 blk_unregister_region(disk_devt(disk), disk->minors); 675 676 part_stat_set_all(&disk->part0, 0); 677 disk->part0.stamp = 0; 678 679 kobject_put(disk->part0.holder_dir); 680 kobject_put(disk->slave_dir); 681 if (!sysfs_deprecated) 682 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 683 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 684 device_del(disk_to_dev(disk)); 685 } 686 EXPORT_SYMBOL(del_gendisk); 687 688 /* sysfs access to bad-blocks list. */ 689 static ssize_t disk_badblocks_show(struct device *dev, 690 struct device_attribute *attr, 691 char *page) 692 { 693 struct gendisk *disk = dev_to_disk(dev); 694 695 if (!disk->bb) 696 return sprintf(page, "\n"); 697 698 return badblocks_show(disk->bb, page, 0); 699 } 700 701 static ssize_t disk_badblocks_store(struct device *dev, 702 struct device_attribute *attr, 703 const char *page, size_t len) 704 { 705 struct gendisk *disk = dev_to_disk(dev); 706 707 if (!disk->bb) 708 return -ENXIO; 709 710 return badblocks_store(disk->bb, page, len, 0); 711 } 712 713 /** 714 * get_gendisk - get partitioning information for a given device 715 * @devt: device to get partitioning information for 716 * @partno: returned partition index 717 * 718 * This function gets the structure containing partitioning 719 * information for the given device @devt. 720 */ 721 struct gendisk *get_gendisk(dev_t devt, int *partno) 722 { 723 struct gendisk *disk = NULL; 724 725 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 726 struct kobject *kobj; 727 728 kobj = kobj_lookup(bdev_map, devt, partno); 729 if (kobj) 730 disk = dev_to_disk(kobj_to_dev(kobj)); 731 } else { 732 struct hd_struct *part; 733 734 spin_lock_bh(&ext_devt_lock); 735 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 736 if (part && get_disk(part_to_disk(part))) { 737 *partno = part->partno; 738 disk = part_to_disk(part); 739 } 740 spin_unlock_bh(&ext_devt_lock); 741 } 742 743 return disk; 744 } 745 EXPORT_SYMBOL(get_gendisk); 746 747 /** 748 * bdget_disk - do bdget() by gendisk and partition number 749 * @disk: gendisk of interest 750 * @partno: partition number 751 * 752 * Find partition @partno from @disk, do bdget() on it. 753 * 754 * CONTEXT: 755 * Don't care. 756 * 757 * RETURNS: 758 * Resulting block_device on success, NULL on failure. 759 */ 760 struct block_device *bdget_disk(struct gendisk *disk, int partno) 761 { 762 struct hd_struct *part; 763 struct block_device *bdev = NULL; 764 765 part = disk_get_part(disk, partno); 766 if (part) 767 bdev = bdget(part_devt(part)); 768 disk_put_part(part); 769 770 return bdev; 771 } 772 EXPORT_SYMBOL(bdget_disk); 773 774 /* 775 * print a full list of all partitions - intended for places where the root 776 * filesystem can't be mounted and thus to give the victim some idea of what 777 * went wrong 778 */ 779 void __init printk_all_partitions(void) 780 { 781 struct class_dev_iter iter; 782 struct device *dev; 783 784 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 785 while ((dev = class_dev_iter_next(&iter))) { 786 struct gendisk *disk = dev_to_disk(dev); 787 struct disk_part_iter piter; 788 struct hd_struct *part; 789 char name_buf[BDEVNAME_SIZE]; 790 char devt_buf[BDEVT_SIZE]; 791 792 /* 793 * Don't show empty devices or things that have been 794 * suppressed 795 */ 796 if (get_capacity(disk) == 0 || 797 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 798 continue; 799 800 /* 801 * Note, unlike /proc/partitions, I am showing the 802 * numbers in hex - the same format as the root= 803 * option takes. 804 */ 805 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 806 while ((part = disk_part_iter_next(&piter))) { 807 bool is_part0 = part == &disk->part0; 808 809 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 810 bdevt_str(part_devt(part), devt_buf), 811 (unsigned long long)part_nr_sects_read(part) >> 1 812 , disk_name(disk, part->partno, name_buf), 813 part->info ? part->info->uuid : ""); 814 if (is_part0) { 815 if (dev->parent && dev->parent->driver) 816 printk(" driver: %s\n", 817 dev->parent->driver->name); 818 else 819 printk(" (driver?)\n"); 820 } else 821 printk("\n"); 822 } 823 disk_part_iter_exit(&piter); 824 } 825 class_dev_iter_exit(&iter); 826 } 827 828 #ifdef CONFIG_PROC_FS 829 /* iterator */ 830 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 831 { 832 loff_t skip = *pos; 833 struct class_dev_iter *iter; 834 struct device *dev; 835 836 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 837 if (!iter) 838 return ERR_PTR(-ENOMEM); 839 840 seqf->private = iter; 841 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 842 do { 843 dev = class_dev_iter_next(iter); 844 if (!dev) 845 return NULL; 846 } while (skip--); 847 848 return dev_to_disk(dev); 849 } 850 851 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 852 { 853 struct device *dev; 854 855 (*pos)++; 856 dev = class_dev_iter_next(seqf->private); 857 if (dev) 858 return dev_to_disk(dev); 859 860 return NULL; 861 } 862 863 static void disk_seqf_stop(struct seq_file *seqf, void *v) 864 { 865 struct class_dev_iter *iter = seqf->private; 866 867 /* stop is called even after start failed :-( */ 868 if (iter) { 869 class_dev_iter_exit(iter); 870 kfree(iter); 871 seqf->private = NULL; 872 } 873 } 874 875 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 876 { 877 void *p; 878 879 p = disk_seqf_start(seqf, pos); 880 if (!IS_ERR_OR_NULL(p) && !*pos) 881 seq_puts(seqf, "major minor #blocks name\n\n"); 882 return p; 883 } 884 885 static int show_partition(struct seq_file *seqf, void *v) 886 { 887 struct gendisk *sgp = v; 888 struct disk_part_iter piter; 889 struct hd_struct *part; 890 char buf[BDEVNAME_SIZE]; 891 892 /* Don't show non-partitionable removeable devices or empty devices */ 893 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 894 (sgp->flags & GENHD_FL_REMOVABLE))) 895 return 0; 896 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 897 return 0; 898 899 /* show the full disk and all non-0 size partitions of it */ 900 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 901 while ((part = disk_part_iter_next(&piter))) 902 seq_printf(seqf, "%4d %7d %10llu %s\n", 903 MAJOR(part_devt(part)), MINOR(part_devt(part)), 904 (unsigned long long)part_nr_sects_read(part) >> 1, 905 disk_name(sgp, part->partno, buf)); 906 disk_part_iter_exit(&piter); 907 908 return 0; 909 } 910 911 static const struct seq_operations partitions_op = { 912 .start = show_partition_start, 913 .next = disk_seqf_next, 914 .stop = disk_seqf_stop, 915 .show = show_partition 916 }; 917 918 static int partitions_open(struct inode *inode, struct file *file) 919 { 920 return seq_open(file, &partitions_op); 921 } 922 923 static const struct file_operations proc_partitions_operations = { 924 .open = partitions_open, 925 .read = seq_read, 926 .llseek = seq_lseek, 927 .release = seq_release, 928 }; 929 #endif 930 931 932 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 933 { 934 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 935 /* Make old-style 2.4 aliases work */ 936 request_module("block-major-%d", MAJOR(devt)); 937 return NULL; 938 } 939 940 static int __init genhd_device_init(void) 941 { 942 int error; 943 944 block_class.dev_kobj = sysfs_dev_block_kobj; 945 error = class_register(&block_class); 946 if (unlikely(error)) 947 return error; 948 bdev_map = kobj_map_init(base_probe, &block_class_lock); 949 blk_dev_init(); 950 951 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 952 953 /* create top-level block dir */ 954 if (!sysfs_deprecated) 955 block_depr = kobject_create_and_add("block", NULL); 956 return 0; 957 } 958 959 subsys_initcall(genhd_device_init); 960 961 static ssize_t disk_range_show(struct device *dev, 962 struct device_attribute *attr, char *buf) 963 { 964 struct gendisk *disk = dev_to_disk(dev); 965 966 return sprintf(buf, "%d\n", disk->minors); 967 } 968 969 static ssize_t disk_ext_range_show(struct device *dev, 970 struct device_attribute *attr, char *buf) 971 { 972 struct gendisk *disk = dev_to_disk(dev); 973 974 return sprintf(buf, "%d\n", disk_max_parts(disk)); 975 } 976 977 static ssize_t disk_removable_show(struct device *dev, 978 struct device_attribute *attr, char *buf) 979 { 980 struct gendisk *disk = dev_to_disk(dev); 981 982 return sprintf(buf, "%d\n", 983 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 984 } 985 986 static ssize_t disk_ro_show(struct device *dev, 987 struct device_attribute *attr, char *buf) 988 { 989 struct gendisk *disk = dev_to_disk(dev); 990 991 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 992 } 993 994 static ssize_t disk_capability_show(struct device *dev, 995 struct device_attribute *attr, char *buf) 996 { 997 struct gendisk *disk = dev_to_disk(dev); 998 999 return sprintf(buf, "%x\n", disk->flags); 1000 } 1001 1002 static ssize_t disk_alignment_offset_show(struct device *dev, 1003 struct device_attribute *attr, 1004 char *buf) 1005 { 1006 struct gendisk *disk = dev_to_disk(dev); 1007 1008 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1009 } 1010 1011 static ssize_t disk_discard_alignment_show(struct device *dev, 1012 struct device_attribute *attr, 1013 char *buf) 1014 { 1015 struct gendisk *disk = dev_to_disk(dev); 1016 1017 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1018 } 1019 1020 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 1021 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 1022 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 1023 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 1024 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 1025 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 1026 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 1027 NULL); 1028 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 1029 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 1030 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 1031 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show, 1032 disk_badblocks_store); 1033 #ifdef CONFIG_FAIL_MAKE_REQUEST 1034 static struct device_attribute dev_attr_fail = 1035 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 1036 #endif 1037 #ifdef CONFIG_FAIL_IO_TIMEOUT 1038 static struct device_attribute dev_attr_fail_timeout = 1039 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 1040 part_timeout_store); 1041 #endif 1042 1043 static struct attribute *disk_attrs[] = { 1044 &dev_attr_range.attr, 1045 &dev_attr_ext_range.attr, 1046 &dev_attr_removable.attr, 1047 &dev_attr_ro.attr, 1048 &dev_attr_size.attr, 1049 &dev_attr_alignment_offset.attr, 1050 &dev_attr_discard_alignment.attr, 1051 &dev_attr_capability.attr, 1052 &dev_attr_stat.attr, 1053 &dev_attr_inflight.attr, 1054 &dev_attr_badblocks.attr, 1055 #ifdef CONFIG_FAIL_MAKE_REQUEST 1056 &dev_attr_fail.attr, 1057 #endif 1058 #ifdef CONFIG_FAIL_IO_TIMEOUT 1059 &dev_attr_fail_timeout.attr, 1060 #endif 1061 NULL 1062 }; 1063 1064 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1065 { 1066 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1067 struct gendisk *disk = dev_to_disk(dev); 1068 1069 if (a == &dev_attr_badblocks.attr && !disk->bb) 1070 return 0; 1071 return a->mode; 1072 } 1073 1074 static struct attribute_group disk_attr_group = { 1075 .attrs = disk_attrs, 1076 .is_visible = disk_visible, 1077 }; 1078 1079 static const struct attribute_group *disk_attr_groups[] = { 1080 &disk_attr_group, 1081 NULL 1082 }; 1083 1084 /** 1085 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1086 * @disk: disk to replace part_tbl for 1087 * @new_ptbl: new part_tbl to install 1088 * 1089 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1090 * original ptbl is freed using RCU callback. 1091 * 1092 * LOCKING: 1093 * Matching bd_mutx locked. 1094 */ 1095 static void disk_replace_part_tbl(struct gendisk *disk, 1096 struct disk_part_tbl *new_ptbl) 1097 { 1098 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1099 1100 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1101 1102 if (old_ptbl) { 1103 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1104 kfree_rcu(old_ptbl, rcu_head); 1105 } 1106 } 1107 1108 /** 1109 * disk_expand_part_tbl - expand disk->part_tbl 1110 * @disk: disk to expand part_tbl for 1111 * @partno: expand such that this partno can fit in 1112 * 1113 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1114 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1115 * 1116 * LOCKING: 1117 * Matching bd_mutex locked, might sleep. 1118 * 1119 * RETURNS: 1120 * 0 on success, -errno on failure. 1121 */ 1122 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1123 { 1124 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1125 struct disk_part_tbl *new_ptbl; 1126 int len = old_ptbl ? old_ptbl->len : 0; 1127 int i, target; 1128 size_t size; 1129 1130 /* 1131 * check for int overflow, since we can get here from blkpg_ioctl() 1132 * with a user passed 'partno'. 1133 */ 1134 target = partno + 1; 1135 if (target < 0) 1136 return -EINVAL; 1137 1138 /* disk_max_parts() is zero during initialization, ignore if so */ 1139 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1140 return -EINVAL; 1141 1142 if (target <= len) 1143 return 0; 1144 1145 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1146 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1147 if (!new_ptbl) 1148 return -ENOMEM; 1149 1150 new_ptbl->len = target; 1151 1152 for (i = 0; i < len; i++) 1153 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1154 1155 disk_replace_part_tbl(disk, new_ptbl); 1156 return 0; 1157 } 1158 1159 static void disk_release(struct device *dev) 1160 { 1161 struct gendisk *disk = dev_to_disk(dev); 1162 1163 blk_free_devt(dev->devt); 1164 disk_release_events(disk); 1165 kfree(disk->random); 1166 disk_replace_part_tbl(disk, NULL); 1167 hd_free_part(&disk->part0); 1168 if (disk->queue) 1169 blk_put_queue(disk->queue); 1170 kfree(disk); 1171 } 1172 struct class block_class = { 1173 .name = "block", 1174 }; 1175 1176 static char *block_devnode(struct device *dev, umode_t *mode, 1177 kuid_t *uid, kgid_t *gid) 1178 { 1179 struct gendisk *disk = dev_to_disk(dev); 1180 1181 if (disk->devnode) 1182 return disk->devnode(disk, mode); 1183 return NULL; 1184 } 1185 1186 static const struct device_type disk_type = { 1187 .name = "disk", 1188 .groups = disk_attr_groups, 1189 .release = disk_release, 1190 .devnode = block_devnode, 1191 }; 1192 1193 #ifdef CONFIG_PROC_FS 1194 /* 1195 * aggregate disk stat collector. Uses the same stats that the sysfs 1196 * entries do, above, but makes them available through one seq_file. 1197 * 1198 * The output looks suspiciously like /proc/partitions with a bunch of 1199 * extra fields. 1200 */ 1201 static int diskstats_show(struct seq_file *seqf, void *v) 1202 { 1203 struct gendisk *gp = v; 1204 struct disk_part_iter piter; 1205 struct hd_struct *hd; 1206 char buf[BDEVNAME_SIZE]; 1207 int cpu; 1208 1209 /* 1210 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1211 seq_puts(seqf, "major minor name" 1212 " rio rmerge rsect ruse wio wmerge " 1213 "wsect wuse running use aveq" 1214 "\n\n"); 1215 */ 1216 1217 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1218 while ((hd = disk_part_iter_next(&piter))) { 1219 cpu = part_stat_lock(); 1220 part_round_stats(cpu, hd); 1221 part_stat_unlock(); 1222 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1223 "%u %lu %lu %lu %u %u %u %u\n", 1224 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1225 disk_name(gp, hd->partno, buf), 1226 part_stat_read(hd, ios[READ]), 1227 part_stat_read(hd, merges[READ]), 1228 part_stat_read(hd, sectors[READ]), 1229 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1230 part_stat_read(hd, ios[WRITE]), 1231 part_stat_read(hd, merges[WRITE]), 1232 part_stat_read(hd, sectors[WRITE]), 1233 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1234 part_in_flight(hd), 1235 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1236 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1237 ); 1238 } 1239 disk_part_iter_exit(&piter); 1240 1241 return 0; 1242 } 1243 1244 static const struct seq_operations diskstats_op = { 1245 .start = disk_seqf_start, 1246 .next = disk_seqf_next, 1247 .stop = disk_seqf_stop, 1248 .show = diskstats_show 1249 }; 1250 1251 static int diskstats_open(struct inode *inode, struct file *file) 1252 { 1253 return seq_open(file, &diskstats_op); 1254 } 1255 1256 static const struct file_operations proc_diskstats_operations = { 1257 .open = diskstats_open, 1258 .read = seq_read, 1259 .llseek = seq_lseek, 1260 .release = seq_release, 1261 }; 1262 1263 static int __init proc_genhd_init(void) 1264 { 1265 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1266 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1267 return 0; 1268 } 1269 module_init(proc_genhd_init); 1270 #endif /* CONFIG_PROC_FS */ 1271 1272 dev_t blk_lookup_devt(const char *name, int partno) 1273 { 1274 dev_t devt = MKDEV(0, 0); 1275 struct class_dev_iter iter; 1276 struct device *dev; 1277 1278 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1279 while ((dev = class_dev_iter_next(&iter))) { 1280 struct gendisk *disk = dev_to_disk(dev); 1281 struct hd_struct *part; 1282 1283 if (strcmp(dev_name(dev), name)) 1284 continue; 1285 1286 if (partno < disk->minors) { 1287 /* We need to return the right devno, even 1288 * if the partition doesn't exist yet. 1289 */ 1290 devt = MKDEV(MAJOR(dev->devt), 1291 MINOR(dev->devt) + partno); 1292 break; 1293 } 1294 part = disk_get_part(disk, partno); 1295 if (part) { 1296 devt = part_devt(part); 1297 disk_put_part(part); 1298 break; 1299 } 1300 disk_put_part(part); 1301 } 1302 class_dev_iter_exit(&iter); 1303 return devt; 1304 } 1305 EXPORT_SYMBOL(blk_lookup_devt); 1306 1307 struct gendisk *alloc_disk(int minors) 1308 { 1309 return alloc_disk_node(minors, NUMA_NO_NODE); 1310 } 1311 EXPORT_SYMBOL(alloc_disk); 1312 1313 struct gendisk *alloc_disk_node(int minors, int node_id) 1314 { 1315 struct gendisk *disk; 1316 1317 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1318 if (disk) { 1319 if (!init_part_stats(&disk->part0)) { 1320 kfree(disk); 1321 return NULL; 1322 } 1323 disk->node_id = node_id; 1324 if (disk_expand_part_tbl(disk, 0)) { 1325 free_part_stats(&disk->part0); 1326 kfree(disk); 1327 return NULL; 1328 } 1329 disk->part_tbl->part[0] = &disk->part0; 1330 1331 /* 1332 * set_capacity() and get_capacity() currently don't use 1333 * seqcounter to read/update the part0->nr_sects. Still init 1334 * the counter as we can read the sectors in IO submission 1335 * patch using seqence counters. 1336 * 1337 * TODO: Ideally set_capacity() and get_capacity() should be 1338 * converted to make use of bd_mutex and sequence counters. 1339 */ 1340 seqcount_init(&disk->part0.nr_sects_seq); 1341 if (hd_ref_init(&disk->part0)) { 1342 hd_free_part(&disk->part0); 1343 kfree(disk); 1344 return NULL; 1345 } 1346 1347 disk->minors = minors; 1348 rand_initialize_disk(disk); 1349 disk_to_dev(disk)->class = &block_class; 1350 disk_to_dev(disk)->type = &disk_type; 1351 device_initialize(disk_to_dev(disk)); 1352 } 1353 return disk; 1354 } 1355 EXPORT_SYMBOL(alloc_disk_node); 1356 1357 struct kobject *get_disk(struct gendisk *disk) 1358 { 1359 struct module *owner; 1360 struct kobject *kobj; 1361 1362 if (!disk->fops) 1363 return NULL; 1364 owner = disk->fops->owner; 1365 if (owner && !try_module_get(owner)) 1366 return NULL; 1367 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1368 if (kobj == NULL) { 1369 module_put(owner); 1370 return NULL; 1371 } 1372 return kobj; 1373 1374 } 1375 1376 EXPORT_SYMBOL(get_disk); 1377 1378 void put_disk(struct gendisk *disk) 1379 { 1380 if (disk) 1381 kobject_put(&disk_to_dev(disk)->kobj); 1382 } 1383 1384 EXPORT_SYMBOL(put_disk); 1385 1386 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1387 { 1388 char event[] = "DISK_RO=1"; 1389 char *envp[] = { event, NULL }; 1390 1391 if (!ro) 1392 event[8] = '0'; 1393 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1394 } 1395 1396 void set_device_ro(struct block_device *bdev, int flag) 1397 { 1398 bdev->bd_part->policy = flag; 1399 } 1400 1401 EXPORT_SYMBOL(set_device_ro); 1402 1403 void set_disk_ro(struct gendisk *disk, int flag) 1404 { 1405 struct disk_part_iter piter; 1406 struct hd_struct *part; 1407 1408 if (disk->part0.policy != flag) { 1409 set_disk_ro_uevent(disk, flag); 1410 disk->part0.policy = flag; 1411 } 1412 1413 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1414 while ((part = disk_part_iter_next(&piter))) 1415 part->policy = flag; 1416 disk_part_iter_exit(&piter); 1417 } 1418 1419 EXPORT_SYMBOL(set_disk_ro); 1420 1421 int bdev_read_only(struct block_device *bdev) 1422 { 1423 if (!bdev) 1424 return 0; 1425 return bdev->bd_part->policy; 1426 } 1427 1428 EXPORT_SYMBOL(bdev_read_only); 1429 1430 int invalidate_partition(struct gendisk *disk, int partno) 1431 { 1432 int res = 0; 1433 struct block_device *bdev = bdget_disk(disk, partno); 1434 if (bdev) { 1435 fsync_bdev(bdev); 1436 res = __invalidate_device(bdev, true); 1437 bdput(bdev); 1438 } 1439 return res; 1440 } 1441 1442 EXPORT_SYMBOL(invalidate_partition); 1443 1444 /* 1445 * Disk events - monitor disk events like media change and eject request. 1446 */ 1447 struct disk_events { 1448 struct list_head node; /* all disk_event's */ 1449 struct gendisk *disk; /* the associated disk */ 1450 spinlock_t lock; 1451 1452 struct mutex block_mutex; /* protects blocking */ 1453 int block; /* event blocking depth */ 1454 unsigned int pending; /* events already sent out */ 1455 unsigned int clearing; /* events being cleared */ 1456 1457 long poll_msecs; /* interval, -1 for default */ 1458 struct delayed_work dwork; 1459 }; 1460 1461 static const char *disk_events_strs[] = { 1462 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1463 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1464 }; 1465 1466 static char *disk_uevents[] = { 1467 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1468 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1469 }; 1470 1471 /* list of all disk_events */ 1472 static DEFINE_MUTEX(disk_events_mutex); 1473 static LIST_HEAD(disk_events); 1474 1475 /* disable in-kernel polling by default */ 1476 static unsigned long disk_events_dfl_poll_msecs; 1477 1478 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1479 { 1480 struct disk_events *ev = disk->ev; 1481 long intv_msecs = 0; 1482 1483 /* 1484 * If device-specific poll interval is set, always use it. If 1485 * the default is being used, poll iff there are events which 1486 * can't be monitored asynchronously. 1487 */ 1488 if (ev->poll_msecs >= 0) 1489 intv_msecs = ev->poll_msecs; 1490 else if (disk->events & ~disk->async_events) 1491 intv_msecs = disk_events_dfl_poll_msecs; 1492 1493 return msecs_to_jiffies(intv_msecs); 1494 } 1495 1496 /** 1497 * disk_block_events - block and flush disk event checking 1498 * @disk: disk to block events for 1499 * 1500 * On return from this function, it is guaranteed that event checking 1501 * isn't in progress and won't happen until unblocked by 1502 * disk_unblock_events(). Events blocking is counted and the actual 1503 * unblocking happens after the matching number of unblocks are done. 1504 * 1505 * Note that this intentionally does not block event checking from 1506 * disk_clear_events(). 1507 * 1508 * CONTEXT: 1509 * Might sleep. 1510 */ 1511 void disk_block_events(struct gendisk *disk) 1512 { 1513 struct disk_events *ev = disk->ev; 1514 unsigned long flags; 1515 bool cancel; 1516 1517 if (!ev) 1518 return; 1519 1520 /* 1521 * Outer mutex ensures that the first blocker completes canceling 1522 * the event work before further blockers are allowed to finish. 1523 */ 1524 mutex_lock(&ev->block_mutex); 1525 1526 spin_lock_irqsave(&ev->lock, flags); 1527 cancel = !ev->block++; 1528 spin_unlock_irqrestore(&ev->lock, flags); 1529 1530 if (cancel) 1531 cancel_delayed_work_sync(&disk->ev->dwork); 1532 1533 mutex_unlock(&ev->block_mutex); 1534 } 1535 1536 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1537 { 1538 struct disk_events *ev = disk->ev; 1539 unsigned long intv; 1540 unsigned long flags; 1541 1542 spin_lock_irqsave(&ev->lock, flags); 1543 1544 if (WARN_ON_ONCE(ev->block <= 0)) 1545 goto out_unlock; 1546 1547 if (--ev->block) 1548 goto out_unlock; 1549 1550 intv = disk_events_poll_jiffies(disk); 1551 if (check_now) 1552 queue_delayed_work(system_freezable_power_efficient_wq, 1553 &ev->dwork, 0); 1554 else if (intv) 1555 queue_delayed_work(system_freezable_power_efficient_wq, 1556 &ev->dwork, intv); 1557 out_unlock: 1558 spin_unlock_irqrestore(&ev->lock, flags); 1559 } 1560 1561 /** 1562 * disk_unblock_events - unblock disk event checking 1563 * @disk: disk to unblock events for 1564 * 1565 * Undo disk_block_events(). When the block count reaches zero, it 1566 * starts events polling if configured. 1567 * 1568 * CONTEXT: 1569 * Don't care. Safe to call from irq context. 1570 */ 1571 void disk_unblock_events(struct gendisk *disk) 1572 { 1573 if (disk->ev) 1574 __disk_unblock_events(disk, false); 1575 } 1576 1577 /** 1578 * disk_flush_events - schedule immediate event checking and flushing 1579 * @disk: disk to check and flush events for 1580 * @mask: events to flush 1581 * 1582 * Schedule immediate event checking on @disk if not blocked. Events in 1583 * @mask are scheduled to be cleared from the driver. Note that this 1584 * doesn't clear the events from @disk->ev. 1585 * 1586 * CONTEXT: 1587 * If @mask is non-zero must be called with bdev->bd_mutex held. 1588 */ 1589 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1590 { 1591 struct disk_events *ev = disk->ev; 1592 1593 if (!ev) 1594 return; 1595 1596 spin_lock_irq(&ev->lock); 1597 ev->clearing |= mask; 1598 if (!ev->block) 1599 mod_delayed_work(system_freezable_power_efficient_wq, 1600 &ev->dwork, 0); 1601 spin_unlock_irq(&ev->lock); 1602 } 1603 1604 /** 1605 * disk_clear_events - synchronously check, clear and return pending events 1606 * @disk: disk to fetch and clear events from 1607 * @mask: mask of events to be fetched and cleared 1608 * 1609 * Disk events are synchronously checked and pending events in @mask 1610 * are cleared and returned. This ignores the block count. 1611 * 1612 * CONTEXT: 1613 * Might sleep. 1614 */ 1615 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1616 { 1617 const struct block_device_operations *bdops = disk->fops; 1618 struct disk_events *ev = disk->ev; 1619 unsigned int pending; 1620 unsigned int clearing = mask; 1621 1622 if (!ev) { 1623 /* for drivers still using the old ->media_changed method */ 1624 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1625 bdops->media_changed && bdops->media_changed(disk)) 1626 return DISK_EVENT_MEDIA_CHANGE; 1627 return 0; 1628 } 1629 1630 disk_block_events(disk); 1631 1632 /* 1633 * store the union of mask and ev->clearing on the stack so that the 1634 * race with disk_flush_events does not cause ambiguity (ev->clearing 1635 * can still be modified even if events are blocked). 1636 */ 1637 spin_lock_irq(&ev->lock); 1638 clearing |= ev->clearing; 1639 ev->clearing = 0; 1640 spin_unlock_irq(&ev->lock); 1641 1642 disk_check_events(ev, &clearing); 1643 /* 1644 * if ev->clearing is not 0, the disk_flush_events got called in the 1645 * middle of this function, so we want to run the workfn without delay. 1646 */ 1647 __disk_unblock_events(disk, ev->clearing ? true : false); 1648 1649 /* then, fetch and clear pending events */ 1650 spin_lock_irq(&ev->lock); 1651 pending = ev->pending & mask; 1652 ev->pending &= ~mask; 1653 spin_unlock_irq(&ev->lock); 1654 WARN_ON_ONCE(clearing & mask); 1655 1656 return pending; 1657 } 1658 1659 /* 1660 * Separate this part out so that a different pointer for clearing_ptr can be 1661 * passed in for disk_clear_events. 1662 */ 1663 static void disk_events_workfn(struct work_struct *work) 1664 { 1665 struct delayed_work *dwork = to_delayed_work(work); 1666 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1667 1668 disk_check_events(ev, &ev->clearing); 1669 } 1670 1671 static void disk_check_events(struct disk_events *ev, 1672 unsigned int *clearing_ptr) 1673 { 1674 struct gendisk *disk = ev->disk; 1675 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1676 unsigned int clearing = *clearing_ptr; 1677 unsigned int events; 1678 unsigned long intv; 1679 int nr_events = 0, i; 1680 1681 /* check events */ 1682 events = disk->fops->check_events(disk, clearing); 1683 1684 /* accumulate pending events and schedule next poll if necessary */ 1685 spin_lock_irq(&ev->lock); 1686 1687 events &= ~ev->pending; 1688 ev->pending |= events; 1689 *clearing_ptr &= ~clearing; 1690 1691 intv = disk_events_poll_jiffies(disk); 1692 if (!ev->block && intv) 1693 queue_delayed_work(system_freezable_power_efficient_wq, 1694 &ev->dwork, intv); 1695 1696 spin_unlock_irq(&ev->lock); 1697 1698 /* 1699 * Tell userland about new events. Only the events listed in 1700 * @disk->events are reported. Unlisted events are processed the 1701 * same internally but never get reported to userland. 1702 */ 1703 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1704 if (events & disk->events & (1 << i)) 1705 envp[nr_events++] = disk_uevents[i]; 1706 1707 if (nr_events) 1708 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1709 } 1710 1711 /* 1712 * A disk events enabled device has the following sysfs nodes under 1713 * its /sys/block/X/ directory. 1714 * 1715 * events : list of all supported events 1716 * events_async : list of events which can be detected w/o polling 1717 * events_poll_msecs : polling interval, 0: disable, -1: system default 1718 */ 1719 static ssize_t __disk_events_show(unsigned int events, char *buf) 1720 { 1721 const char *delim = ""; 1722 ssize_t pos = 0; 1723 int i; 1724 1725 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1726 if (events & (1 << i)) { 1727 pos += sprintf(buf + pos, "%s%s", 1728 delim, disk_events_strs[i]); 1729 delim = " "; 1730 } 1731 if (pos) 1732 pos += sprintf(buf + pos, "\n"); 1733 return pos; 1734 } 1735 1736 static ssize_t disk_events_show(struct device *dev, 1737 struct device_attribute *attr, char *buf) 1738 { 1739 struct gendisk *disk = dev_to_disk(dev); 1740 1741 return __disk_events_show(disk->events, buf); 1742 } 1743 1744 static ssize_t disk_events_async_show(struct device *dev, 1745 struct device_attribute *attr, char *buf) 1746 { 1747 struct gendisk *disk = dev_to_disk(dev); 1748 1749 return __disk_events_show(disk->async_events, buf); 1750 } 1751 1752 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1753 struct device_attribute *attr, 1754 char *buf) 1755 { 1756 struct gendisk *disk = dev_to_disk(dev); 1757 1758 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1759 } 1760 1761 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1762 struct device_attribute *attr, 1763 const char *buf, size_t count) 1764 { 1765 struct gendisk *disk = dev_to_disk(dev); 1766 long intv; 1767 1768 if (!count || !sscanf(buf, "%ld", &intv)) 1769 return -EINVAL; 1770 1771 if (intv < 0 && intv != -1) 1772 return -EINVAL; 1773 1774 disk_block_events(disk); 1775 disk->ev->poll_msecs = intv; 1776 __disk_unblock_events(disk, true); 1777 1778 return count; 1779 } 1780 1781 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1782 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1783 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1784 disk_events_poll_msecs_show, 1785 disk_events_poll_msecs_store); 1786 1787 static const struct attribute *disk_events_attrs[] = { 1788 &dev_attr_events.attr, 1789 &dev_attr_events_async.attr, 1790 &dev_attr_events_poll_msecs.attr, 1791 NULL, 1792 }; 1793 1794 /* 1795 * The default polling interval can be specified by the kernel 1796 * parameter block.events_dfl_poll_msecs which defaults to 0 1797 * (disable). This can also be modified runtime by writing to 1798 * /sys/module/block/events_dfl_poll_msecs. 1799 */ 1800 static int disk_events_set_dfl_poll_msecs(const char *val, 1801 const struct kernel_param *kp) 1802 { 1803 struct disk_events *ev; 1804 int ret; 1805 1806 ret = param_set_ulong(val, kp); 1807 if (ret < 0) 1808 return ret; 1809 1810 mutex_lock(&disk_events_mutex); 1811 1812 list_for_each_entry(ev, &disk_events, node) 1813 disk_flush_events(ev->disk, 0); 1814 1815 mutex_unlock(&disk_events_mutex); 1816 1817 return 0; 1818 } 1819 1820 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1821 .set = disk_events_set_dfl_poll_msecs, 1822 .get = param_get_ulong, 1823 }; 1824 1825 #undef MODULE_PARAM_PREFIX 1826 #define MODULE_PARAM_PREFIX "block." 1827 1828 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1829 &disk_events_dfl_poll_msecs, 0644); 1830 1831 /* 1832 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1833 */ 1834 static void disk_alloc_events(struct gendisk *disk) 1835 { 1836 struct disk_events *ev; 1837 1838 if (!disk->fops->check_events) 1839 return; 1840 1841 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1842 if (!ev) { 1843 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1844 return; 1845 } 1846 1847 INIT_LIST_HEAD(&ev->node); 1848 ev->disk = disk; 1849 spin_lock_init(&ev->lock); 1850 mutex_init(&ev->block_mutex); 1851 ev->block = 1; 1852 ev->poll_msecs = -1; 1853 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1854 1855 disk->ev = ev; 1856 } 1857 1858 static void disk_add_events(struct gendisk *disk) 1859 { 1860 if (!disk->ev) 1861 return; 1862 1863 /* FIXME: error handling */ 1864 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 1865 pr_warn("%s: failed to create sysfs files for events\n", 1866 disk->disk_name); 1867 1868 mutex_lock(&disk_events_mutex); 1869 list_add_tail(&disk->ev->node, &disk_events); 1870 mutex_unlock(&disk_events_mutex); 1871 1872 /* 1873 * Block count is initialized to 1 and the following initial 1874 * unblock kicks it into action. 1875 */ 1876 __disk_unblock_events(disk, true); 1877 } 1878 1879 static void disk_del_events(struct gendisk *disk) 1880 { 1881 if (!disk->ev) 1882 return; 1883 1884 disk_block_events(disk); 1885 1886 mutex_lock(&disk_events_mutex); 1887 list_del_init(&disk->ev->node); 1888 mutex_unlock(&disk_events_mutex); 1889 1890 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1891 } 1892 1893 static void disk_release_events(struct gendisk *disk) 1894 { 1895 /* the block count should be 1 from disk_del_events() */ 1896 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1897 kfree(disk->ev); 1898 } 1899