1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * gendisk handling 4 */ 5 6 #include <linux/module.h> 7 #include <linux/ctype.h> 8 #include <linux/fs.h> 9 #include <linux/genhd.h> 10 #include <linux/kdev_t.h> 11 #include <linux/kernel.h> 12 #include <linux/blkdev.h> 13 #include <linux/backing-dev.h> 14 #include <linux/init.h> 15 #include <linux/spinlock.h> 16 #include <linux/proc_fs.h> 17 #include <linux/seq_file.h> 18 #include <linux/slab.h> 19 #include <linux/kmod.h> 20 #include <linux/kobj_map.h> 21 #include <linux/mutex.h> 22 #include <linux/idr.h> 23 #include <linux/log2.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/badblocks.h> 26 27 #include "blk.h" 28 29 static DEFINE_MUTEX(block_class_lock); 30 static struct kobject *block_depr; 31 32 /* for extended dynamic devt allocation, currently only one major is used */ 33 #define NR_EXT_DEVT (1 << MINORBITS) 34 35 /* For extended devt allocation. ext_devt_lock prevents look up 36 * results from going away underneath its user. 37 */ 38 static DEFINE_SPINLOCK(ext_devt_lock); 39 static DEFINE_IDR(ext_devt_idr); 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 /* 49 * Set disk capacity and notify if the size is not currently 50 * zero and will not be set to zero 51 */ 52 void set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size, 53 bool update_bdev) 54 { 55 sector_t capacity = get_capacity(disk); 56 57 set_capacity(disk, size); 58 if (update_bdev) 59 revalidate_disk_size(disk, true); 60 61 if (capacity != size && capacity != 0 && size != 0) { 62 char *envp[] = { "RESIZE=1", NULL }; 63 64 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 65 } 66 } 67 68 EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify); 69 70 /* 71 * Format the device name of the indicated disk into the supplied buffer and 72 * return a pointer to that same buffer for convenience. 73 */ 74 char *disk_name(struct gendisk *hd, int partno, char *buf) 75 { 76 if (!partno) 77 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name); 78 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1])) 79 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno); 80 else 81 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno); 82 83 return buf; 84 } 85 86 const char *bdevname(struct block_device *bdev, char *buf) 87 { 88 return disk_name(bdev->bd_disk, bdev->bd_partno, buf); 89 } 90 EXPORT_SYMBOL(bdevname); 91 92 static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat) 93 { 94 int cpu; 95 96 memset(stat, 0, sizeof(struct disk_stats)); 97 for_each_possible_cpu(cpu) { 98 struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu); 99 int group; 100 101 for (group = 0; group < NR_STAT_GROUPS; group++) { 102 stat->nsecs[group] += ptr->nsecs[group]; 103 stat->sectors[group] += ptr->sectors[group]; 104 stat->ios[group] += ptr->ios[group]; 105 stat->merges[group] += ptr->merges[group]; 106 } 107 108 stat->io_ticks += ptr->io_ticks; 109 } 110 } 111 112 static unsigned int part_in_flight(struct hd_struct *part) 113 { 114 unsigned int inflight = 0; 115 int cpu; 116 117 for_each_possible_cpu(cpu) { 118 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) + 119 part_stat_local_read_cpu(part, in_flight[1], cpu); 120 } 121 if ((int)inflight < 0) 122 inflight = 0; 123 124 return inflight; 125 } 126 127 static void part_in_flight_rw(struct hd_struct *part, unsigned int inflight[2]) 128 { 129 int cpu; 130 131 inflight[0] = 0; 132 inflight[1] = 0; 133 for_each_possible_cpu(cpu) { 134 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu); 135 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu); 136 } 137 if ((int)inflight[0] < 0) 138 inflight[0] = 0; 139 if ((int)inflight[1] < 0) 140 inflight[1] = 0; 141 } 142 143 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno) 144 { 145 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl); 146 147 if (unlikely(partno < 0 || partno >= ptbl->len)) 148 return NULL; 149 return rcu_dereference(ptbl->part[partno]); 150 } 151 152 /** 153 * disk_get_part - get partition 154 * @disk: disk to look partition from 155 * @partno: partition number 156 * 157 * Look for partition @partno from @disk. If found, increment 158 * reference count and return it. 159 * 160 * CONTEXT: 161 * Don't care. 162 * 163 * RETURNS: 164 * Pointer to the found partition on success, NULL if not found. 165 */ 166 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 167 { 168 struct hd_struct *part; 169 170 rcu_read_lock(); 171 part = __disk_get_part(disk, partno); 172 if (part) 173 get_device(part_to_dev(part)); 174 rcu_read_unlock(); 175 176 return part; 177 } 178 179 /** 180 * disk_part_iter_init - initialize partition iterator 181 * @piter: iterator to initialize 182 * @disk: disk to iterate over 183 * @flags: DISK_PITER_* flags 184 * 185 * Initialize @piter so that it iterates over partitions of @disk. 186 * 187 * CONTEXT: 188 * Don't care. 189 */ 190 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 191 unsigned int flags) 192 { 193 struct disk_part_tbl *ptbl; 194 195 rcu_read_lock(); 196 ptbl = rcu_dereference(disk->part_tbl); 197 198 piter->disk = disk; 199 piter->part = NULL; 200 201 if (flags & DISK_PITER_REVERSE) 202 piter->idx = ptbl->len - 1; 203 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 204 piter->idx = 0; 205 else 206 piter->idx = 1; 207 208 piter->flags = flags; 209 210 rcu_read_unlock(); 211 } 212 EXPORT_SYMBOL_GPL(disk_part_iter_init); 213 214 /** 215 * disk_part_iter_next - proceed iterator to the next partition and return it 216 * @piter: iterator of interest 217 * 218 * Proceed @piter to the next partition and return it. 219 * 220 * CONTEXT: 221 * Don't care. 222 */ 223 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 224 { 225 struct disk_part_tbl *ptbl; 226 int inc, end; 227 228 /* put the last partition */ 229 disk_put_part(piter->part); 230 piter->part = NULL; 231 232 /* get part_tbl */ 233 rcu_read_lock(); 234 ptbl = rcu_dereference(piter->disk->part_tbl); 235 236 /* determine iteration parameters */ 237 if (piter->flags & DISK_PITER_REVERSE) { 238 inc = -1; 239 if (piter->flags & (DISK_PITER_INCL_PART0 | 240 DISK_PITER_INCL_EMPTY_PART0)) 241 end = -1; 242 else 243 end = 0; 244 } else { 245 inc = 1; 246 end = ptbl->len; 247 } 248 249 /* iterate to the next partition */ 250 for (; piter->idx != end; piter->idx += inc) { 251 struct hd_struct *part; 252 253 part = rcu_dereference(ptbl->part[piter->idx]); 254 if (!part) 255 continue; 256 if (!part_nr_sects_read(part) && 257 !(piter->flags & DISK_PITER_INCL_EMPTY) && 258 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 259 piter->idx == 0)) 260 continue; 261 262 get_device(part_to_dev(part)); 263 piter->part = part; 264 piter->idx += inc; 265 break; 266 } 267 268 rcu_read_unlock(); 269 270 return piter->part; 271 } 272 EXPORT_SYMBOL_GPL(disk_part_iter_next); 273 274 /** 275 * disk_part_iter_exit - finish up partition iteration 276 * @piter: iter of interest 277 * 278 * Called when iteration is over. Cleans up @piter. 279 * 280 * CONTEXT: 281 * Don't care. 282 */ 283 void disk_part_iter_exit(struct disk_part_iter *piter) 284 { 285 disk_put_part(piter->part); 286 piter->part = NULL; 287 } 288 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 289 290 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 291 { 292 return part->start_sect <= sector && 293 sector < part->start_sect + part_nr_sects_read(part); 294 } 295 296 /** 297 * disk_map_sector_rcu - map sector to partition 298 * @disk: gendisk of interest 299 * @sector: sector to map 300 * 301 * Find out which partition @sector maps to on @disk. This is 302 * primarily used for stats accounting. 303 * 304 * CONTEXT: 305 * RCU read locked. The returned partition pointer is always valid 306 * because its refcount is grabbed except for part0, which lifetime 307 * is same with the disk. 308 * 309 * RETURNS: 310 * Found partition on success, part0 is returned if no partition matches 311 * or the matched partition is being deleted. 312 */ 313 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 314 { 315 struct disk_part_tbl *ptbl; 316 struct hd_struct *part; 317 int i; 318 319 rcu_read_lock(); 320 ptbl = rcu_dereference(disk->part_tbl); 321 322 part = rcu_dereference(ptbl->last_lookup); 323 if (part && sector_in_part(part, sector) && hd_struct_try_get(part)) 324 goto out_unlock; 325 326 for (i = 1; i < ptbl->len; i++) { 327 part = rcu_dereference(ptbl->part[i]); 328 329 if (part && sector_in_part(part, sector)) { 330 /* 331 * only live partition can be cached for lookup, 332 * so use-after-free on cached & deleting partition 333 * can be avoided 334 */ 335 if (!hd_struct_try_get(part)) 336 break; 337 rcu_assign_pointer(ptbl->last_lookup, part); 338 goto out_unlock; 339 } 340 } 341 342 part = &disk->part0; 343 out_unlock: 344 rcu_read_unlock(); 345 return part; 346 } 347 348 /** 349 * disk_has_partitions 350 * @disk: gendisk of interest 351 * 352 * Walk through the partition table and check if valid partition exists. 353 * 354 * CONTEXT: 355 * Don't care. 356 * 357 * RETURNS: 358 * True if the gendisk has at least one valid non-zero size partition. 359 * Otherwise false. 360 */ 361 bool disk_has_partitions(struct gendisk *disk) 362 { 363 struct disk_part_tbl *ptbl; 364 int i; 365 bool ret = false; 366 367 rcu_read_lock(); 368 ptbl = rcu_dereference(disk->part_tbl); 369 370 /* Iterate partitions skipping the whole device at index 0 */ 371 for (i = 1; i < ptbl->len; i++) { 372 if (rcu_dereference(ptbl->part[i])) { 373 ret = true; 374 break; 375 } 376 } 377 378 rcu_read_unlock(); 379 380 return ret; 381 } 382 EXPORT_SYMBOL_GPL(disk_has_partitions); 383 384 /* 385 * Can be deleted altogether. Later. 386 * 387 */ 388 #define BLKDEV_MAJOR_HASH_SIZE 255 389 static struct blk_major_name { 390 struct blk_major_name *next; 391 int major; 392 char name[16]; 393 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 394 395 /* index in the above - for now: assume no multimajor ranges */ 396 static inline int major_to_index(unsigned major) 397 { 398 return major % BLKDEV_MAJOR_HASH_SIZE; 399 } 400 401 #ifdef CONFIG_PROC_FS 402 void blkdev_show(struct seq_file *seqf, off_t offset) 403 { 404 struct blk_major_name *dp; 405 406 mutex_lock(&block_class_lock); 407 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) 408 if (dp->major == offset) 409 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 410 mutex_unlock(&block_class_lock); 411 } 412 #endif /* CONFIG_PROC_FS */ 413 414 /** 415 * register_blkdev - register a new block device 416 * 417 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If 418 * @major = 0, try to allocate any unused major number. 419 * @name: the name of the new block device as a zero terminated string 420 * 421 * The @name must be unique within the system. 422 * 423 * The return value depends on the @major input parameter: 424 * 425 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] 426 * then the function returns zero on success, or a negative error code 427 * - if any unused major number was requested with @major = 0 parameter 428 * then the return value is the allocated major number in range 429 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise 430 * 431 * See Documentation/admin-guide/devices.txt for the list of allocated 432 * major numbers. 433 */ 434 int register_blkdev(unsigned int major, const char *name) 435 { 436 struct blk_major_name **n, *p; 437 int index, ret = 0; 438 439 mutex_lock(&block_class_lock); 440 441 /* temporary */ 442 if (major == 0) { 443 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 444 if (major_names[index] == NULL) 445 break; 446 } 447 448 if (index == 0) { 449 printk("%s: failed to get major for %s\n", 450 __func__, name); 451 ret = -EBUSY; 452 goto out; 453 } 454 major = index; 455 ret = major; 456 } 457 458 if (major >= BLKDEV_MAJOR_MAX) { 459 pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n", 460 __func__, major, BLKDEV_MAJOR_MAX-1, name); 461 462 ret = -EINVAL; 463 goto out; 464 } 465 466 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 467 if (p == NULL) { 468 ret = -ENOMEM; 469 goto out; 470 } 471 472 p->major = major; 473 strlcpy(p->name, name, sizeof(p->name)); 474 p->next = NULL; 475 index = major_to_index(major); 476 477 for (n = &major_names[index]; *n; n = &(*n)->next) { 478 if ((*n)->major == major) 479 break; 480 } 481 if (!*n) 482 *n = p; 483 else 484 ret = -EBUSY; 485 486 if (ret < 0) { 487 printk("register_blkdev: cannot get major %u for %s\n", 488 major, name); 489 kfree(p); 490 } 491 out: 492 mutex_unlock(&block_class_lock); 493 return ret; 494 } 495 496 EXPORT_SYMBOL(register_blkdev); 497 498 void unregister_blkdev(unsigned int major, const char *name) 499 { 500 struct blk_major_name **n; 501 struct blk_major_name *p = NULL; 502 int index = major_to_index(major); 503 504 mutex_lock(&block_class_lock); 505 for (n = &major_names[index]; *n; n = &(*n)->next) 506 if ((*n)->major == major) 507 break; 508 if (!*n || strcmp((*n)->name, name)) { 509 WARN_ON(1); 510 } else { 511 p = *n; 512 *n = p->next; 513 } 514 mutex_unlock(&block_class_lock); 515 kfree(p); 516 } 517 518 EXPORT_SYMBOL(unregister_blkdev); 519 520 static struct kobj_map *bdev_map; 521 522 /** 523 * blk_mangle_minor - scatter minor numbers apart 524 * @minor: minor number to mangle 525 * 526 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 527 * is enabled. Mangling twice gives the original value. 528 * 529 * RETURNS: 530 * Mangled value. 531 * 532 * CONTEXT: 533 * Don't care. 534 */ 535 static int blk_mangle_minor(int minor) 536 { 537 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 538 int i; 539 540 for (i = 0; i < MINORBITS / 2; i++) { 541 int low = minor & (1 << i); 542 int high = minor & (1 << (MINORBITS - 1 - i)); 543 int distance = MINORBITS - 1 - 2 * i; 544 545 minor ^= low | high; /* clear both bits */ 546 low <<= distance; /* swap the positions */ 547 high >>= distance; 548 minor |= low | high; /* and set */ 549 } 550 #endif 551 return minor; 552 } 553 554 /** 555 * blk_alloc_devt - allocate a dev_t for a partition 556 * @part: partition to allocate dev_t for 557 * @devt: out parameter for resulting dev_t 558 * 559 * Allocate a dev_t for block device. 560 * 561 * RETURNS: 562 * 0 on success, allocated dev_t is returned in *@devt. -errno on 563 * failure. 564 * 565 * CONTEXT: 566 * Might sleep. 567 */ 568 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 569 { 570 struct gendisk *disk = part_to_disk(part); 571 int idx; 572 573 /* in consecutive minor range? */ 574 if (part->partno < disk->minors) { 575 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 576 return 0; 577 } 578 579 /* allocate ext devt */ 580 idr_preload(GFP_KERNEL); 581 582 spin_lock_bh(&ext_devt_lock); 583 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 584 spin_unlock_bh(&ext_devt_lock); 585 586 idr_preload_end(); 587 if (idx < 0) 588 return idx == -ENOSPC ? -EBUSY : idx; 589 590 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 591 return 0; 592 } 593 594 /** 595 * blk_free_devt - free a dev_t 596 * @devt: dev_t to free 597 * 598 * Free @devt which was allocated using blk_alloc_devt(). 599 * 600 * CONTEXT: 601 * Might sleep. 602 */ 603 void blk_free_devt(dev_t devt) 604 { 605 if (devt == MKDEV(0, 0)) 606 return; 607 608 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 609 spin_lock_bh(&ext_devt_lock); 610 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 611 spin_unlock_bh(&ext_devt_lock); 612 } 613 } 614 615 /* 616 * We invalidate devt by assigning NULL pointer for devt in idr. 617 */ 618 void blk_invalidate_devt(dev_t devt) 619 { 620 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 621 spin_lock_bh(&ext_devt_lock); 622 idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt))); 623 spin_unlock_bh(&ext_devt_lock); 624 } 625 } 626 627 static char *bdevt_str(dev_t devt, char *buf) 628 { 629 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 630 char tbuf[BDEVT_SIZE]; 631 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 632 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 633 } else 634 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 635 636 return buf; 637 } 638 639 /* 640 * Register device numbers dev..(dev+range-1) 641 * range must be nonzero 642 * The hash chain is sorted on range, so that subranges can override. 643 */ 644 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 645 struct kobject *(*probe)(dev_t, int *, void *), 646 int (*lock)(dev_t, void *), void *data) 647 { 648 kobj_map(bdev_map, devt, range, module, probe, lock, data); 649 } 650 651 EXPORT_SYMBOL(blk_register_region); 652 653 void blk_unregister_region(dev_t devt, unsigned long range) 654 { 655 kobj_unmap(bdev_map, devt, range); 656 } 657 658 EXPORT_SYMBOL(blk_unregister_region); 659 660 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 661 { 662 struct gendisk *p = data; 663 664 return &disk_to_dev(p)->kobj; 665 } 666 667 static int exact_lock(dev_t devt, void *data) 668 { 669 struct gendisk *p = data; 670 671 if (!get_disk_and_module(p)) 672 return -1; 673 return 0; 674 } 675 676 static void disk_scan_partitions(struct gendisk *disk) 677 { 678 struct block_device *bdev; 679 680 if (!get_capacity(disk) || !disk_part_scan_enabled(disk)) 681 return; 682 683 set_bit(GD_NEED_PART_SCAN, &disk->state); 684 bdev = blkdev_get_by_dev(disk_devt(disk), FMODE_READ, NULL); 685 if (!IS_ERR(bdev)) 686 blkdev_put(bdev, FMODE_READ); 687 } 688 689 static void register_disk(struct device *parent, struct gendisk *disk, 690 const struct attribute_group **groups) 691 { 692 struct device *ddev = disk_to_dev(disk); 693 struct disk_part_iter piter; 694 struct hd_struct *part; 695 int err; 696 697 ddev->parent = parent; 698 699 dev_set_name(ddev, "%s", disk->disk_name); 700 701 /* delay uevents, until we scanned partition table */ 702 dev_set_uevent_suppress(ddev, 1); 703 704 if (groups) { 705 WARN_ON(ddev->groups); 706 ddev->groups = groups; 707 } 708 if (device_add(ddev)) 709 return; 710 if (!sysfs_deprecated) { 711 err = sysfs_create_link(block_depr, &ddev->kobj, 712 kobject_name(&ddev->kobj)); 713 if (err) { 714 device_del(ddev); 715 return; 716 } 717 } 718 719 /* 720 * avoid probable deadlock caused by allocating memory with 721 * GFP_KERNEL in runtime_resume callback of its all ancestor 722 * devices 723 */ 724 pm_runtime_set_memalloc_noio(ddev, true); 725 726 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 727 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 728 729 if (disk->flags & GENHD_FL_HIDDEN) { 730 dev_set_uevent_suppress(ddev, 0); 731 return; 732 } 733 734 disk_scan_partitions(disk); 735 736 /* announce disk after possible partitions are created */ 737 dev_set_uevent_suppress(ddev, 0); 738 kobject_uevent(&ddev->kobj, KOBJ_ADD); 739 740 /* announce possible partitions */ 741 disk_part_iter_init(&piter, disk, 0); 742 while ((part = disk_part_iter_next(&piter))) 743 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 744 disk_part_iter_exit(&piter); 745 746 if (disk->queue->backing_dev_info->dev) { 747 err = sysfs_create_link(&ddev->kobj, 748 &disk->queue->backing_dev_info->dev->kobj, 749 "bdi"); 750 WARN_ON(err); 751 } 752 } 753 754 /** 755 * __device_add_disk - add disk information to kernel list 756 * @parent: parent device for the disk 757 * @disk: per-device partitioning information 758 * @groups: Additional per-device sysfs groups 759 * @register_queue: register the queue if set to true 760 * 761 * This function registers the partitioning information in @disk 762 * with the kernel. 763 * 764 * FIXME: error handling 765 */ 766 static void __device_add_disk(struct device *parent, struct gendisk *disk, 767 const struct attribute_group **groups, 768 bool register_queue) 769 { 770 dev_t devt; 771 int retval; 772 773 /* 774 * The disk queue should now be all set with enough information about 775 * the device for the elevator code to pick an adequate default 776 * elevator if one is needed, that is, for devices requesting queue 777 * registration. 778 */ 779 if (register_queue) 780 elevator_init_mq(disk->queue); 781 782 /* minors == 0 indicates to use ext devt from part0 and should 783 * be accompanied with EXT_DEVT flag. Make sure all 784 * parameters make sense. 785 */ 786 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 787 WARN_ON(!disk->minors && 788 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN))); 789 790 disk->flags |= GENHD_FL_UP; 791 792 retval = blk_alloc_devt(&disk->part0, &devt); 793 if (retval) { 794 WARN_ON(1); 795 return; 796 } 797 disk->major = MAJOR(devt); 798 disk->first_minor = MINOR(devt); 799 800 disk_alloc_events(disk); 801 802 if (disk->flags & GENHD_FL_HIDDEN) { 803 /* 804 * Don't let hidden disks show up in /proc/partitions, 805 * and don't bother scanning for partitions either. 806 */ 807 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 808 disk->flags |= GENHD_FL_NO_PART_SCAN; 809 } else { 810 struct backing_dev_info *bdi = disk->queue->backing_dev_info; 811 struct device *dev = disk_to_dev(disk); 812 int ret; 813 814 /* Register BDI before referencing it from bdev */ 815 dev->devt = devt; 816 ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt)); 817 WARN_ON(ret); 818 bdi_set_owner(bdi, dev); 819 blk_register_region(disk_devt(disk), disk->minors, NULL, 820 exact_match, exact_lock, disk); 821 } 822 register_disk(parent, disk, groups); 823 if (register_queue) 824 blk_register_queue(disk); 825 826 /* 827 * Take an extra ref on queue which will be put on disk_release() 828 * so that it sticks around as long as @disk is there. 829 */ 830 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 831 832 disk_add_events(disk); 833 blk_integrity_add(disk); 834 } 835 836 void device_add_disk(struct device *parent, struct gendisk *disk, 837 const struct attribute_group **groups) 838 839 { 840 __device_add_disk(parent, disk, groups, true); 841 } 842 EXPORT_SYMBOL(device_add_disk); 843 844 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk) 845 { 846 __device_add_disk(parent, disk, NULL, false); 847 } 848 EXPORT_SYMBOL(device_add_disk_no_queue_reg); 849 850 static void invalidate_partition(struct gendisk *disk, int partno) 851 { 852 struct block_device *bdev; 853 854 bdev = bdget_disk(disk, partno); 855 if (!bdev) 856 return; 857 858 fsync_bdev(bdev); 859 __invalidate_device(bdev, true); 860 861 /* 862 * Unhash the bdev inode for this device so that it gets evicted as soon 863 * as last inode reference is dropped. 864 */ 865 remove_inode_hash(bdev->bd_inode); 866 bdput(bdev); 867 } 868 869 /** 870 * del_gendisk - remove the gendisk 871 * @disk: the struct gendisk to remove 872 * 873 * Removes the gendisk and all its associated resources. This deletes the 874 * partitions associated with the gendisk, and unregisters the associated 875 * request_queue. 876 * 877 * This is the counter to the respective __device_add_disk() call. 878 * 879 * The final removal of the struct gendisk happens when its refcount reaches 0 880 * with put_disk(), which should be called after del_gendisk(), if 881 * __device_add_disk() was used. 882 * 883 * Drivers exist which depend on the release of the gendisk to be synchronous, 884 * it should not be deferred. 885 * 886 * Context: can sleep 887 */ 888 void del_gendisk(struct gendisk *disk) 889 { 890 struct disk_part_iter piter; 891 struct hd_struct *part; 892 893 might_sleep(); 894 895 blk_integrity_del(disk); 896 disk_del_events(disk); 897 898 /* 899 * Block lookups of the disk until all bdevs are unhashed and the 900 * disk is marked as dead (GENHD_FL_UP cleared). 901 */ 902 down_write(&disk->lookup_sem); 903 /* invalidate stuff */ 904 disk_part_iter_init(&piter, disk, 905 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 906 while ((part = disk_part_iter_next(&piter))) { 907 invalidate_partition(disk, part->partno); 908 delete_partition(part); 909 } 910 disk_part_iter_exit(&piter); 911 912 invalidate_partition(disk, 0); 913 set_capacity(disk, 0); 914 disk->flags &= ~GENHD_FL_UP; 915 up_write(&disk->lookup_sem); 916 917 if (!(disk->flags & GENHD_FL_HIDDEN)) 918 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 919 if (disk->queue) { 920 /* 921 * Unregister bdi before releasing device numbers (as they can 922 * get reused and we'd get clashes in sysfs). 923 */ 924 if (!(disk->flags & GENHD_FL_HIDDEN)) 925 bdi_unregister(disk->queue->backing_dev_info); 926 blk_unregister_queue(disk); 927 } else { 928 WARN_ON(1); 929 } 930 931 if (!(disk->flags & GENHD_FL_HIDDEN)) 932 blk_unregister_region(disk_devt(disk), disk->minors); 933 /* 934 * Remove gendisk pointer from idr so that it cannot be looked up 935 * while RCU period before freeing gendisk is running to prevent 936 * use-after-free issues. Note that the device number stays 937 * "in-use" until we really free the gendisk. 938 */ 939 blk_invalidate_devt(disk_devt(disk)); 940 941 kobject_put(disk->part0.holder_dir); 942 kobject_put(disk->slave_dir); 943 944 part_stat_set_all(&disk->part0, 0); 945 disk->part0.stamp = 0; 946 if (!sysfs_deprecated) 947 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 948 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 949 device_del(disk_to_dev(disk)); 950 } 951 EXPORT_SYMBOL(del_gendisk); 952 953 /* sysfs access to bad-blocks list. */ 954 static ssize_t disk_badblocks_show(struct device *dev, 955 struct device_attribute *attr, 956 char *page) 957 { 958 struct gendisk *disk = dev_to_disk(dev); 959 960 if (!disk->bb) 961 return sprintf(page, "\n"); 962 963 return badblocks_show(disk->bb, page, 0); 964 } 965 966 static ssize_t disk_badblocks_store(struct device *dev, 967 struct device_attribute *attr, 968 const char *page, size_t len) 969 { 970 struct gendisk *disk = dev_to_disk(dev); 971 972 if (!disk->bb) 973 return -ENXIO; 974 975 return badblocks_store(disk->bb, page, len, 0); 976 } 977 978 /** 979 * get_gendisk - get partitioning information for a given device 980 * @devt: device to get partitioning information for 981 * @partno: returned partition index 982 * 983 * This function gets the structure containing partitioning 984 * information for the given device @devt. 985 * 986 * Context: can sleep 987 */ 988 struct gendisk *get_gendisk(dev_t devt, int *partno) 989 { 990 struct gendisk *disk = NULL; 991 992 might_sleep(); 993 994 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 995 struct kobject *kobj; 996 997 kobj = kobj_lookup(bdev_map, devt, partno); 998 if (kobj) 999 disk = dev_to_disk(kobj_to_dev(kobj)); 1000 } else { 1001 struct hd_struct *part; 1002 1003 spin_lock_bh(&ext_devt_lock); 1004 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 1005 if (part && get_disk_and_module(part_to_disk(part))) { 1006 *partno = part->partno; 1007 disk = part_to_disk(part); 1008 } 1009 spin_unlock_bh(&ext_devt_lock); 1010 } 1011 1012 if (!disk) 1013 return NULL; 1014 1015 /* 1016 * Synchronize with del_gendisk() to not return disk that is being 1017 * destroyed. 1018 */ 1019 down_read(&disk->lookup_sem); 1020 if (unlikely((disk->flags & GENHD_FL_HIDDEN) || 1021 !(disk->flags & GENHD_FL_UP))) { 1022 up_read(&disk->lookup_sem); 1023 put_disk_and_module(disk); 1024 disk = NULL; 1025 } else { 1026 up_read(&disk->lookup_sem); 1027 } 1028 return disk; 1029 } 1030 1031 /** 1032 * bdget_disk - do bdget() by gendisk and partition number 1033 * @disk: gendisk of interest 1034 * @partno: partition number 1035 * 1036 * Find partition @partno from @disk, do bdget() on it. 1037 * 1038 * CONTEXT: 1039 * Don't care. 1040 * 1041 * RETURNS: 1042 * Resulting block_device on success, NULL on failure. 1043 */ 1044 struct block_device *bdget_disk(struct gendisk *disk, int partno) 1045 { 1046 struct hd_struct *part; 1047 struct block_device *bdev = NULL; 1048 1049 part = disk_get_part(disk, partno); 1050 if (part) 1051 bdev = bdget_part(part); 1052 disk_put_part(part); 1053 1054 return bdev; 1055 } 1056 EXPORT_SYMBOL(bdget_disk); 1057 1058 /* 1059 * print a full list of all partitions - intended for places where the root 1060 * filesystem can't be mounted and thus to give the victim some idea of what 1061 * went wrong 1062 */ 1063 void __init printk_all_partitions(void) 1064 { 1065 struct class_dev_iter iter; 1066 struct device *dev; 1067 1068 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1069 while ((dev = class_dev_iter_next(&iter))) { 1070 struct gendisk *disk = dev_to_disk(dev); 1071 struct disk_part_iter piter; 1072 struct hd_struct *part; 1073 char name_buf[BDEVNAME_SIZE]; 1074 char devt_buf[BDEVT_SIZE]; 1075 1076 /* 1077 * Don't show empty devices or things that have been 1078 * suppressed 1079 */ 1080 if (get_capacity(disk) == 0 || 1081 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 1082 continue; 1083 1084 /* 1085 * Note, unlike /proc/partitions, I am showing the 1086 * numbers in hex - the same format as the root= 1087 * option takes. 1088 */ 1089 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 1090 while ((part = disk_part_iter_next(&piter))) { 1091 bool is_part0 = part == &disk->part0; 1092 1093 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 1094 bdevt_str(part_devt(part), devt_buf), 1095 (unsigned long long)part_nr_sects_read(part) >> 1 1096 , disk_name(disk, part->partno, name_buf), 1097 part->info ? part->info->uuid : ""); 1098 if (is_part0) { 1099 if (dev->parent && dev->parent->driver) 1100 printk(" driver: %s\n", 1101 dev->parent->driver->name); 1102 else 1103 printk(" (driver?)\n"); 1104 } else 1105 printk("\n"); 1106 } 1107 disk_part_iter_exit(&piter); 1108 } 1109 class_dev_iter_exit(&iter); 1110 } 1111 1112 #ifdef CONFIG_PROC_FS 1113 /* iterator */ 1114 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 1115 { 1116 loff_t skip = *pos; 1117 struct class_dev_iter *iter; 1118 struct device *dev; 1119 1120 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 1121 if (!iter) 1122 return ERR_PTR(-ENOMEM); 1123 1124 seqf->private = iter; 1125 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 1126 do { 1127 dev = class_dev_iter_next(iter); 1128 if (!dev) 1129 return NULL; 1130 } while (skip--); 1131 1132 return dev_to_disk(dev); 1133 } 1134 1135 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 1136 { 1137 struct device *dev; 1138 1139 (*pos)++; 1140 dev = class_dev_iter_next(seqf->private); 1141 if (dev) 1142 return dev_to_disk(dev); 1143 1144 return NULL; 1145 } 1146 1147 static void disk_seqf_stop(struct seq_file *seqf, void *v) 1148 { 1149 struct class_dev_iter *iter = seqf->private; 1150 1151 /* stop is called even after start failed :-( */ 1152 if (iter) { 1153 class_dev_iter_exit(iter); 1154 kfree(iter); 1155 seqf->private = NULL; 1156 } 1157 } 1158 1159 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 1160 { 1161 void *p; 1162 1163 p = disk_seqf_start(seqf, pos); 1164 if (!IS_ERR_OR_NULL(p) && !*pos) 1165 seq_puts(seqf, "major minor #blocks name\n\n"); 1166 return p; 1167 } 1168 1169 static int show_partition(struct seq_file *seqf, void *v) 1170 { 1171 struct gendisk *sgp = v; 1172 struct disk_part_iter piter; 1173 struct hd_struct *part; 1174 char buf[BDEVNAME_SIZE]; 1175 1176 /* Don't show non-partitionable removeable devices or empty devices */ 1177 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 1178 (sgp->flags & GENHD_FL_REMOVABLE))) 1179 return 0; 1180 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 1181 return 0; 1182 1183 /* show the full disk and all non-0 size partitions of it */ 1184 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 1185 while ((part = disk_part_iter_next(&piter))) 1186 seq_printf(seqf, "%4d %7d %10llu %s\n", 1187 MAJOR(part_devt(part)), MINOR(part_devt(part)), 1188 (unsigned long long)part_nr_sects_read(part) >> 1, 1189 disk_name(sgp, part->partno, buf)); 1190 disk_part_iter_exit(&piter); 1191 1192 return 0; 1193 } 1194 1195 static const struct seq_operations partitions_op = { 1196 .start = show_partition_start, 1197 .next = disk_seqf_next, 1198 .stop = disk_seqf_stop, 1199 .show = show_partition 1200 }; 1201 #endif 1202 1203 1204 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 1205 { 1206 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 1207 /* Make old-style 2.4 aliases work */ 1208 request_module("block-major-%d", MAJOR(devt)); 1209 return NULL; 1210 } 1211 1212 static int __init genhd_device_init(void) 1213 { 1214 int error; 1215 1216 block_class.dev_kobj = sysfs_dev_block_kobj; 1217 error = class_register(&block_class); 1218 if (unlikely(error)) 1219 return error; 1220 bdev_map = kobj_map_init(base_probe, &block_class_lock); 1221 blk_dev_init(); 1222 1223 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 1224 1225 /* create top-level block dir */ 1226 if (!sysfs_deprecated) 1227 block_depr = kobject_create_and_add("block", NULL); 1228 return 0; 1229 } 1230 1231 subsys_initcall(genhd_device_init); 1232 1233 static ssize_t disk_range_show(struct device *dev, 1234 struct device_attribute *attr, char *buf) 1235 { 1236 struct gendisk *disk = dev_to_disk(dev); 1237 1238 return sprintf(buf, "%d\n", disk->minors); 1239 } 1240 1241 static ssize_t disk_ext_range_show(struct device *dev, 1242 struct device_attribute *attr, char *buf) 1243 { 1244 struct gendisk *disk = dev_to_disk(dev); 1245 1246 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1247 } 1248 1249 static ssize_t disk_removable_show(struct device *dev, 1250 struct device_attribute *attr, char *buf) 1251 { 1252 struct gendisk *disk = dev_to_disk(dev); 1253 1254 return sprintf(buf, "%d\n", 1255 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1256 } 1257 1258 static ssize_t disk_hidden_show(struct device *dev, 1259 struct device_attribute *attr, char *buf) 1260 { 1261 struct gendisk *disk = dev_to_disk(dev); 1262 1263 return sprintf(buf, "%d\n", 1264 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); 1265 } 1266 1267 static ssize_t disk_ro_show(struct device *dev, 1268 struct device_attribute *attr, char *buf) 1269 { 1270 struct gendisk *disk = dev_to_disk(dev); 1271 1272 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1273 } 1274 1275 ssize_t part_size_show(struct device *dev, 1276 struct device_attribute *attr, char *buf) 1277 { 1278 struct hd_struct *p = dev_to_part(dev); 1279 1280 return sprintf(buf, "%llu\n", 1281 (unsigned long long)part_nr_sects_read(p)); 1282 } 1283 1284 ssize_t part_stat_show(struct device *dev, 1285 struct device_attribute *attr, char *buf) 1286 { 1287 struct hd_struct *p = dev_to_part(dev); 1288 struct request_queue *q = part_to_disk(p)->queue; 1289 struct disk_stats stat; 1290 unsigned int inflight; 1291 1292 part_stat_read_all(p, &stat); 1293 if (queue_is_mq(q)) 1294 inflight = blk_mq_in_flight(q, p); 1295 else 1296 inflight = part_in_flight(p); 1297 1298 return sprintf(buf, 1299 "%8lu %8lu %8llu %8u " 1300 "%8lu %8lu %8llu %8u " 1301 "%8u %8u %8u " 1302 "%8lu %8lu %8llu %8u " 1303 "%8lu %8u" 1304 "\n", 1305 stat.ios[STAT_READ], 1306 stat.merges[STAT_READ], 1307 (unsigned long long)stat.sectors[STAT_READ], 1308 (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC), 1309 stat.ios[STAT_WRITE], 1310 stat.merges[STAT_WRITE], 1311 (unsigned long long)stat.sectors[STAT_WRITE], 1312 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC), 1313 inflight, 1314 jiffies_to_msecs(stat.io_ticks), 1315 (unsigned int)div_u64(stat.nsecs[STAT_READ] + 1316 stat.nsecs[STAT_WRITE] + 1317 stat.nsecs[STAT_DISCARD] + 1318 stat.nsecs[STAT_FLUSH], 1319 NSEC_PER_MSEC), 1320 stat.ios[STAT_DISCARD], 1321 stat.merges[STAT_DISCARD], 1322 (unsigned long long)stat.sectors[STAT_DISCARD], 1323 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC), 1324 stat.ios[STAT_FLUSH], 1325 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC)); 1326 } 1327 1328 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 1329 char *buf) 1330 { 1331 struct hd_struct *p = dev_to_part(dev); 1332 struct request_queue *q = part_to_disk(p)->queue; 1333 unsigned int inflight[2]; 1334 1335 if (queue_is_mq(q)) 1336 blk_mq_in_flight_rw(q, p, inflight); 1337 else 1338 part_in_flight_rw(p, inflight); 1339 1340 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]); 1341 } 1342 1343 static ssize_t disk_capability_show(struct device *dev, 1344 struct device_attribute *attr, char *buf) 1345 { 1346 struct gendisk *disk = dev_to_disk(dev); 1347 1348 return sprintf(buf, "%x\n", disk->flags); 1349 } 1350 1351 static ssize_t disk_alignment_offset_show(struct device *dev, 1352 struct device_attribute *attr, 1353 char *buf) 1354 { 1355 struct gendisk *disk = dev_to_disk(dev); 1356 1357 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1358 } 1359 1360 static ssize_t disk_discard_alignment_show(struct device *dev, 1361 struct device_attribute *attr, 1362 char *buf) 1363 { 1364 struct gendisk *disk = dev_to_disk(dev); 1365 1366 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1367 } 1368 1369 static DEVICE_ATTR(range, 0444, disk_range_show, NULL); 1370 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL); 1371 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL); 1372 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL); 1373 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL); 1374 static DEVICE_ATTR(size, 0444, part_size_show, NULL); 1375 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL); 1376 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL); 1377 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL); 1378 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); 1379 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); 1380 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store); 1381 1382 #ifdef CONFIG_FAIL_MAKE_REQUEST 1383 ssize_t part_fail_show(struct device *dev, 1384 struct device_attribute *attr, char *buf) 1385 { 1386 struct hd_struct *p = dev_to_part(dev); 1387 1388 return sprintf(buf, "%d\n", p->make_it_fail); 1389 } 1390 1391 ssize_t part_fail_store(struct device *dev, 1392 struct device_attribute *attr, 1393 const char *buf, size_t count) 1394 { 1395 struct hd_struct *p = dev_to_part(dev); 1396 int i; 1397 1398 if (count > 0 && sscanf(buf, "%d", &i) > 0) 1399 p->make_it_fail = (i == 0) ? 0 : 1; 1400 1401 return count; 1402 } 1403 1404 static struct device_attribute dev_attr_fail = 1405 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); 1406 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1407 1408 #ifdef CONFIG_FAIL_IO_TIMEOUT 1409 static struct device_attribute dev_attr_fail_timeout = 1410 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store); 1411 #endif 1412 1413 static struct attribute *disk_attrs[] = { 1414 &dev_attr_range.attr, 1415 &dev_attr_ext_range.attr, 1416 &dev_attr_removable.attr, 1417 &dev_attr_hidden.attr, 1418 &dev_attr_ro.attr, 1419 &dev_attr_size.attr, 1420 &dev_attr_alignment_offset.attr, 1421 &dev_attr_discard_alignment.attr, 1422 &dev_attr_capability.attr, 1423 &dev_attr_stat.attr, 1424 &dev_attr_inflight.attr, 1425 &dev_attr_badblocks.attr, 1426 #ifdef CONFIG_FAIL_MAKE_REQUEST 1427 &dev_attr_fail.attr, 1428 #endif 1429 #ifdef CONFIG_FAIL_IO_TIMEOUT 1430 &dev_attr_fail_timeout.attr, 1431 #endif 1432 NULL 1433 }; 1434 1435 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1436 { 1437 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1438 struct gendisk *disk = dev_to_disk(dev); 1439 1440 if (a == &dev_attr_badblocks.attr && !disk->bb) 1441 return 0; 1442 return a->mode; 1443 } 1444 1445 static struct attribute_group disk_attr_group = { 1446 .attrs = disk_attrs, 1447 .is_visible = disk_visible, 1448 }; 1449 1450 static const struct attribute_group *disk_attr_groups[] = { 1451 &disk_attr_group, 1452 NULL 1453 }; 1454 1455 /** 1456 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1457 * @disk: disk to replace part_tbl for 1458 * @new_ptbl: new part_tbl to install 1459 * 1460 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1461 * original ptbl is freed using RCU callback. 1462 * 1463 * LOCKING: 1464 * Matching bd_mutex locked or the caller is the only user of @disk. 1465 */ 1466 static void disk_replace_part_tbl(struct gendisk *disk, 1467 struct disk_part_tbl *new_ptbl) 1468 { 1469 struct disk_part_tbl *old_ptbl = 1470 rcu_dereference_protected(disk->part_tbl, 1); 1471 1472 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1473 1474 if (old_ptbl) { 1475 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1476 kfree_rcu(old_ptbl, rcu_head); 1477 } 1478 } 1479 1480 /** 1481 * disk_expand_part_tbl - expand disk->part_tbl 1482 * @disk: disk to expand part_tbl for 1483 * @partno: expand such that this partno can fit in 1484 * 1485 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1486 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1487 * 1488 * LOCKING: 1489 * Matching bd_mutex locked or the caller is the only user of @disk. 1490 * Might sleep. 1491 * 1492 * RETURNS: 1493 * 0 on success, -errno on failure. 1494 */ 1495 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1496 { 1497 struct disk_part_tbl *old_ptbl = 1498 rcu_dereference_protected(disk->part_tbl, 1); 1499 struct disk_part_tbl *new_ptbl; 1500 int len = old_ptbl ? old_ptbl->len : 0; 1501 int i, target; 1502 1503 /* 1504 * check for int overflow, since we can get here from blkpg_ioctl() 1505 * with a user passed 'partno'. 1506 */ 1507 target = partno + 1; 1508 if (target < 0) 1509 return -EINVAL; 1510 1511 /* disk_max_parts() is zero during initialization, ignore if so */ 1512 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1513 return -EINVAL; 1514 1515 if (target <= len) 1516 return 0; 1517 1518 new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL, 1519 disk->node_id); 1520 if (!new_ptbl) 1521 return -ENOMEM; 1522 1523 new_ptbl->len = target; 1524 1525 for (i = 0; i < len; i++) 1526 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1527 1528 disk_replace_part_tbl(disk, new_ptbl); 1529 return 0; 1530 } 1531 1532 /** 1533 * disk_release - releases all allocated resources of the gendisk 1534 * @dev: the device representing this disk 1535 * 1536 * This function releases all allocated resources of the gendisk. 1537 * 1538 * The struct gendisk refcount is incremented with get_gendisk() or 1539 * get_disk_and_module(), and its refcount is decremented with 1540 * put_disk_and_module() or put_disk(). Once the refcount reaches 0 this 1541 * function is called. 1542 * 1543 * Drivers which used __device_add_disk() have a gendisk with a request_queue 1544 * assigned. Since the request_queue sits on top of the gendisk for these 1545 * drivers we also call blk_put_queue() for them, and we expect the 1546 * request_queue refcount to reach 0 at this point, and so the request_queue 1547 * will also be freed prior to the disk. 1548 * 1549 * Context: can sleep 1550 */ 1551 static void disk_release(struct device *dev) 1552 { 1553 struct gendisk *disk = dev_to_disk(dev); 1554 1555 might_sleep(); 1556 1557 blk_free_devt(dev->devt); 1558 disk_release_events(disk); 1559 kfree(disk->random); 1560 disk_replace_part_tbl(disk, NULL); 1561 hd_free_part(&disk->part0); 1562 if (disk->queue) 1563 blk_put_queue(disk->queue); 1564 kfree(disk); 1565 } 1566 struct class block_class = { 1567 .name = "block", 1568 }; 1569 1570 static char *block_devnode(struct device *dev, umode_t *mode, 1571 kuid_t *uid, kgid_t *gid) 1572 { 1573 struct gendisk *disk = dev_to_disk(dev); 1574 1575 if (disk->fops->devnode) 1576 return disk->fops->devnode(disk, mode); 1577 return NULL; 1578 } 1579 1580 const struct device_type disk_type = { 1581 .name = "disk", 1582 .groups = disk_attr_groups, 1583 .release = disk_release, 1584 .devnode = block_devnode, 1585 }; 1586 1587 #ifdef CONFIG_PROC_FS 1588 /* 1589 * aggregate disk stat collector. Uses the same stats that the sysfs 1590 * entries do, above, but makes them available through one seq_file. 1591 * 1592 * The output looks suspiciously like /proc/partitions with a bunch of 1593 * extra fields. 1594 */ 1595 static int diskstats_show(struct seq_file *seqf, void *v) 1596 { 1597 struct gendisk *gp = v; 1598 struct disk_part_iter piter; 1599 struct hd_struct *hd; 1600 char buf[BDEVNAME_SIZE]; 1601 unsigned int inflight; 1602 struct disk_stats stat; 1603 1604 /* 1605 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1606 seq_puts(seqf, "major minor name" 1607 " rio rmerge rsect ruse wio wmerge " 1608 "wsect wuse running use aveq" 1609 "\n\n"); 1610 */ 1611 1612 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1613 while ((hd = disk_part_iter_next(&piter))) { 1614 part_stat_read_all(hd, &stat); 1615 if (queue_is_mq(gp->queue)) 1616 inflight = blk_mq_in_flight(gp->queue, hd); 1617 else 1618 inflight = part_in_flight(hd); 1619 1620 seq_printf(seqf, "%4d %7d %s " 1621 "%lu %lu %lu %u " 1622 "%lu %lu %lu %u " 1623 "%u %u %u " 1624 "%lu %lu %lu %u " 1625 "%lu %u" 1626 "\n", 1627 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1628 disk_name(gp, hd->partno, buf), 1629 stat.ios[STAT_READ], 1630 stat.merges[STAT_READ], 1631 stat.sectors[STAT_READ], 1632 (unsigned int)div_u64(stat.nsecs[STAT_READ], 1633 NSEC_PER_MSEC), 1634 stat.ios[STAT_WRITE], 1635 stat.merges[STAT_WRITE], 1636 stat.sectors[STAT_WRITE], 1637 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], 1638 NSEC_PER_MSEC), 1639 inflight, 1640 jiffies_to_msecs(stat.io_ticks), 1641 (unsigned int)div_u64(stat.nsecs[STAT_READ] + 1642 stat.nsecs[STAT_WRITE] + 1643 stat.nsecs[STAT_DISCARD] + 1644 stat.nsecs[STAT_FLUSH], 1645 NSEC_PER_MSEC), 1646 stat.ios[STAT_DISCARD], 1647 stat.merges[STAT_DISCARD], 1648 stat.sectors[STAT_DISCARD], 1649 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], 1650 NSEC_PER_MSEC), 1651 stat.ios[STAT_FLUSH], 1652 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], 1653 NSEC_PER_MSEC) 1654 ); 1655 } 1656 disk_part_iter_exit(&piter); 1657 1658 return 0; 1659 } 1660 1661 static const struct seq_operations diskstats_op = { 1662 .start = disk_seqf_start, 1663 .next = disk_seqf_next, 1664 .stop = disk_seqf_stop, 1665 .show = diskstats_show 1666 }; 1667 1668 static int __init proc_genhd_init(void) 1669 { 1670 proc_create_seq("diskstats", 0, NULL, &diskstats_op); 1671 proc_create_seq("partitions", 0, NULL, &partitions_op); 1672 return 0; 1673 } 1674 module_init(proc_genhd_init); 1675 #endif /* CONFIG_PROC_FS */ 1676 1677 dev_t blk_lookup_devt(const char *name, int partno) 1678 { 1679 dev_t devt = MKDEV(0, 0); 1680 struct class_dev_iter iter; 1681 struct device *dev; 1682 1683 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1684 while ((dev = class_dev_iter_next(&iter))) { 1685 struct gendisk *disk = dev_to_disk(dev); 1686 struct hd_struct *part; 1687 1688 if (strcmp(dev_name(dev), name)) 1689 continue; 1690 1691 if (partno < disk->minors) { 1692 /* We need to return the right devno, even 1693 * if the partition doesn't exist yet. 1694 */ 1695 devt = MKDEV(MAJOR(dev->devt), 1696 MINOR(dev->devt) + partno); 1697 break; 1698 } 1699 part = disk_get_part(disk, partno); 1700 if (part) { 1701 devt = part_devt(part); 1702 disk_put_part(part); 1703 break; 1704 } 1705 disk_put_part(part); 1706 } 1707 class_dev_iter_exit(&iter); 1708 return devt; 1709 } 1710 1711 struct gendisk *__alloc_disk_node(int minors, int node_id) 1712 { 1713 struct gendisk *disk; 1714 struct disk_part_tbl *ptbl; 1715 1716 if (minors > DISK_MAX_PARTS) { 1717 printk(KERN_ERR 1718 "block: can't allocate more than %d partitions\n", 1719 DISK_MAX_PARTS); 1720 minors = DISK_MAX_PARTS; 1721 } 1722 1723 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1724 if (!disk) 1725 return NULL; 1726 1727 disk->part0.dkstats = alloc_percpu(struct disk_stats); 1728 if (!disk->part0.dkstats) 1729 goto out_free_disk; 1730 1731 init_rwsem(&disk->lookup_sem); 1732 disk->node_id = node_id; 1733 if (disk_expand_part_tbl(disk, 0)) { 1734 free_percpu(disk->part0.dkstats); 1735 goto out_free_disk; 1736 } 1737 1738 ptbl = rcu_dereference_protected(disk->part_tbl, 1); 1739 rcu_assign_pointer(ptbl->part[0], &disk->part0); 1740 1741 /* 1742 * set_capacity() and get_capacity() currently don't use 1743 * seqcounter to read/update the part0->nr_sects. Still init 1744 * the counter as we can read the sectors in IO submission 1745 * patch using seqence counters. 1746 * 1747 * TODO: Ideally set_capacity() and get_capacity() should be 1748 * converted to make use of bd_mutex and sequence counters. 1749 */ 1750 hd_sects_seq_init(&disk->part0); 1751 if (hd_ref_init(&disk->part0)) 1752 goto out_free_part0; 1753 1754 disk->minors = minors; 1755 rand_initialize_disk(disk); 1756 disk_to_dev(disk)->class = &block_class; 1757 disk_to_dev(disk)->type = &disk_type; 1758 device_initialize(disk_to_dev(disk)); 1759 return disk; 1760 1761 out_free_part0: 1762 hd_free_part(&disk->part0); 1763 out_free_disk: 1764 kfree(disk); 1765 return NULL; 1766 } 1767 EXPORT_SYMBOL(__alloc_disk_node); 1768 1769 /** 1770 * get_disk_and_module - increments the gendisk and gendisk fops module refcount 1771 * @disk: the struct gendisk to increment the refcount for 1772 * 1773 * This increments the refcount for the struct gendisk, and the gendisk's 1774 * fops module owner. 1775 * 1776 * Context: Any context. 1777 */ 1778 struct kobject *get_disk_and_module(struct gendisk *disk) 1779 { 1780 struct module *owner; 1781 struct kobject *kobj; 1782 1783 if (!disk->fops) 1784 return NULL; 1785 owner = disk->fops->owner; 1786 if (owner && !try_module_get(owner)) 1787 return NULL; 1788 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1789 if (kobj == NULL) { 1790 module_put(owner); 1791 return NULL; 1792 } 1793 return kobj; 1794 1795 } 1796 EXPORT_SYMBOL(get_disk_and_module); 1797 1798 /** 1799 * put_disk - decrements the gendisk refcount 1800 * @disk: the struct gendisk to decrement the refcount for 1801 * 1802 * This decrements the refcount for the struct gendisk. When this reaches 0 1803 * we'll have disk_release() called. 1804 * 1805 * Context: Any context, but the last reference must not be dropped from 1806 * atomic context. 1807 */ 1808 void put_disk(struct gendisk *disk) 1809 { 1810 if (disk) 1811 kobject_put(&disk_to_dev(disk)->kobj); 1812 } 1813 EXPORT_SYMBOL(put_disk); 1814 1815 /** 1816 * put_disk_and_module - decrements the module and gendisk refcount 1817 * @disk: the struct gendisk to decrement the refcount for 1818 * 1819 * This is a counterpart of get_disk_and_module() and thus also of 1820 * get_gendisk(). 1821 * 1822 * Context: Any context, but the last reference must not be dropped from 1823 * atomic context. 1824 */ 1825 void put_disk_and_module(struct gendisk *disk) 1826 { 1827 if (disk) { 1828 struct module *owner = disk->fops->owner; 1829 1830 put_disk(disk); 1831 module_put(owner); 1832 } 1833 } 1834 EXPORT_SYMBOL(put_disk_and_module); 1835 1836 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1837 { 1838 char event[] = "DISK_RO=1"; 1839 char *envp[] = { event, NULL }; 1840 1841 if (!ro) 1842 event[8] = '0'; 1843 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1844 } 1845 1846 void set_device_ro(struct block_device *bdev, int flag) 1847 { 1848 bdev->bd_part->policy = flag; 1849 } 1850 1851 EXPORT_SYMBOL(set_device_ro); 1852 1853 void set_disk_ro(struct gendisk *disk, int flag) 1854 { 1855 struct disk_part_iter piter; 1856 struct hd_struct *part; 1857 1858 if (disk->part0.policy != flag) { 1859 set_disk_ro_uevent(disk, flag); 1860 disk->part0.policy = flag; 1861 } 1862 1863 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1864 while ((part = disk_part_iter_next(&piter))) 1865 part->policy = flag; 1866 disk_part_iter_exit(&piter); 1867 } 1868 1869 EXPORT_SYMBOL(set_disk_ro); 1870 1871 int bdev_read_only(struct block_device *bdev) 1872 { 1873 if (!bdev) 1874 return 0; 1875 return bdev->bd_part->policy; 1876 } 1877 1878 EXPORT_SYMBOL(bdev_read_only); 1879 1880 /* 1881 * Disk events - monitor disk events like media change and eject request. 1882 */ 1883 struct disk_events { 1884 struct list_head node; /* all disk_event's */ 1885 struct gendisk *disk; /* the associated disk */ 1886 spinlock_t lock; 1887 1888 struct mutex block_mutex; /* protects blocking */ 1889 int block; /* event blocking depth */ 1890 unsigned int pending; /* events already sent out */ 1891 unsigned int clearing; /* events being cleared */ 1892 1893 long poll_msecs; /* interval, -1 for default */ 1894 struct delayed_work dwork; 1895 }; 1896 1897 static const char *disk_events_strs[] = { 1898 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1899 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1900 }; 1901 1902 static char *disk_uevents[] = { 1903 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1904 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1905 }; 1906 1907 /* list of all disk_events */ 1908 static DEFINE_MUTEX(disk_events_mutex); 1909 static LIST_HEAD(disk_events); 1910 1911 /* disable in-kernel polling by default */ 1912 static unsigned long disk_events_dfl_poll_msecs; 1913 1914 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1915 { 1916 struct disk_events *ev = disk->ev; 1917 long intv_msecs = 0; 1918 1919 /* 1920 * If device-specific poll interval is set, always use it. If 1921 * the default is being used, poll if the POLL flag is set. 1922 */ 1923 if (ev->poll_msecs >= 0) 1924 intv_msecs = ev->poll_msecs; 1925 else if (disk->event_flags & DISK_EVENT_FLAG_POLL) 1926 intv_msecs = disk_events_dfl_poll_msecs; 1927 1928 return msecs_to_jiffies(intv_msecs); 1929 } 1930 1931 /** 1932 * disk_block_events - block and flush disk event checking 1933 * @disk: disk to block events for 1934 * 1935 * On return from this function, it is guaranteed that event checking 1936 * isn't in progress and won't happen until unblocked by 1937 * disk_unblock_events(). Events blocking is counted and the actual 1938 * unblocking happens after the matching number of unblocks are done. 1939 * 1940 * Note that this intentionally does not block event checking from 1941 * disk_clear_events(). 1942 * 1943 * CONTEXT: 1944 * Might sleep. 1945 */ 1946 void disk_block_events(struct gendisk *disk) 1947 { 1948 struct disk_events *ev = disk->ev; 1949 unsigned long flags; 1950 bool cancel; 1951 1952 if (!ev) 1953 return; 1954 1955 /* 1956 * Outer mutex ensures that the first blocker completes canceling 1957 * the event work before further blockers are allowed to finish. 1958 */ 1959 mutex_lock(&ev->block_mutex); 1960 1961 spin_lock_irqsave(&ev->lock, flags); 1962 cancel = !ev->block++; 1963 spin_unlock_irqrestore(&ev->lock, flags); 1964 1965 if (cancel) 1966 cancel_delayed_work_sync(&disk->ev->dwork); 1967 1968 mutex_unlock(&ev->block_mutex); 1969 } 1970 1971 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1972 { 1973 struct disk_events *ev = disk->ev; 1974 unsigned long intv; 1975 unsigned long flags; 1976 1977 spin_lock_irqsave(&ev->lock, flags); 1978 1979 if (WARN_ON_ONCE(ev->block <= 0)) 1980 goto out_unlock; 1981 1982 if (--ev->block) 1983 goto out_unlock; 1984 1985 intv = disk_events_poll_jiffies(disk); 1986 if (check_now) 1987 queue_delayed_work(system_freezable_power_efficient_wq, 1988 &ev->dwork, 0); 1989 else if (intv) 1990 queue_delayed_work(system_freezable_power_efficient_wq, 1991 &ev->dwork, intv); 1992 out_unlock: 1993 spin_unlock_irqrestore(&ev->lock, flags); 1994 } 1995 1996 /** 1997 * disk_unblock_events - unblock disk event checking 1998 * @disk: disk to unblock events for 1999 * 2000 * Undo disk_block_events(). When the block count reaches zero, it 2001 * starts events polling if configured. 2002 * 2003 * CONTEXT: 2004 * Don't care. Safe to call from irq context. 2005 */ 2006 void disk_unblock_events(struct gendisk *disk) 2007 { 2008 if (disk->ev) 2009 __disk_unblock_events(disk, false); 2010 } 2011 2012 /** 2013 * disk_flush_events - schedule immediate event checking and flushing 2014 * @disk: disk to check and flush events for 2015 * @mask: events to flush 2016 * 2017 * Schedule immediate event checking on @disk if not blocked. Events in 2018 * @mask are scheduled to be cleared from the driver. Note that this 2019 * doesn't clear the events from @disk->ev. 2020 * 2021 * CONTEXT: 2022 * If @mask is non-zero must be called with bdev->bd_mutex held. 2023 */ 2024 void disk_flush_events(struct gendisk *disk, unsigned int mask) 2025 { 2026 struct disk_events *ev = disk->ev; 2027 2028 if (!ev) 2029 return; 2030 2031 spin_lock_irq(&ev->lock); 2032 ev->clearing |= mask; 2033 if (!ev->block) 2034 mod_delayed_work(system_freezable_power_efficient_wq, 2035 &ev->dwork, 0); 2036 spin_unlock_irq(&ev->lock); 2037 } 2038 2039 /** 2040 * disk_clear_events - synchronously check, clear and return pending events 2041 * @disk: disk to fetch and clear events from 2042 * @mask: mask of events to be fetched and cleared 2043 * 2044 * Disk events are synchronously checked and pending events in @mask 2045 * are cleared and returned. This ignores the block count. 2046 * 2047 * CONTEXT: 2048 * Might sleep. 2049 */ 2050 static unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 2051 { 2052 struct disk_events *ev = disk->ev; 2053 unsigned int pending; 2054 unsigned int clearing = mask; 2055 2056 if (!ev) 2057 return 0; 2058 2059 disk_block_events(disk); 2060 2061 /* 2062 * store the union of mask and ev->clearing on the stack so that the 2063 * race with disk_flush_events does not cause ambiguity (ev->clearing 2064 * can still be modified even if events are blocked). 2065 */ 2066 spin_lock_irq(&ev->lock); 2067 clearing |= ev->clearing; 2068 ev->clearing = 0; 2069 spin_unlock_irq(&ev->lock); 2070 2071 disk_check_events(ev, &clearing); 2072 /* 2073 * if ev->clearing is not 0, the disk_flush_events got called in the 2074 * middle of this function, so we want to run the workfn without delay. 2075 */ 2076 __disk_unblock_events(disk, ev->clearing ? true : false); 2077 2078 /* then, fetch and clear pending events */ 2079 spin_lock_irq(&ev->lock); 2080 pending = ev->pending & mask; 2081 ev->pending &= ~mask; 2082 spin_unlock_irq(&ev->lock); 2083 WARN_ON_ONCE(clearing & mask); 2084 2085 return pending; 2086 } 2087 2088 /** 2089 * bdev_check_media_change - check if a removable media has been changed 2090 * @bdev: block device to check 2091 * 2092 * Check whether a removable media has been changed, and attempt to free all 2093 * dentries and inodes and invalidates all block device page cache entries in 2094 * that case. 2095 * 2096 * Returns %true if the block device changed, or %false if not. 2097 */ 2098 bool bdev_check_media_change(struct block_device *bdev) 2099 { 2100 unsigned int events; 2101 2102 events = disk_clear_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE | 2103 DISK_EVENT_EJECT_REQUEST); 2104 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 2105 return false; 2106 2107 if (__invalidate_device(bdev, true)) 2108 pr_warn("VFS: busy inodes on changed media %s\n", 2109 bdev->bd_disk->disk_name); 2110 set_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 2111 return true; 2112 } 2113 EXPORT_SYMBOL(bdev_check_media_change); 2114 2115 /* 2116 * Separate this part out so that a different pointer for clearing_ptr can be 2117 * passed in for disk_clear_events. 2118 */ 2119 static void disk_events_workfn(struct work_struct *work) 2120 { 2121 struct delayed_work *dwork = to_delayed_work(work); 2122 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 2123 2124 disk_check_events(ev, &ev->clearing); 2125 } 2126 2127 static void disk_check_events(struct disk_events *ev, 2128 unsigned int *clearing_ptr) 2129 { 2130 struct gendisk *disk = ev->disk; 2131 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 2132 unsigned int clearing = *clearing_ptr; 2133 unsigned int events; 2134 unsigned long intv; 2135 int nr_events = 0, i; 2136 2137 /* check events */ 2138 events = disk->fops->check_events(disk, clearing); 2139 2140 /* accumulate pending events and schedule next poll if necessary */ 2141 spin_lock_irq(&ev->lock); 2142 2143 events &= ~ev->pending; 2144 ev->pending |= events; 2145 *clearing_ptr &= ~clearing; 2146 2147 intv = disk_events_poll_jiffies(disk); 2148 if (!ev->block && intv) 2149 queue_delayed_work(system_freezable_power_efficient_wq, 2150 &ev->dwork, intv); 2151 2152 spin_unlock_irq(&ev->lock); 2153 2154 /* 2155 * Tell userland about new events. Only the events listed in 2156 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT 2157 * is set. Otherwise, events are processed internally but never 2158 * get reported to userland. 2159 */ 2160 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 2161 if ((events & disk->events & (1 << i)) && 2162 (disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 2163 envp[nr_events++] = disk_uevents[i]; 2164 2165 if (nr_events) 2166 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 2167 } 2168 2169 /* 2170 * A disk events enabled device has the following sysfs nodes under 2171 * its /sys/block/X/ directory. 2172 * 2173 * events : list of all supported events 2174 * events_async : list of events which can be detected w/o polling 2175 * (always empty, only for backwards compatibility) 2176 * events_poll_msecs : polling interval, 0: disable, -1: system default 2177 */ 2178 static ssize_t __disk_events_show(unsigned int events, char *buf) 2179 { 2180 const char *delim = ""; 2181 ssize_t pos = 0; 2182 int i; 2183 2184 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 2185 if (events & (1 << i)) { 2186 pos += sprintf(buf + pos, "%s%s", 2187 delim, disk_events_strs[i]); 2188 delim = " "; 2189 } 2190 if (pos) 2191 pos += sprintf(buf + pos, "\n"); 2192 return pos; 2193 } 2194 2195 static ssize_t disk_events_show(struct device *dev, 2196 struct device_attribute *attr, char *buf) 2197 { 2198 struct gendisk *disk = dev_to_disk(dev); 2199 2200 if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT)) 2201 return 0; 2202 2203 return __disk_events_show(disk->events, buf); 2204 } 2205 2206 static ssize_t disk_events_async_show(struct device *dev, 2207 struct device_attribute *attr, char *buf) 2208 { 2209 return 0; 2210 } 2211 2212 static ssize_t disk_events_poll_msecs_show(struct device *dev, 2213 struct device_attribute *attr, 2214 char *buf) 2215 { 2216 struct gendisk *disk = dev_to_disk(dev); 2217 2218 if (!disk->ev) 2219 return sprintf(buf, "-1\n"); 2220 2221 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 2222 } 2223 2224 static ssize_t disk_events_poll_msecs_store(struct device *dev, 2225 struct device_attribute *attr, 2226 const char *buf, size_t count) 2227 { 2228 struct gendisk *disk = dev_to_disk(dev); 2229 long intv; 2230 2231 if (!count || !sscanf(buf, "%ld", &intv)) 2232 return -EINVAL; 2233 2234 if (intv < 0 && intv != -1) 2235 return -EINVAL; 2236 2237 if (!disk->ev) 2238 return -ENODEV; 2239 2240 disk_block_events(disk); 2241 disk->ev->poll_msecs = intv; 2242 __disk_unblock_events(disk, true); 2243 2244 return count; 2245 } 2246 2247 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL); 2248 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL); 2249 static const DEVICE_ATTR(events_poll_msecs, 0644, 2250 disk_events_poll_msecs_show, 2251 disk_events_poll_msecs_store); 2252 2253 static const struct attribute *disk_events_attrs[] = { 2254 &dev_attr_events.attr, 2255 &dev_attr_events_async.attr, 2256 &dev_attr_events_poll_msecs.attr, 2257 NULL, 2258 }; 2259 2260 /* 2261 * The default polling interval can be specified by the kernel 2262 * parameter block.events_dfl_poll_msecs which defaults to 0 2263 * (disable). This can also be modified runtime by writing to 2264 * /sys/module/block/parameters/events_dfl_poll_msecs. 2265 */ 2266 static int disk_events_set_dfl_poll_msecs(const char *val, 2267 const struct kernel_param *kp) 2268 { 2269 struct disk_events *ev; 2270 int ret; 2271 2272 ret = param_set_ulong(val, kp); 2273 if (ret < 0) 2274 return ret; 2275 2276 mutex_lock(&disk_events_mutex); 2277 2278 list_for_each_entry(ev, &disk_events, node) 2279 disk_flush_events(ev->disk, 0); 2280 2281 mutex_unlock(&disk_events_mutex); 2282 2283 return 0; 2284 } 2285 2286 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 2287 .set = disk_events_set_dfl_poll_msecs, 2288 .get = param_get_ulong, 2289 }; 2290 2291 #undef MODULE_PARAM_PREFIX 2292 #define MODULE_PARAM_PREFIX "block." 2293 2294 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 2295 &disk_events_dfl_poll_msecs, 0644); 2296 2297 /* 2298 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 2299 */ 2300 static void disk_alloc_events(struct gendisk *disk) 2301 { 2302 struct disk_events *ev; 2303 2304 if (!disk->fops->check_events || !disk->events) 2305 return; 2306 2307 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 2308 if (!ev) { 2309 pr_warn("%s: failed to initialize events\n", disk->disk_name); 2310 return; 2311 } 2312 2313 INIT_LIST_HEAD(&ev->node); 2314 ev->disk = disk; 2315 spin_lock_init(&ev->lock); 2316 mutex_init(&ev->block_mutex); 2317 ev->block = 1; 2318 ev->poll_msecs = -1; 2319 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 2320 2321 disk->ev = ev; 2322 } 2323 2324 static void disk_add_events(struct gendisk *disk) 2325 { 2326 /* FIXME: error handling */ 2327 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 2328 pr_warn("%s: failed to create sysfs files for events\n", 2329 disk->disk_name); 2330 2331 if (!disk->ev) 2332 return; 2333 2334 mutex_lock(&disk_events_mutex); 2335 list_add_tail(&disk->ev->node, &disk_events); 2336 mutex_unlock(&disk_events_mutex); 2337 2338 /* 2339 * Block count is initialized to 1 and the following initial 2340 * unblock kicks it into action. 2341 */ 2342 __disk_unblock_events(disk, true); 2343 } 2344 2345 static void disk_del_events(struct gendisk *disk) 2346 { 2347 if (disk->ev) { 2348 disk_block_events(disk); 2349 2350 mutex_lock(&disk_events_mutex); 2351 list_del_init(&disk->ev->node); 2352 mutex_unlock(&disk_events_mutex); 2353 } 2354 2355 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 2356 } 2357 2358 static void disk_release_events(struct gendisk *disk) 2359 { 2360 /* the block count should be 1 from disk_del_events() */ 2361 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 2362 kfree(disk->ev); 2363 } 2364