1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 #include <linux/uaccess.h> 38 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 43 static DEFINE_SPINLOCK(elv_list_lock); 44 static LIST_HEAD(elv_list); 45 46 /* 47 * Merge hash stuff. 48 */ 49 static const int elv_hash_shift = 6; 50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 51 #define ELV_HASH_FN(sec) \ 52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 55 56 /* 57 * Query io scheduler to see if the current process issuing bio may be 58 * merged with rq. 59 */ 60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 61 { 62 struct request_queue *q = rq->q; 63 struct elevator_queue *e = q->elevator; 64 65 if (e->ops->elevator_allow_merge_fn) 66 return e->ops->elevator_allow_merge_fn(q, rq, bio); 67 68 return 1; 69 } 70 71 /* 72 * can we safely merge with this request? 73 */ 74 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 75 { 76 if (!rq_mergeable(rq)) 77 return 0; 78 79 /* 80 * Don't merge file system requests and discard requests 81 */ 82 if (bio_rw_flagged(bio, BIO_RW_DISCARD) != 83 bio_rw_flagged(rq->bio, BIO_RW_DISCARD)) 84 return 0; 85 86 /* 87 * different data direction or already started, don't merge 88 */ 89 if (bio_data_dir(bio) != rq_data_dir(rq)) 90 return 0; 91 92 /* 93 * must be same device and not a special request 94 */ 95 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 96 return 0; 97 98 /* 99 * only merge integrity protected bio into ditto rq 100 */ 101 if (bio_integrity(bio) != blk_integrity_rq(rq)) 102 return 0; 103 104 if (!elv_iosched_allow_merge(rq, bio)) 105 return 0; 106 107 return 1; 108 } 109 EXPORT_SYMBOL(elv_rq_merge_ok); 110 111 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 112 { 113 int ret = ELEVATOR_NO_MERGE; 114 115 /* 116 * we can merge and sequence is ok, check if it's possible 117 */ 118 if (elv_rq_merge_ok(__rq, bio)) { 119 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector) 120 ret = ELEVATOR_BACK_MERGE; 121 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector) 122 ret = ELEVATOR_FRONT_MERGE; 123 } 124 125 return ret; 126 } 127 128 static struct elevator_type *elevator_find(const char *name) 129 { 130 struct elevator_type *e; 131 132 list_for_each_entry(e, &elv_list, list) { 133 if (!strcmp(e->elevator_name, name)) 134 return e; 135 } 136 137 return NULL; 138 } 139 140 static void elevator_put(struct elevator_type *e) 141 { 142 module_put(e->elevator_owner); 143 } 144 145 static struct elevator_type *elevator_get(const char *name) 146 { 147 struct elevator_type *e; 148 149 spin_lock(&elv_list_lock); 150 151 e = elevator_find(name); 152 if (!e) { 153 char elv[ELV_NAME_MAX + strlen("-iosched")]; 154 155 spin_unlock(&elv_list_lock); 156 157 if (!strcmp(name, "anticipatory")) 158 sprintf(elv, "as-iosched"); 159 else 160 sprintf(elv, "%s-iosched", name); 161 162 request_module("%s", elv); 163 spin_lock(&elv_list_lock); 164 e = elevator_find(name); 165 } 166 167 if (e && !try_module_get(e->elevator_owner)) 168 e = NULL; 169 170 spin_unlock(&elv_list_lock); 171 172 return e; 173 } 174 175 static void *elevator_init_queue(struct request_queue *q, 176 struct elevator_queue *eq) 177 { 178 return eq->ops->elevator_init_fn(q); 179 } 180 181 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 182 void *data) 183 { 184 q->elevator = eq; 185 eq->elevator_data = data; 186 } 187 188 static char chosen_elevator[16]; 189 190 static int __init elevator_setup(char *str) 191 { 192 /* 193 * Be backwards-compatible with previous kernels, so users 194 * won't get the wrong elevator. 195 */ 196 if (!strcmp(str, "as")) 197 strcpy(chosen_elevator, "anticipatory"); 198 else 199 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 200 return 1; 201 } 202 203 __setup("elevator=", elevator_setup); 204 205 static struct kobj_type elv_ktype; 206 207 static struct elevator_queue *elevator_alloc(struct request_queue *q, 208 struct elevator_type *e) 209 { 210 struct elevator_queue *eq; 211 int i; 212 213 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 214 if (unlikely(!eq)) 215 goto err; 216 217 eq->ops = &e->ops; 218 eq->elevator_type = e; 219 kobject_init(&eq->kobj, &elv_ktype); 220 mutex_init(&eq->sysfs_lock); 221 222 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 223 GFP_KERNEL, q->node); 224 if (!eq->hash) 225 goto err; 226 227 for (i = 0; i < ELV_HASH_ENTRIES; i++) 228 INIT_HLIST_HEAD(&eq->hash[i]); 229 230 return eq; 231 err: 232 kfree(eq); 233 elevator_put(e); 234 return NULL; 235 } 236 237 static void elevator_release(struct kobject *kobj) 238 { 239 struct elevator_queue *e; 240 241 e = container_of(kobj, struct elevator_queue, kobj); 242 elevator_put(e->elevator_type); 243 kfree(e->hash); 244 kfree(e); 245 } 246 247 int elevator_init(struct request_queue *q, char *name) 248 { 249 struct elevator_type *e = NULL; 250 struct elevator_queue *eq; 251 int ret = 0; 252 void *data; 253 254 INIT_LIST_HEAD(&q->queue_head); 255 q->last_merge = NULL; 256 q->end_sector = 0; 257 q->boundary_rq = NULL; 258 259 if (name) { 260 e = elevator_get(name); 261 if (!e) 262 return -EINVAL; 263 } 264 265 if (!e && *chosen_elevator) { 266 e = elevator_get(chosen_elevator); 267 if (!e) 268 printk(KERN_ERR "I/O scheduler %s not found\n", 269 chosen_elevator); 270 } 271 272 if (!e) { 273 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 274 if (!e) { 275 printk(KERN_ERR 276 "Default I/O scheduler not found. " \ 277 "Using noop.\n"); 278 e = elevator_get("noop"); 279 } 280 } 281 282 eq = elevator_alloc(q, e); 283 if (!eq) 284 return -ENOMEM; 285 286 data = elevator_init_queue(q, eq); 287 if (!data) { 288 kobject_put(&eq->kobj); 289 return -ENOMEM; 290 } 291 292 elevator_attach(q, eq, data); 293 return ret; 294 } 295 EXPORT_SYMBOL(elevator_init); 296 297 void elevator_exit(struct elevator_queue *e) 298 { 299 mutex_lock(&e->sysfs_lock); 300 if (e->ops->elevator_exit_fn) 301 e->ops->elevator_exit_fn(e); 302 e->ops = NULL; 303 mutex_unlock(&e->sysfs_lock); 304 305 kobject_put(&e->kobj); 306 } 307 EXPORT_SYMBOL(elevator_exit); 308 309 static inline void __elv_rqhash_del(struct request *rq) 310 { 311 hlist_del_init(&rq->hash); 312 } 313 314 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 315 { 316 if (ELV_ON_HASH(rq)) 317 __elv_rqhash_del(rq); 318 } 319 320 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 321 { 322 struct elevator_queue *e = q->elevator; 323 324 BUG_ON(ELV_ON_HASH(rq)); 325 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 326 } 327 328 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 329 { 330 __elv_rqhash_del(rq); 331 elv_rqhash_add(q, rq); 332 } 333 334 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 335 { 336 struct elevator_queue *e = q->elevator; 337 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 338 struct hlist_node *entry, *next; 339 struct request *rq; 340 341 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 342 BUG_ON(!ELV_ON_HASH(rq)); 343 344 if (unlikely(!rq_mergeable(rq))) { 345 __elv_rqhash_del(rq); 346 continue; 347 } 348 349 if (rq_hash_key(rq) == offset) 350 return rq; 351 } 352 353 return NULL; 354 } 355 356 /* 357 * RB-tree support functions for inserting/lookup/removal of requests 358 * in a sorted RB tree. 359 */ 360 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 361 { 362 struct rb_node **p = &root->rb_node; 363 struct rb_node *parent = NULL; 364 struct request *__rq; 365 366 while (*p) { 367 parent = *p; 368 __rq = rb_entry(parent, struct request, rb_node); 369 370 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 371 p = &(*p)->rb_left; 372 else if (blk_rq_pos(rq) > blk_rq_pos(__rq)) 373 p = &(*p)->rb_right; 374 else 375 return __rq; 376 } 377 378 rb_link_node(&rq->rb_node, parent, p); 379 rb_insert_color(&rq->rb_node, root); 380 return NULL; 381 } 382 EXPORT_SYMBOL(elv_rb_add); 383 384 void elv_rb_del(struct rb_root *root, struct request *rq) 385 { 386 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 387 rb_erase(&rq->rb_node, root); 388 RB_CLEAR_NODE(&rq->rb_node); 389 } 390 EXPORT_SYMBOL(elv_rb_del); 391 392 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 393 { 394 struct rb_node *n = root->rb_node; 395 struct request *rq; 396 397 while (n) { 398 rq = rb_entry(n, struct request, rb_node); 399 400 if (sector < blk_rq_pos(rq)) 401 n = n->rb_left; 402 else if (sector > blk_rq_pos(rq)) 403 n = n->rb_right; 404 else 405 return rq; 406 } 407 408 return NULL; 409 } 410 EXPORT_SYMBOL(elv_rb_find); 411 412 /* 413 * Insert rq into dispatch queue of q. Queue lock must be held on 414 * entry. rq is sort instead into the dispatch queue. To be used by 415 * specific elevators. 416 */ 417 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 418 { 419 sector_t boundary; 420 struct list_head *entry; 421 int stop_flags; 422 423 if (q->last_merge == rq) 424 q->last_merge = NULL; 425 426 elv_rqhash_del(q, rq); 427 428 q->nr_sorted--; 429 430 boundary = q->end_sector; 431 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 432 list_for_each_prev(entry, &q->queue_head) { 433 struct request *pos = list_entry_rq(entry); 434 435 if (blk_discard_rq(rq) != blk_discard_rq(pos)) 436 break; 437 if (rq_data_dir(rq) != rq_data_dir(pos)) 438 break; 439 if (pos->cmd_flags & stop_flags) 440 break; 441 if (blk_rq_pos(rq) >= boundary) { 442 if (blk_rq_pos(pos) < boundary) 443 continue; 444 } else { 445 if (blk_rq_pos(pos) >= boundary) 446 break; 447 } 448 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 449 break; 450 } 451 452 list_add(&rq->queuelist, entry); 453 } 454 EXPORT_SYMBOL(elv_dispatch_sort); 455 456 /* 457 * Insert rq into dispatch queue of q. Queue lock must be held on 458 * entry. rq is added to the back of the dispatch queue. To be used by 459 * specific elevators. 460 */ 461 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 462 { 463 if (q->last_merge == rq) 464 q->last_merge = NULL; 465 466 elv_rqhash_del(q, rq); 467 468 q->nr_sorted--; 469 470 q->end_sector = rq_end_sector(rq); 471 q->boundary_rq = rq; 472 list_add_tail(&rq->queuelist, &q->queue_head); 473 } 474 EXPORT_SYMBOL(elv_dispatch_add_tail); 475 476 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 477 { 478 struct elevator_queue *e = q->elevator; 479 struct request *__rq; 480 int ret; 481 482 /* 483 * First try one-hit cache. 484 */ 485 if (q->last_merge) { 486 ret = elv_try_merge(q->last_merge, bio); 487 if (ret != ELEVATOR_NO_MERGE) { 488 *req = q->last_merge; 489 return ret; 490 } 491 } 492 493 if (blk_queue_nomerges(q)) 494 return ELEVATOR_NO_MERGE; 495 496 /* 497 * See if our hash lookup can find a potential backmerge. 498 */ 499 __rq = elv_rqhash_find(q, bio->bi_sector); 500 if (__rq && elv_rq_merge_ok(__rq, bio)) { 501 *req = __rq; 502 return ELEVATOR_BACK_MERGE; 503 } 504 505 if (e->ops->elevator_merge_fn) 506 return e->ops->elevator_merge_fn(q, req, bio); 507 508 return ELEVATOR_NO_MERGE; 509 } 510 511 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 512 { 513 struct elevator_queue *e = q->elevator; 514 515 if (e->ops->elevator_merged_fn) 516 e->ops->elevator_merged_fn(q, rq, type); 517 518 if (type == ELEVATOR_BACK_MERGE) 519 elv_rqhash_reposition(q, rq); 520 521 q->last_merge = rq; 522 } 523 524 void elv_merge_requests(struct request_queue *q, struct request *rq, 525 struct request *next) 526 { 527 struct elevator_queue *e = q->elevator; 528 529 if (e->ops->elevator_merge_req_fn) 530 e->ops->elevator_merge_req_fn(q, rq, next); 531 532 elv_rqhash_reposition(q, rq); 533 elv_rqhash_del(q, next); 534 535 q->nr_sorted--; 536 q->last_merge = rq; 537 } 538 539 void elv_requeue_request(struct request_queue *q, struct request *rq) 540 { 541 /* 542 * it already went through dequeue, we need to decrement the 543 * in_flight count again 544 */ 545 if (blk_account_rq(rq)) { 546 q->in_flight[rq_is_sync(rq)]--; 547 if (blk_sorted_rq(rq)) 548 elv_deactivate_rq(q, rq); 549 } 550 551 rq->cmd_flags &= ~REQ_STARTED; 552 553 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 554 } 555 556 void elv_drain_elevator(struct request_queue *q) 557 { 558 static int printed; 559 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 560 ; 561 if (q->nr_sorted == 0) 562 return; 563 if (printed++ < 10) { 564 printk(KERN_ERR "%s: forced dispatching is broken " 565 "(nr_sorted=%u), please report this\n", 566 q->elevator->elevator_type->elevator_name, q->nr_sorted); 567 } 568 } 569 570 /* 571 * Call with queue lock held, interrupts disabled 572 */ 573 void elv_quiesce_start(struct request_queue *q) 574 { 575 if (!q->elevator) 576 return; 577 578 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 579 580 /* 581 * make sure we don't have any requests in flight 582 */ 583 elv_drain_elevator(q); 584 while (q->rq.elvpriv) { 585 __blk_run_queue(q); 586 spin_unlock_irq(q->queue_lock); 587 msleep(10); 588 spin_lock_irq(q->queue_lock); 589 elv_drain_elevator(q); 590 } 591 } 592 593 void elv_quiesce_end(struct request_queue *q) 594 { 595 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 596 } 597 598 void elv_insert(struct request_queue *q, struct request *rq, int where) 599 { 600 struct list_head *pos; 601 unsigned ordseq; 602 int unplug_it = 1; 603 604 trace_block_rq_insert(q, rq); 605 606 rq->q = q; 607 608 switch (where) { 609 case ELEVATOR_INSERT_FRONT: 610 rq->cmd_flags |= REQ_SOFTBARRIER; 611 612 list_add(&rq->queuelist, &q->queue_head); 613 break; 614 615 case ELEVATOR_INSERT_BACK: 616 rq->cmd_flags |= REQ_SOFTBARRIER; 617 elv_drain_elevator(q); 618 list_add_tail(&rq->queuelist, &q->queue_head); 619 /* 620 * We kick the queue here for the following reasons. 621 * - The elevator might have returned NULL previously 622 * to delay requests and returned them now. As the 623 * queue wasn't empty before this request, ll_rw_blk 624 * won't run the queue on return, resulting in hang. 625 * - Usually, back inserted requests won't be merged 626 * with anything. There's no point in delaying queue 627 * processing. 628 */ 629 __blk_run_queue(q); 630 break; 631 632 case ELEVATOR_INSERT_SORT: 633 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq)); 634 rq->cmd_flags |= REQ_SORTED; 635 q->nr_sorted++; 636 if (rq_mergeable(rq)) { 637 elv_rqhash_add(q, rq); 638 if (!q->last_merge) 639 q->last_merge = rq; 640 } 641 642 /* 643 * Some ioscheds (cfq) run q->request_fn directly, so 644 * rq cannot be accessed after calling 645 * elevator_add_req_fn. 646 */ 647 q->elevator->ops->elevator_add_req_fn(q, rq); 648 break; 649 650 case ELEVATOR_INSERT_REQUEUE: 651 /* 652 * If ordered flush isn't in progress, we do front 653 * insertion; otherwise, requests should be requeued 654 * in ordseq order. 655 */ 656 rq->cmd_flags |= REQ_SOFTBARRIER; 657 658 /* 659 * Most requeues happen because of a busy condition, 660 * don't force unplug of the queue for that case. 661 */ 662 unplug_it = 0; 663 664 if (q->ordseq == 0) { 665 list_add(&rq->queuelist, &q->queue_head); 666 break; 667 } 668 669 ordseq = blk_ordered_req_seq(rq); 670 671 list_for_each(pos, &q->queue_head) { 672 struct request *pos_rq = list_entry_rq(pos); 673 if (ordseq <= blk_ordered_req_seq(pos_rq)) 674 break; 675 } 676 677 list_add_tail(&rq->queuelist, pos); 678 break; 679 680 default: 681 printk(KERN_ERR "%s: bad insertion point %d\n", 682 __func__, where); 683 BUG(); 684 } 685 686 if (unplug_it && blk_queue_plugged(q)) { 687 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC] 688 - queue_in_flight(q); 689 690 if (nrq >= q->unplug_thresh) 691 __generic_unplug_device(q); 692 } 693 } 694 695 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 696 int plug) 697 { 698 if (q->ordcolor) 699 rq->cmd_flags |= REQ_ORDERED_COLOR; 700 701 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 702 /* 703 * toggle ordered color 704 */ 705 if (blk_barrier_rq(rq)) 706 q->ordcolor ^= 1; 707 708 /* 709 * barriers implicitly indicate back insertion 710 */ 711 if (where == ELEVATOR_INSERT_SORT) 712 where = ELEVATOR_INSERT_BACK; 713 714 /* 715 * this request is scheduling boundary, update 716 * end_sector 717 */ 718 if (blk_fs_request(rq) || blk_discard_rq(rq)) { 719 q->end_sector = rq_end_sector(rq); 720 q->boundary_rq = rq; 721 } 722 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 723 where == ELEVATOR_INSERT_SORT) 724 where = ELEVATOR_INSERT_BACK; 725 726 if (plug) 727 blk_plug_device(q); 728 729 elv_insert(q, rq, where); 730 } 731 EXPORT_SYMBOL(__elv_add_request); 732 733 void elv_add_request(struct request_queue *q, struct request *rq, int where, 734 int plug) 735 { 736 unsigned long flags; 737 738 spin_lock_irqsave(q->queue_lock, flags); 739 __elv_add_request(q, rq, where, plug); 740 spin_unlock_irqrestore(q->queue_lock, flags); 741 } 742 EXPORT_SYMBOL(elv_add_request); 743 744 int elv_queue_empty(struct request_queue *q) 745 { 746 struct elevator_queue *e = q->elevator; 747 748 if (!list_empty(&q->queue_head)) 749 return 0; 750 751 if (e->ops->elevator_queue_empty_fn) 752 return e->ops->elevator_queue_empty_fn(q); 753 754 return 1; 755 } 756 EXPORT_SYMBOL(elv_queue_empty); 757 758 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 759 { 760 struct elevator_queue *e = q->elevator; 761 762 if (e->ops->elevator_latter_req_fn) 763 return e->ops->elevator_latter_req_fn(q, rq); 764 return NULL; 765 } 766 767 struct request *elv_former_request(struct request_queue *q, struct request *rq) 768 { 769 struct elevator_queue *e = q->elevator; 770 771 if (e->ops->elevator_former_req_fn) 772 return e->ops->elevator_former_req_fn(q, rq); 773 return NULL; 774 } 775 776 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 777 { 778 struct elevator_queue *e = q->elevator; 779 780 if (e->ops->elevator_set_req_fn) 781 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 782 783 rq->elevator_private = NULL; 784 return 0; 785 } 786 787 void elv_put_request(struct request_queue *q, struct request *rq) 788 { 789 struct elevator_queue *e = q->elevator; 790 791 if (e->ops->elevator_put_req_fn) 792 e->ops->elevator_put_req_fn(rq); 793 } 794 795 int elv_may_queue(struct request_queue *q, int rw) 796 { 797 struct elevator_queue *e = q->elevator; 798 799 if (e->ops->elevator_may_queue_fn) 800 return e->ops->elevator_may_queue_fn(q, rw); 801 802 return ELV_MQUEUE_MAY; 803 } 804 805 void elv_abort_queue(struct request_queue *q) 806 { 807 struct request *rq; 808 809 while (!list_empty(&q->queue_head)) { 810 rq = list_entry_rq(q->queue_head.next); 811 rq->cmd_flags |= REQ_QUIET; 812 trace_block_rq_abort(q, rq); 813 /* 814 * Mark this request as started so we don't trigger 815 * any debug logic in the end I/O path. 816 */ 817 blk_start_request(rq); 818 __blk_end_request_all(rq, -EIO); 819 } 820 } 821 EXPORT_SYMBOL(elv_abort_queue); 822 823 void elv_completed_request(struct request_queue *q, struct request *rq) 824 { 825 struct elevator_queue *e = q->elevator; 826 827 /* 828 * request is released from the driver, io must be done 829 */ 830 if (blk_account_rq(rq)) { 831 q->in_flight[rq_is_sync(rq)]--; 832 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 833 e->ops->elevator_completed_req_fn(q, rq); 834 } 835 836 /* 837 * Check if the queue is waiting for fs requests to be 838 * drained for flush sequence. 839 */ 840 if (unlikely(q->ordseq)) { 841 struct request *next = NULL; 842 843 if (!list_empty(&q->queue_head)) 844 next = list_entry_rq(q->queue_head.next); 845 846 if (!queue_in_flight(q) && 847 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 848 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) { 849 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 850 __blk_run_queue(q); 851 } 852 } 853 } 854 855 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 856 857 static ssize_t 858 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 859 { 860 struct elv_fs_entry *entry = to_elv(attr); 861 struct elevator_queue *e; 862 ssize_t error; 863 864 if (!entry->show) 865 return -EIO; 866 867 e = container_of(kobj, struct elevator_queue, kobj); 868 mutex_lock(&e->sysfs_lock); 869 error = e->ops ? entry->show(e, page) : -ENOENT; 870 mutex_unlock(&e->sysfs_lock); 871 return error; 872 } 873 874 static ssize_t 875 elv_attr_store(struct kobject *kobj, struct attribute *attr, 876 const char *page, size_t length) 877 { 878 struct elv_fs_entry *entry = to_elv(attr); 879 struct elevator_queue *e; 880 ssize_t error; 881 882 if (!entry->store) 883 return -EIO; 884 885 e = container_of(kobj, struct elevator_queue, kobj); 886 mutex_lock(&e->sysfs_lock); 887 error = e->ops ? entry->store(e, page, length) : -ENOENT; 888 mutex_unlock(&e->sysfs_lock); 889 return error; 890 } 891 892 static struct sysfs_ops elv_sysfs_ops = { 893 .show = elv_attr_show, 894 .store = elv_attr_store, 895 }; 896 897 static struct kobj_type elv_ktype = { 898 .sysfs_ops = &elv_sysfs_ops, 899 .release = elevator_release, 900 }; 901 902 int elv_register_queue(struct request_queue *q) 903 { 904 struct elevator_queue *e = q->elevator; 905 int error; 906 907 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 908 if (!error) { 909 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 910 if (attr) { 911 while (attr->attr.name) { 912 if (sysfs_create_file(&e->kobj, &attr->attr)) 913 break; 914 attr++; 915 } 916 } 917 kobject_uevent(&e->kobj, KOBJ_ADD); 918 } 919 return error; 920 } 921 922 static void __elv_unregister_queue(struct elevator_queue *e) 923 { 924 kobject_uevent(&e->kobj, KOBJ_REMOVE); 925 kobject_del(&e->kobj); 926 } 927 928 void elv_unregister_queue(struct request_queue *q) 929 { 930 if (q) 931 __elv_unregister_queue(q->elevator); 932 } 933 934 void elv_register(struct elevator_type *e) 935 { 936 char *def = ""; 937 938 spin_lock(&elv_list_lock); 939 BUG_ON(elevator_find(e->elevator_name)); 940 list_add_tail(&e->list, &elv_list); 941 spin_unlock(&elv_list_lock); 942 943 if (!strcmp(e->elevator_name, chosen_elevator) || 944 (!*chosen_elevator && 945 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 946 def = " (default)"; 947 948 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 949 def); 950 } 951 EXPORT_SYMBOL_GPL(elv_register); 952 953 void elv_unregister(struct elevator_type *e) 954 { 955 struct task_struct *g, *p; 956 957 /* 958 * Iterate every thread in the process to remove the io contexts. 959 */ 960 if (e->ops.trim) { 961 read_lock(&tasklist_lock); 962 do_each_thread(g, p) { 963 task_lock(p); 964 if (p->io_context) 965 e->ops.trim(p->io_context); 966 task_unlock(p); 967 } while_each_thread(g, p); 968 read_unlock(&tasklist_lock); 969 } 970 971 spin_lock(&elv_list_lock); 972 list_del_init(&e->list); 973 spin_unlock(&elv_list_lock); 974 } 975 EXPORT_SYMBOL_GPL(elv_unregister); 976 977 /* 978 * switch to new_e io scheduler. be careful not to introduce deadlocks - 979 * we don't free the old io scheduler, before we have allocated what we 980 * need for the new one. this way we have a chance of going back to the old 981 * one, if the new one fails init for some reason. 982 */ 983 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 984 { 985 struct elevator_queue *old_elevator, *e; 986 void *data; 987 988 /* 989 * Allocate new elevator 990 */ 991 e = elevator_alloc(q, new_e); 992 if (!e) 993 return 0; 994 995 data = elevator_init_queue(q, e); 996 if (!data) { 997 kobject_put(&e->kobj); 998 return 0; 999 } 1000 1001 /* 1002 * Turn on BYPASS and drain all requests w/ elevator private data 1003 */ 1004 spin_lock_irq(q->queue_lock); 1005 elv_quiesce_start(q); 1006 1007 /* 1008 * Remember old elevator. 1009 */ 1010 old_elevator = q->elevator; 1011 1012 /* 1013 * attach and start new elevator 1014 */ 1015 elevator_attach(q, e, data); 1016 1017 spin_unlock_irq(q->queue_lock); 1018 1019 __elv_unregister_queue(old_elevator); 1020 1021 if (elv_register_queue(q)) 1022 goto fail_register; 1023 1024 /* 1025 * finally exit old elevator and turn off BYPASS. 1026 */ 1027 elevator_exit(old_elevator); 1028 spin_lock_irq(q->queue_lock); 1029 elv_quiesce_end(q); 1030 spin_unlock_irq(q->queue_lock); 1031 1032 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1033 1034 return 1; 1035 1036 fail_register: 1037 /* 1038 * switch failed, exit the new io scheduler and reattach the old 1039 * one again (along with re-adding the sysfs dir) 1040 */ 1041 elevator_exit(e); 1042 q->elevator = old_elevator; 1043 elv_register_queue(q); 1044 1045 spin_lock_irq(q->queue_lock); 1046 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1047 spin_unlock_irq(q->queue_lock); 1048 1049 return 0; 1050 } 1051 1052 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1053 size_t count) 1054 { 1055 char elevator_name[ELV_NAME_MAX]; 1056 struct elevator_type *e; 1057 1058 if (!q->elevator) 1059 return count; 1060 1061 strlcpy(elevator_name, name, sizeof(elevator_name)); 1062 strstrip(elevator_name); 1063 1064 e = elevator_get(elevator_name); 1065 if (!e) { 1066 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1067 return -EINVAL; 1068 } 1069 1070 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1071 elevator_put(e); 1072 return count; 1073 } 1074 1075 if (!elevator_switch(q, e)) 1076 printk(KERN_ERR "elevator: switch to %s failed\n", 1077 elevator_name); 1078 return count; 1079 } 1080 1081 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1082 { 1083 struct elevator_queue *e = q->elevator; 1084 struct elevator_type *elv; 1085 struct elevator_type *__e; 1086 int len = 0; 1087 1088 if (!q->elevator) 1089 return sprintf(name, "none\n"); 1090 1091 elv = e->elevator_type; 1092 1093 spin_lock(&elv_list_lock); 1094 list_for_each_entry(__e, &elv_list, list) { 1095 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1096 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1097 else 1098 len += sprintf(name+len, "%s ", __e->elevator_name); 1099 } 1100 spin_unlock(&elv_list_lock); 1101 1102 len += sprintf(len+name, "\n"); 1103 return len; 1104 } 1105 1106 struct request *elv_rb_former_request(struct request_queue *q, 1107 struct request *rq) 1108 { 1109 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1110 1111 if (rbprev) 1112 return rb_entry_rq(rbprev); 1113 1114 return NULL; 1115 } 1116 EXPORT_SYMBOL(elv_rb_former_request); 1117 1118 struct request *elv_rb_latter_request(struct request_queue *q, 1119 struct request *rq) 1120 { 1121 struct rb_node *rbnext = rb_next(&rq->rb_node); 1122 1123 if (rbnext) 1124 return rb_entry_rq(rbnext); 1125 1126 return NULL; 1127 } 1128 EXPORT_SYMBOL(elv_rb_latter_request); 1129