xref: /openbmc/linux/block/elevator.c (revision e8e0929d)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->ops->elevator_allow_merge_fn)
66 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!rq_mergeable(rq))
77 		return 0;
78 
79 	/*
80 	 * Don't merge file system requests and discard requests
81 	 */
82 	if (bio_rw_flagged(bio, BIO_RW_DISCARD) !=
83 	    bio_rw_flagged(rq->bio, BIO_RW_DISCARD))
84 		return 0;
85 
86 	/*
87 	 * different data direction or already started, don't merge
88 	 */
89 	if (bio_data_dir(bio) != rq_data_dir(rq))
90 		return 0;
91 
92 	/*
93 	 * must be same device and not a special request
94 	 */
95 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
96 		return 0;
97 
98 	/*
99 	 * only merge integrity protected bio into ditto rq
100 	 */
101 	if (bio_integrity(bio) != blk_integrity_rq(rq))
102 		return 0;
103 
104 	if (!elv_iosched_allow_merge(rq, bio))
105 		return 0;
106 
107 	return 1;
108 }
109 EXPORT_SYMBOL(elv_rq_merge_ok);
110 
111 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
112 {
113 	int ret = ELEVATOR_NO_MERGE;
114 
115 	/*
116 	 * we can merge and sequence is ok, check if it's possible
117 	 */
118 	if (elv_rq_merge_ok(__rq, bio)) {
119 		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
120 			ret = ELEVATOR_BACK_MERGE;
121 		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
122 			ret = ELEVATOR_FRONT_MERGE;
123 	}
124 
125 	return ret;
126 }
127 
128 static struct elevator_type *elevator_find(const char *name)
129 {
130 	struct elevator_type *e;
131 
132 	list_for_each_entry(e, &elv_list, list) {
133 		if (!strcmp(e->elevator_name, name))
134 			return e;
135 	}
136 
137 	return NULL;
138 }
139 
140 static void elevator_put(struct elevator_type *e)
141 {
142 	module_put(e->elevator_owner);
143 }
144 
145 static struct elevator_type *elevator_get(const char *name)
146 {
147 	struct elevator_type *e;
148 
149 	spin_lock(&elv_list_lock);
150 
151 	e = elevator_find(name);
152 	if (!e) {
153 		char elv[ELV_NAME_MAX + strlen("-iosched")];
154 
155 		spin_unlock(&elv_list_lock);
156 
157 		if (!strcmp(name, "anticipatory"))
158 			sprintf(elv, "as-iosched");
159 		else
160 			sprintf(elv, "%s-iosched", name);
161 
162 		request_module("%s", elv);
163 		spin_lock(&elv_list_lock);
164 		e = elevator_find(name);
165 	}
166 
167 	if (e && !try_module_get(e->elevator_owner))
168 		e = NULL;
169 
170 	spin_unlock(&elv_list_lock);
171 
172 	return e;
173 }
174 
175 static void *elevator_init_queue(struct request_queue *q,
176 				 struct elevator_queue *eq)
177 {
178 	return eq->ops->elevator_init_fn(q);
179 }
180 
181 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
182 			   void *data)
183 {
184 	q->elevator = eq;
185 	eq->elevator_data = data;
186 }
187 
188 static char chosen_elevator[16];
189 
190 static int __init elevator_setup(char *str)
191 {
192 	/*
193 	 * Be backwards-compatible with previous kernels, so users
194 	 * won't get the wrong elevator.
195 	 */
196 	if (!strcmp(str, "as"))
197 		strcpy(chosen_elevator, "anticipatory");
198 	else
199 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
200 	return 1;
201 }
202 
203 __setup("elevator=", elevator_setup);
204 
205 static struct kobj_type elv_ktype;
206 
207 static struct elevator_queue *elevator_alloc(struct request_queue *q,
208 				  struct elevator_type *e)
209 {
210 	struct elevator_queue *eq;
211 	int i;
212 
213 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
214 	if (unlikely(!eq))
215 		goto err;
216 
217 	eq->ops = &e->ops;
218 	eq->elevator_type = e;
219 	kobject_init(&eq->kobj, &elv_ktype);
220 	mutex_init(&eq->sysfs_lock);
221 
222 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
223 					GFP_KERNEL, q->node);
224 	if (!eq->hash)
225 		goto err;
226 
227 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
228 		INIT_HLIST_HEAD(&eq->hash[i]);
229 
230 	return eq;
231 err:
232 	kfree(eq);
233 	elevator_put(e);
234 	return NULL;
235 }
236 
237 static void elevator_release(struct kobject *kobj)
238 {
239 	struct elevator_queue *e;
240 
241 	e = container_of(kobj, struct elevator_queue, kobj);
242 	elevator_put(e->elevator_type);
243 	kfree(e->hash);
244 	kfree(e);
245 }
246 
247 int elevator_init(struct request_queue *q, char *name)
248 {
249 	struct elevator_type *e = NULL;
250 	struct elevator_queue *eq;
251 	int ret = 0;
252 	void *data;
253 
254 	INIT_LIST_HEAD(&q->queue_head);
255 	q->last_merge = NULL;
256 	q->end_sector = 0;
257 	q->boundary_rq = NULL;
258 
259 	if (name) {
260 		e = elevator_get(name);
261 		if (!e)
262 			return -EINVAL;
263 	}
264 
265 	if (!e && *chosen_elevator) {
266 		e = elevator_get(chosen_elevator);
267 		if (!e)
268 			printk(KERN_ERR "I/O scheduler %s not found\n",
269 							chosen_elevator);
270 	}
271 
272 	if (!e) {
273 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
274 		if (!e) {
275 			printk(KERN_ERR
276 				"Default I/O scheduler not found. " \
277 				"Using noop.\n");
278 			e = elevator_get("noop");
279 		}
280 	}
281 
282 	eq = elevator_alloc(q, e);
283 	if (!eq)
284 		return -ENOMEM;
285 
286 	data = elevator_init_queue(q, eq);
287 	if (!data) {
288 		kobject_put(&eq->kobj);
289 		return -ENOMEM;
290 	}
291 
292 	elevator_attach(q, eq, data);
293 	return ret;
294 }
295 EXPORT_SYMBOL(elevator_init);
296 
297 void elevator_exit(struct elevator_queue *e)
298 {
299 	mutex_lock(&e->sysfs_lock);
300 	if (e->ops->elevator_exit_fn)
301 		e->ops->elevator_exit_fn(e);
302 	e->ops = NULL;
303 	mutex_unlock(&e->sysfs_lock);
304 
305 	kobject_put(&e->kobj);
306 }
307 EXPORT_SYMBOL(elevator_exit);
308 
309 static inline void __elv_rqhash_del(struct request *rq)
310 {
311 	hlist_del_init(&rq->hash);
312 }
313 
314 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
315 {
316 	if (ELV_ON_HASH(rq))
317 		__elv_rqhash_del(rq);
318 }
319 
320 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
321 {
322 	struct elevator_queue *e = q->elevator;
323 
324 	BUG_ON(ELV_ON_HASH(rq));
325 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
326 }
327 
328 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
329 {
330 	__elv_rqhash_del(rq);
331 	elv_rqhash_add(q, rq);
332 }
333 
334 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
335 {
336 	struct elevator_queue *e = q->elevator;
337 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
338 	struct hlist_node *entry, *next;
339 	struct request *rq;
340 
341 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
342 		BUG_ON(!ELV_ON_HASH(rq));
343 
344 		if (unlikely(!rq_mergeable(rq))) {
345 			__elv_rqhash_del(rq);
346 			continue;
347 		}
348 
349 		if (rq_hash_key(rq) == offset)
350 			return rq;
351 	}
352 
353 	return NULL;
354 }
355 
356 /*
357  * RB-tree support functions for inserting/lookup/removal of requests
358  * in a sorted RB tree.
359  */
360 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
361 {
362 	struct rb_node **p = &root->rb_node;
363 	struct rb_node *parent = NULL;
364 	struct request *__rq;
365 
366 	while (*p) {
367 		parent = *p;
368 		__rq = rb_entry(parent, struct request, rb_node);
369 
370 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
371 			p = &(*p)->rb_left;
372 		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
373 			p = &(*p)->rb_right;
374 		else
375 			return __rq;
376 	}
377 
378 	rb_link_node(&rq->rb_node, parent, p);
379 	rb_insert_color(&rq->rb_node, root);
380 	return NULL;
381 }
382 EXPORT_SYMBOL(elv_rb_add);
383 
384 void elv_rb_del(struct rb_root *root, struct request *rq)
385 {
386 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
387 	rb_erase(&rq->rb_node, root);
388 	RB_CLEAR_NODE(&rq->rb_node);
389 }
390 EXPORT_SYMBOL(elv_rb_del);
391 
392 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
393 {
394 	struct rb_node *n = root->rb_node;
395 	struct request *rq;
396 
397 	while (n) {
398 		rq = rb_entry(n, struct request, rb_node);
399 
400 		if (sector < blk_rq_pos(rq))
401 			n = n->rb_left;
402 		else if (sector > blk_rq_pos(rq))
403 			n = n->rb_right;
404 		else
405 			return rq;
406 	}
407 
408 	return NULL;
409 }
410 EXPORT_SYMBOL(elv_rb_find);
411 
412 /*
413  * Insert rq into dispatch queue of q.  Queue lock must be held on
414  * entry.  rq is sort instead into the dispatch queue. To be used by
415  * specific elevators.
416  */
417 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
418 {
419 	sector_t boundary;
420 	struct list_head *entry;
421 	int stop_flags;
422 
423 	if (q->last_merge == rq)
424 		q->last_merge = NULL;
425 
426 	elv_rqhash_del(q, rq);
427 
428 	q->nr_sorted--;
429 
430 	boundary = q->end_sector;
431 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
432 	list_for_each_prev(entry, &q->queue_head) {
433 		struct request *pos = list_entry_rq(entry);
434 
435 		if (blk_discard_rq(rq) != blk_discard_rq(pos))
436 			break;
437 		if (rq_data_dir(rq) != rq_data_dir(pos))
438 			break;
439 		if (pos->cmd_flags & stop_flags)
440 			break;
441 		if (blk_rq_pos(rq) >= boundary) {
442 			if (blk_rq_pos(pos) < boundary)
443 				continue;
444 		} else {
445 			if (blk_rq_pos(pos) >= boundary)
446 				break;
447 		}
448 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
449 			break;
450 	}
451 
452 	list_add(&rq->queuelist, entry);
453 }
454 EXPORT_SYMBOL(elv_dispatch_sort);
455 
456 /*
457  * Insert rq into dispatch queue of q.  Queue lock must be held on
458  * entry.  rq is added to the back of the dispatch queue. To be used by
459  * specific elevators.
460  */
461 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
462 {
463 	if (q->last_merge == rq)
464 		q->last_merge = NULL;
465 
466 	elv_rqhash_del(q, rq);
467 
468 	q->nr_sorted--;
469 
470 	q->end_sector = rq_end_sector(rq);
471 	q->boundary_rq = rq;
472 	list_add_tail(&rq->queuelist, &q->queue_head);
473 }
474 EXPORT_SYMBOL(elv_dispatch_add_tail);
475 
476 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
477 {
478 	struct elevator_queue *e = q->elevator;
479 	struct request *__rq;
480 	int ret;
481 
482 	/*
483 	 * First try one-hit cache.
484 	 */
485 	if (q->last_merge) {
486 		ret = elv_try_merge(q->last_merge, bio);
487 		if (ret != ELEVATOR_NO_MERGE) {
488 			*req = q->last_merge;
489 			return ret;
490 		}
491 	}
492 
493 	if (blk_queue_nomerges(q))
494 		return ELEVATOR_NO_MERGE;
495 
496 	/*
497 	 * See if our hash lookup can find a potential backmerge.
498 	 */
499 	__rq = elv_rqhash_find(q, bio->bi_sector);
500 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
501 		*req = __rq;
502 		return ELEVATOR_BACK_MERGE;
503 	}
504 
505 	if (e->ops->elevator_merge_fn)
506 		return e->ops->elevator_merge_fn(q, req, bio);
507 
508 	return ELEVATOR_NO_MERGE;
509 }
510 
511 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
512 {
513 	struct elevator_queue *e = q->elevator;
514 
515 	if (e->ops->elevator_merged_fn)
516 		e->ops->elevator_merged_fn(q, rq, type);
517 
518 	if (type == ELEVATOR_BACK_MERGE)
519 		elv_rqhash_reposition(q, rq);
520 
521 	q->last_merge = rq;
522 }
523 
524 void elv_merge_requests(struct request_queue *q, struct request *rq,
525 			     struct request *next)
526 {
527 	struct elevator_queue *e = q->elevator;
528 
529 	if (e->ops->elevator_merge_req_fn)
530 		e->ops->elevator_merge_req_fn(q, rq, next);
531 
532 	elv_rqhash_reposition(q, rq);
533 	elv_rqhash_del(q, next);
534 
535 	q->nr_sorted--;
536 	q->last_merge = rq;
537 }
538 
539 void elv_requeue_request(struct request_queue *q, struct request *rq)
540 {
541 	/*
542 	 * it already went through dequeue, we need to decrement the
543 	 * in_flight count again
544 	 */
545 	if (blk_account_rq(rq)) {
546 		q->in_flight[rq_is_sync(rq)]--;
547 		if (blk_sorted_rq(rq))
548 			elv_deactivate_rq(q, rq);
549 	}
550 
551 	rq->cmd_flags &= ~REQ_STARTED;
552 
553 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
554 }
555 
556 void elv_drain_elevator(struct request_queue *q)
557 {
558 	static int printed;
559 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
560 		;
561 	if (q->nr_sorted == 0)
562 		return;
563 	if (printed++ < 10) {
564 		printk(KERN_ERR "%s: forced dispatching is broken "
565 		       "(nr_sorted=%u), please report this\n",
566 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
567 	}
568 }
569 
570 /*
571  * Call with queue lock held, interrupts disabled
572  */
573 void elv_quiesce_start(struct request_queue *q)
574 {
575 	if (!q->elevator)
576 		return;
577 
578 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
579 
580 	/*
581 	 * make sure we don't have any requests in flight
582 	 */
583 	elv_drain_elevator(q);
584 	while (q->rq.elvpriv) {
585 		__blk_run_queue(q);
586 		spin_unlock_irq(q->queue_lock);
587 		msleep(10);
588 		spin_lock_irq(q->queue_lock);
589 		elv_drain_elevator(q);
590 	}
591 }
592 
593 void elv_quiesce_end(struct request_queue *q)
594 {
595 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
596 }
597 
598 void elv_insert(struct request_queue *q, struct request *rq, int where)
599 {
600 	struct list_head *pos;
601 	unsigned ordseq;
602 	int unplug_it = 1;
603 
604 	trace_block_rq_insert(q, rq);
605 
606 	rq->q = q;
607 
608 	switch (where) {
609 	case ELEVATOR_INSERT_FRONT:
610 		rq->cmd_flags |= REQ_SOFTBARRIER;
611 
612 		list_add(&rq->queuelist, &q->queue_head);
613 		break;
614 
615 	case ELEVATOR_INSERT_BACK:
616 		rq->cmd_flags |= REQ_SOFTBARRIER;
617 		elv_drain_elevator(q);
618 		list_add_tail(&rq->queuelist, &q->queue_head);
619 		/*
620 		 * We kick the queue here for the following reasons.
621 		 * - The elevator might have returned NULL previously
622 		 *   to delay requests and returned them now.  As the
623 		 *   queue wasn't empty before this request, ll_rw_blk
624 		 *   won't run the queue on return, resulting in hang.
625 		 * - Usually, back inserted requests won't be merged
626 		 *   with anything.  There's no point in delaying queue
627 		 *   processing.
628 		 */
629 		__blk_run_queue(q);
630 		break;
631 
632 	case ELEVATOR_INSERT_SORT:
633 		BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
634 		rq->cmd_flags |= REQ_SORTED;
635 		q->nr_sorted++;
636 		if (rq_mergeable(rq)) {
637 			elv_rqhash_add(q, rq);
638 			if (!q->last_merge)
639 				q->last_merge = rq;
640 		}
641 
642 		/*
643 		 * Some ioscheds (cfq) run q->request_fn directly, so
644 		 * rq cannot be accessed after calling
645 		 * elevator_add_req_fn.
646 		 */
647 		q->elevator->ops->elevator_add_req_fn(q, rq);
648 		break;
649 
650 	case ELEVATOR_INSERT_REQUEUE:
651 		/*
652 		 * If ordered flush isn't in progress, we do front
653 		 * insertion; otherwise, requests should be requeued
654 		 * in ordseq order.
655 		 */
656 		rq->cmd_flags |= REQ_SOFTBARRIER;
657 
658 		/*
659 		 * Most requeues happen because of a busy condition,
660 		 * don't force unplug of the queue for that case.
661 		 */
662 		unplug_it = 0;
663 
664 		if (q->ordseq == 0) {
665 			list_add(&rq->queuelist, &q->queue_head);
666 			break;
667 		}
668 
669 		ordseq = blk_ordered_req_seq(rq);
670 
671 		list_for_each(pos, &q->queue_head) {
672 			struct request *pos_rq = list_entry_rq(pos);
673 			if (ordseq <= blk_ordered_req_seq(pos_rq))
674 				break;
675 		}
676 
677 		list_add_tail(&rq->queuelist, pos);
678 		break;
679 
680 	default:
681 		printk(KERN_ERR "%s: bad insertion point %d\n",
682 		       __func__, where);
683 		BUG();
684 	}
685 
686 	if (unplug_it && blk_queue_plugged(q)) {
687 		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
688 				- queue_in_flight(q);
689 
690 		if (nrq >= q->unplug_thresh)
691 			__generic_unplug_device(q);
692 	}
693 }
694 
695 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
696 		       int plug)
697 {
698 	if (q->ordcolor)
699 		rq->cmd_flags |= REQ_ORDERED_COLOR;
700 
701 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
702 		/*
703 		 * toggle ordered color
704 		 */
705 		if (blk_barrier_rq(rq))
706 			q->ordcolor ^= 1;
707 
708 		/*
709 		 * barriers implicitly indicate back insertion
710 		 */
711 		if (where == ELEVATOR_INSERT_SORT)
712 			where = ELEVATOR_INSERT_BACK;
713 
714 		/*
715 		 * this request is scheduling boundary, update
716 		 * end_sector
717 		 */
718 		if (blk_fs_request(rq) || blk_discard_rq(rq)) {
719 			q->end_sector = rq_end_sector(rq);
720 			q->boundary_rq = rq;
721 		}
722 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
723 		    where == ELEVATOR_INSERT_SORT)
724 		where = ELEVATOR_INSERT_BACK;
725 
726 	if (plug)
727 		blk_plug_device(q);
728 
729 	elv_insert(q, rq, where);
730 }
731 EXPORT_SYMBOL(__elv_add_request);
732 
733 void elv_add_request(struct request_queue *q, struct request *rq, int where,
734 		     int plug)
735 {
736 	unsigned long flags;
737 
738 	spin_lock_irqsave(q->queue_lock, flags);
739 	__elv_add_request(q, rq, where, plug);
740 	spin_unlock_irqrestore(q->queue_lock, flags);
741 }
742 EXPORT_SYMBOL(elv_add_request);
743 
744 int elv_queue_empty(struct request_queue *q)
745 {
746 	struct elevator_queue *e = q->elevator;
747 
748 	if (!list_empty(&q->queue_head))
749 		return 0;
750 
751 	if (e->ops->elevator_queue_empty_fn)
752 		return e->ops->elevator_queue_empty_fn(q);
753 
754 	return 1;
755 }
756 EXPORT_SYMBOL(elv_queue_empty);
757 
758 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
759 {
760 	struct elevator_queue *e = q->elevator;
761 
762 	if (e->ops->elevator_latter_req_fn)
763 		return e->ops->elevator_latter_req_fn(q, rq);
764 	return NULL;
765 }
766 
767 struct request *elv_former_request(struct request_queue *q, struct request *rq)
768 {
769 	struct elevator_queue *e = q->elevator;
770 
771 	if (e->ops->elevator_former_req_fn)
772 		return e->ops->elevator_former_req_fn(q, rq);
773 	return NULL;
774 }
775 
776 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
777 {
778 	struct elevator_queue *e = q->elevator;
779 
780 	if (e->ops->elevator_set_req_fn)
781 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
782 
783 	rq->elevator_private = NULL;
784 	return 0;
785 }
786 
787 void elv_put_request(struct request_queue *q, struct request *rq)
788 {
789 	struct elevator_queue *e = q->elevator;
790 
791 	if (e->ops->elevator_put_req_fn)
792 		e->ops->elevator_put_req_fn(rq);
793 }
794 
795 int elv_may_queue(struct request_queue *q, int rw)
796 {
797 	struct elevator_queue *e = q->elevator;
798 
799 	if (e->ops->elevator_may_queue_fn)
800 		return e->ops->elevator_may_queue_fn(q, rw);
801 
802 	return ELV_MQUEUE_MAY;
803 }
804 
805 void elv_abort_queue(struct request_queue *q)
806 {
807 	struct request *rq;
808 
809 	while (!list_empty(&q->queue_head)) {
810 		rq = list_entry_rq(q->queue_head.next);
811 		rq->cmd_flags |= REQ_QUIET;
812 		trace_block_rq_abort(q, rq);
813 		/*
814 		 * Mark this request as started so we don't trigger
815 		 * any debug logic in the end I/O path.
816 		 */
817 		blk_start_request(rq);
818 		__blk_end_request_all(rq, -EIO);
819 	}
820 }
821 EXPORT_SYMBOL(elv_abort_queue);
822 
823 void elv_completed_request(struct request_queue *q, struct request *rq)
824 {
825 	struct elevator_queue *e = q->elevator;
826 
827 	/*
828 	 * request is released from the driver, io must be done
829 	 */
830 	if (blk_account_rq(rq)) {
831 		q->in_flight[rq_is_sync(rq)]--;
832 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
833 			e->ops->elevator_completed_req_fn(q, rq);
834 	}
835 
836 	/*
837 	 * Check if the queue is waiting for fs requests to be
838 	 * drained for flush sequence.
839 	 */
840 	if (unlikely(q->ordseq)) {
841 		struct request *next = NULL;
842 
843 		if (!list_empty(&q->queue_head))
844 			next = list_entry_rq(q->queue_head.next);
845 
846 		if (!queue_in_flight(q) &&
847 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
848 		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
849 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
850 			__blk_run_queue(q);
851 		}
852 	}
853 }
854 
855 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
856 
857 static ssize_t
858 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
859 {
860 	struct elv_fs_entry *entry = to_elv(attr);
861 	struct elevator_queue *e;
862 	ssize_t error;
863 
864 	if (!entry->show)
865 		return -EIO;
866 
867 	e = container_of(kobj, struct elevator_queue, kobj);
868 	mutex_lock(&e->sysfs_lock);
869 	error = e->ops ? entry->show(e, page) : -ENOENT;
870 	mutex_unlock(&e->sysfs_lock);
871 	return error;
872 }
873 
874 static ssize_t
875 elv_attr_store(struct kobject *kobj, struct attribute *attr,
876 	       const char *page, size_t length)
877 {
878 	struct elv_fs_entry *entry = to_elv(attr);
879 	struct elevator_queue *e;
880 	ssize_t error;
881 
882 	if (!entry->store)
883 		return -EIO;
884 
885 	e = container_of(kobj, struct elevator_queue, kobj);
886 	mutex_lock(&e->sysfs_lock);
887 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
888 	mutex_unlock(&e->sysfs_lock);
889 	return error;
890 }
891 
892 static struct sysfs_ops elv_sysfs_ops = {
893 	.show	= elv_attr_show,
894 	.store	= elv_attr_store,
895 };
896 
897 static struct kobj_type elv_ktype = {
898 	.sysfs_ops	= &elv_sysfs_ops,
899 	.release	= elevator_release,
900 };
901 
902 int elv_register_queue(struct request_queue *q)
903 {
904 	struct elevator_queue *e = q->elevator;
905 	int error;
906 
907 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
908 	if (!error) {
909 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
910 		if (attr) {
911 			while (attr->attr.name) {
912 				if (sysfs_create_file(&e->kobj, &attr->attr))
913 					break;
914 				attr++;
915 			}
916 		}
917 		kobject_uevent(&e->kobj, KOBJ_ADD);
918 	}
919 	return error;
920 }
921 
922 static void __elv_unregister_queue(struct elevator_queue *e)
923 {
924 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
925 	kobject_del(&e->kobj);
926 }
927 
928 void elv_unregister_queue(struct request_queue *q)
929 {
930 	if (q)
931 		__elv_unregister_queue(q->elevator);
932 }
933 
934 void elv_register(struct elevator_type *e)
935 {
936 	char *def = "";
937 
938 	spin_lock(&elv_list_lock);
939 	BUG_ON(elevator_find(e->elevator_name));
940 	list_add_tail(&e->list, &elv_list);
941 	spin_unlock(&elv_list_lock);
942 
943 	if (!strcmp(e->elevator_name, chosen_elevator) ||
944 			(!*chosen_elevator &&
945 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
946 				def = " (default)";
947 
948 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
949 								def);
950 }
951 EXPORT_SYMBOL_GPL(elv_register);
952 
953 void elv_unregister(struct elevator_type *e)
954 {
955 	struct task_struct *g, *p;
956 
957 	/*
958 	 * Iterate every thread in the process to remove the io contexts.
959 	 */
960 	if (e->ops.trim) {
961 		read_lock(&tasklist_lock);
962 		do_each_thread(g, p) {
963 			task_lock(p);
964 			if (p->io_context)
965 				e->ops.trim(p->io_context);
966 			task_unlock(p);
967 		} while_each_thread(g, p);
968 		read_unlock(&tasklist_lock);
969 	}
970 
971 	spin_lock(&elv_list_lock);
972 	list_del_init(&e->list);
973 	spin_unlock(&elv_list_lock);
974 }
975 EXPORT_SYMBOL_GPL(elv_unregister);
976 
977 /*
978  * switch to new_e io scheduler. be careful not to introduce deadlocks -
979  * we don't free the old io scheduler, before we have allocated what we
980  * need for the new one. this way we have a chance of going back to the old
981  * one, if the new one fails init for some reason.
982  */
983 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
984 {
985 	struct elevator_queue *old_elevator, *e;
986 	void *data;
987 
988 	/*
989 	 * Allocate new elevator
990 	 */
991 	e = elevator_alloc(q, new_e);
992 	if (!e)
993 		return 0;
994 
995 	data = elevator_init_queue(q, e);
996 	if (!data) {
997 		kobject_put(&e->kobj);
998 		return 0;
999 	}
1000 
1001 	/*
1002 	 * Turn on BYPASS and drain all requests w/ elevator private data
1003 	 */
1004 	spin_lock_irq(q->queue_lock);
1005 	elv_quiesce_start(q);
1006 
1007 	/*
1008 	 * Remember old elevator.
1009 	 */
1010 	old_elevator = q->elevator;
1011 
1012 	/*
1013 	 * attach and start new elevator
1014 	 */
1015 	elevator_attach(q, e, data);
1016 
1017 	spin_unlock_irq(q->queue_lock);
1018 
1019 	__elv_unregister_queue(old_elevator);
1020 
1021 	if (elv_register_queue(q))
1022 		goto fail_register;
1023 
1024 	/*
1025 	 * finally exit old elevator and turn off BYPASS.
1026 	 */
1027 	elevator_exit(old_elevator);
1028 	spin_lock_irq(q->queue_lock);
1029 	elv_quiesce_end(q);
1030 	spin_unlock_irq(q->queue_lock);
1031 
1032 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1033 
1034 	return 1;
1035 
1036 fail_register:
1037 	/*
1038 	 * switch failed, exit the new io scheduler and reattach the old
1039 	 * one again (along with re-adding the sysfs dir)
1040 	 */
1041 	elevator_exit(e);
1042 	q->elevator = old_elevator;
1043 	elv_register_queue(q);
1044 
1045 	spin_lock_irq(q->queue_lock);
1046 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1047 	spin_unlock_irq(q->queue_lock);
1048 
1049 	return 0;
1050 }
1051 
1052 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1053 			  size_t count)
1054 {
1055 	char elevator_name[ELV_NAME_MAX];
1056 	struct elevator_type *e;
1057 
1058 	if (!q->elevator)
1059 		return count;
1060 
1061 	strlcpy(elevator_name, name, sizeof(elevator_name));
1062 	strstrip(elevator_name);
1063 
1064 	e = elevator_get(elevator_name);
1065 	if (!e) {
1066 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1067 		return -EINVAL;
1068 	}
1069 
1070 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1071 		elevator_put(e);
1072 		return count;
1073 	}
1074 
1075 	if (!elevator_switch(q, e))
1076 		printk(KERN_ERR "elevator: switch to %s failed\n",
1077 							elevator_name);
1078 	return count;
1079 }
1080 
1081 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1082 {
1083 	struct elevator_queue *e = q->elevator;
1084 	struct elevator_type *elv;
1085 	struct elevator_type *__e;
1086 	int len = 0;
1087 
1088 	if (!q->elevator)
1089 		return sprintf(name, "none\n");
1090 
1091 	elv = e->elevator_type;
1092 
1093 	spin_lock(&elv_list_lock);
1094 	list_for_each_entry(__e, &elv_list, list) {
1095 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1096 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1097 		else
1098 			len += sprintf(name+len, "%s ", __e->elevator_name);
1099 	}
1100 	spin_unlock(&elv_list_lock);
1101 
1102 	len += sprintf(len+name, "\n");
1103 	return len;
1104 }
1105 
1106 struct request *elv_rb_former_request(struct request_queue *q,
1107 				      struct request *rq)
1108 {
1109 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1110 
1111 	if (rbprev)
1112 		return rb_entry_rq(rbprev);
1113 
1114 	return NULL;
1115 }
1116 EXPORT_SYMBOL(elv_rb_former_request);
1117 
1118 struct request *elv_rb_latter_request(struct request_queue *q,
1119 				      struct request *rq)
1120 {
1121 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1122 
1123 	if (rbnext)
1124 		return rb_entry_rq(rbnext);
1125 
1126 	return NULL;
1127 }
1128 EXPORT_SYMBOL(elv_rb_latter_request);
1129