xref: /openbmc/linux/block/elevator.c (revision da2014a2)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
48 #define ELV_HASH_FN(sec)	\
49 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
50 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
51 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
52 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
53 
54 /*
55  * Query io scheduler to see if the current process issuing bio may be
56  * merged with rq.
57  */
58 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
59 {
60 	struct request_queue *q = rq->q;
61 	elevator_t *e = q->elevator;
62 
63 	if (e->ops->elevator_allow_merge_fn)
64 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
65 
66 	return 1;
67 }
68 
69 /*
70  * can we safely merge with this request?
71  */
72 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
73 {
74 	if (!rq_mergeable(rq))
75 		return 0;
76 
77 	/*
78 	 * different data direction or already started, don't merge
79 	 */
80 	if (bio_data_dir(bio) != rq_data_dir(rq))
81 		return 0;
82 
83 	/*
84 	 * must be same device and not a special request
85 	 */
86 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
87 		return 0;
88 
89 	/*
90 	 * only merge integrity protected bio into ditto rq
91 	 */
92 	if (bio_integrity(bio) != blk_integrity_rq(rq))
93 		return 0;
94 
95 	if (!elv_iosched_allow_merge(rq, bio))
96 		return 0;
97 
98 	return 1;
99 }
100 EXPORT_SYMBOL(elv_rq_merge_ok);
101 
102 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
103 {
104 	int ret = ELEVATOR_NO_MERGE;
105 
106 	/*
107 	 * we can merge and sequence is ok, check if it's possible
108 	 */
109 	if (elv_rq_merge_ok(__rq, bio)) {
110 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
111 			ret = ELEVATOR_BACK_MERGE;
112 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
113 			ret = ELEVATOR_FRONT_MERGE;
114 	}
115 
116 	return ret;
117 }
118 
119 static struct elevator_type *elevator_find(const char *name)
120 {
121 	struct elevator_type *e;
122 
123 	list_for_each_entry(e, &elv_list, list) {
124 		if (!strcmp(e->elevator_name, name))
125 			return e;
126 	}
127 
128 	return NULL;
129 }
130 
131 static void elevator_put(struct elevator_type *e)
132 {
133 	module_put(e->elevator_owner);
134 }
135 
136 static struct elevator_type *elevator_get(const char *name)
137 {
138 	struct elevator_type *e;
139 
140 	spin_lock(&elv_list_lock);
141 
142 	e = elevator_find(name);
143 	if (!e) {
144 		char elv[ELV_NAME_MAX + strlen("-iosched")];
145 
146 		spin_unlock(&elv_list_lock);
147 
148 		if (!strcmp(name, "anticipatory"))
149 			sprintf(elv, "as-iosched");
150 		else
151 			sprintf(elv, "%s-iosched", name);
152 
153 		request_module("%s", elv);
154 		spin_lock(&elv_list_lock);
155 		e = elevator_find(name);
156 	}
157 
158 	if (e && !try_module_get(e->elevator_owner))
159 		e = NULL;
160 
161 	spin_unlock(&elv_list_lock);
162 
163 	return e;
164 }
165 
166 static void *elevator_init_queue(struct request_queue *q,
167 				 struct elevator_queue *eq)
168 {
169 	return eq->ops->elevator_init_fn(q);
170 }
171 
172 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
173 			   void *data)
174 {
175 	q->elevator = eq;
176 	eq->elevator_data = data;
177 }
178 
179 static char chosen_elevator[16];
180 
181 static int __init elevator_setup(char *str)
182 {
183 	/*
184 	 * Be backwards-compatible with previous kernels, so users
185 	 * won't get the wrong elevator.
186 	 */
187 	if (!strcmp(str, "as"))
188 		strcpy(chosen_elevator, "anticipatory");
189 	else
190 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
191 	return 1;
192 }
193 
194 __setup("elevator=", elevator_setup);
195 
196 static struct kobj_type elv_ktype;
197 
198 static elevator_t *elevator_alloc(struct request_queue *q,
199 				  struct elevator_type *e)
200 {
201 	elevator_t *eq;
202 	int i;
203 
204 	eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
205 	if (unlikely(!eq))
206 		goto err;
207 
208 	eq->ops = &e->ops;
209 	eq->elevator_type = e;
210 	kobject_init(&eq->kobj, &elv_ktype);
211 	mutex_init(&eq->sysfs_lock);
212 
213 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
214 					GFP_KERNEL, q->node);
215 	if (!eq->hash)
216 		goto err;
217 
218 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
219 		INIT_HLIST_HEAD(&eq->hash[i]);
220 
221 	return eq;
222 err:
223 	kfree(eq);
224 	elevator_put(e);
225 	return NULL;
226 }
227 
228 static void elevator_release(struct kobject *kobj)
229 {
230 	elevator_t *e = container_of(kobj, elevator_t, kobj);
231 
232 	elevator_put(e->elevator_type);
233 	kfree(e->hash);
234 	kfree(e);
235 }
236 
237 int elevator_init(struct request_queue *q, char *name)
238 {
239 	struct elevator_type *e = NULL;
240 	struct elevator_queue *eq;
241 	int ret = 0;
242 	void *data;
243 
244 	INIT_LIST_HEAD(&q->queue_head);
245 	q->last_merge = NULL;
246 	q->end_sector = 0;
247 	q->boundary_rq = NULL;
248 
249 	if (name) {
250 		e = elevator_get(name);
251 		if (!e)
252 			return -EINVAL;
253 	}
254 
255 	if (!e && *chosen_elevator) {
256 		e = elevator_get(chosen_elevator);
257 		if (!e)
258 			printk(KERN_ERR "I/O scheduler %s not found\n",
259 							chosen_elevator);
260 	}
261 
262 	if (!e) {
263 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
264 		if (!e) {
265 			printk(KERN_ERR
266 				"Default I/O scheduler not found. " \
267 				"Using noop.\n");
268 			e = elevator_get("noop");
269 		}
270 	}
271 
272 	eq = elevator_alloc(q, e);
273 	if (!eq)
274 		return -ENOMEM;
275 
276 	data = elevator_init_queue(q, eq);
277 	if (!data) {
278 		kobject_put(&eq->kobj);
279 		return -ENOMEM;
280 	}
281 
282 	elevator_attach(q, eq, data);
283 	return ret;
284 }
285 EXPORT_SYMBOL(elevator_init);
286 
287 void elevator_exit(elevator_t *e)
288 {
289 	mutex_lock(&e->sysfs_lock);
290 	if (e->ops->elevator_exit_fn)
291 		e->ops->elevator_exit_fn(e);
292 	e->ops = NULL;
293 	mutex_unlock(&e->sysfs_lock);
294 
295 	kobject_put(&e->kobj);
296 }
297 EXPORT_SYMBOL(elevator_exit);
298 
299 static void elv_activate_rq(struct request_queue *q, struct request *rq)
300 {
301 	elevator_t *e = q->elevator;
302 
303 	if (e->ops->elevator_activate_req_fn)
304 		e->ops->elevator_activate_req_fn(q, rq);
305 }
306 
307 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
308 {
309 	elevator_t *e = q->elevator;
310 
311 	if (e->ops->elevator_deactivate_req_fn)
312 		e->ops->elevator_deactivate_req_fn(q, rq);
313 }
314 
315 static inline void __elv_rqhash_del(struct request *rq)
316 {
317 	hlist_del_init(&rq->hash);
318 }
319 
320 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
321 {
322 	if (ELV_ON_HASH(rq))
323 		__elv_rqhash_del(rq);
324 }
325 
326 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
327 {
328 	elevator_t *e = q->elevator;
329 
330 	BUG_ON(ELV_ON_HASH(rq));
331 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
332 }
333 
334 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
335 {
336 	__elv_rqhash_del(rq);
337 	elv_rqhash_add(q, rq);
338 }
339 
340 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
341 {
342 	elevator_t *e = q->elevator;
343 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
344 	struct hlist_node *entry, *next;
345 	struct request *rq;
346 
347 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
348 		BUG_ON(!ELV_ON_HASH(rq));
349 
350 		if (unlikely(!rq_mergeable(rq))) {
351 			__elv_rqhash_del(rq);
352 			continue;
353 		}
354 
355 		if (rq_hash_key(rq) == offset)
356 			return rq;
357 	}
358 
359 	return NULL;
360 }
361 
362 /*
363  * RB-tree support functions for inserting/lookup/removal of requests
364  * in a sorted RB tree.
365  */
366 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
367 {
368 	struct rb_node **p = &root->rb_node;
369 	struct rb_node *parent = NULL;
370 	struct request *__rq;
371 
372 	while (*p) {
373 		parent = *p;
374 		__rq = rb_entry(parent, struct request, rb_node);
375 
376 		if (rq->sector < __rq->sector)
377 			p = &(*p)->rb_left;
378 		else if (rq->sector > __rq->sector)
379 			p = &(*p)->rb_right;
380 		else
381 			return __rq;
382 	}
383 
384 	rb_link_node(&rq->rb_node, parent, p);
385 	rb_insert_color(&rq->rb_node, root);
386 	return NULL;
387 }
388 EXPORT_SYMBOL(elv_rb_add);
389 
390 void elv_rb_del(struct rb_root *root, struct request *rq)
391 {
392 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
393 	rb_erase(&rq->rb_node, root);
394 	RB_CLEAR_NODE(&rq->rb_node);
395 }
396 EXPORT_SYMBOL(elv_rb_del);
397 
398 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
399 {
400 	struct rb_node *n = root->rb_node;
401 	struct request *rq;
402 
403 	while (n) {
404 		rq = rb_entry(n, struct request, rb_node);
405 
406 		if (sector < rq->sector)
407 			n = n->rb_left;
408 		else if (sector > rq->sector)
409 			n = n->rb_right;
410 		else
411 			return rq;
412 	}
413 
414 	return NULL;
415 }
416 EXPORT_SYMBOL(elv_rb_find);
417 
418 /*
419  * Insert rq into dispatch queue of q.  Queue lock must be held on
420  * entry.  rq is sort instead into the dispatch queue. To be used by
421  * specific elevators.
422  */
423 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
424 {
425 	sector_t boundary;
426 	struct list_head *entry;
427 	int stop_flags;
428 
429 	if (q->last_merge == rq)
430 		q->last_merge = NULL;
431 
432 	elv_rqhash_del(q, rq);
433 
434 	q->nr_sorted--;
435 
436 	boundary = q->end_sector;
437 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
438 	list_for_each_prev(entry, &q->queue_head) {
439 		struct request *pos = list_entry_rq(entry);
440 
441 		if (rq_data_dir(rq) != rq_data_dir(pos))
442 			break;
443 		if (pos->cmd_flags & stop_flags)
444 			break;
445 		if (rq->sector >= boundary) {
446 			if (pos->sector < boundary)
447 				continue;
448 		} else {
449 			if (pos->sector >= boundary)
450 				break;
451 		}
452 		if (rq->sector >= pos->sector)
453 			break;
454 	}
455 
456 	list_add(&rq->queuelist, entry);
457 }
458 EXPORT_SYMBOL(elv_dispatch_sort);
459 
460 /*
461  * Insert rq into dispatch queue of q.  Queue lock must be held on
462  * entry.  rq is added to the back of the dispatch queue. To be used by
463  * specific elevators.
464  */
465 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
466 {
467 	if (q->last_merge == rq)
468 		q->last_merge = NULL;
469 
470 	elv_rqhash_del(q, rq);
471 
472 	q->nr_sorted--;
473 
474 	q->end_sector = rq_end_sector(rq);
475 	q->boundary_rq = rq;
476 	list_add_tail(&rq->queuelist, &q->queue_head);
477 }
478 EXPORT_SYMBOL(elv_dispatch_add_tail);
479 
480 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
481 {
482 	elevator_t *e = q->elevator;
483 	struct request *__rq;
484 	int ret;
485 
486 	/*
487 	 * First try one-hit cache.
488 	 */
489 	if (q->last_merge) {
490 		ret = elv_try_merge(q->last_merge, bio);
491 		if (ret != ELEVATOR_NO_MERGE) {
492 			*req = q->last_merge;
493 			return ret;
494 		}
495 	}
496 
497 	if (blk_queue_nomerges(q))
498 		return ELEVATOR_NO_MERGE;
499 
500 	/*
501 	 * See if our hash lookup can find a potential backmerge.
502 	 */
503 	__rq = elv_rqhash_find(q, bio->bi_sector);
504 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
505 		*req = __rq;
506 		return ELEVATOR_BACK_MERGE;
507 	}
508 
509 	if (e->ops->elevator_merge_fn)
510 		return e->ops->elevator_merge_fn(q, req, bio);
511 
512 	return ELEVATOR_NO_MERGE;
513 }
514 
515 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
516 {
517 	elevator_t *e = q->elevator;
518 
519 	if (e->ops->elevator_merged_fn)
520 		e->ops->elevator_merged_fn(q, rq, type);
521 
522 	if (type == ELEVATOR_BACK_MERGE)
523 		elv_rqhash_reposition(q, rq);
524 
525 	q->last_merge = rq;
526 }
527 
528 void elv_merge_requests(struct request_queue *q, struct request *rq,
529 			     struct request *next)
530 {
531 	elevator_t *e = q->elevator;
532 
533 	if (e->ops->elevator_merge_req_fn)
534 		e->ops->elevator_merge_req_fn(q, rq, next);
535 
536 	elv_rqhash_reposition(q, rq);
537 	elv_rqhash_del(q, next);
538 
539 	q->nr_sorted--;
540 	q->last_merge = rq;
541 }
542 
543 void elv_requeue_request(struct request_queue *q, struct request *rq)
544 {
545 	/*
546 	 * it already went through dequeue, we need to decrement the
547 	 * in_flight count again
548 	 */
549 	if (blk_account_rq(rq)) {
550 		q->in_flight--;
551 		if (blk_sorted_rq(rq))
552 			elv_deactivate_rq(q, rq);
553 	}
554 
555 	rq->cmd_flags &= ~REQ_STARTED;
556 
557 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
558 }
559 
560 static void elv_drain_elevator(struct request_queue *q)
561 {
562 	static int printed;
563 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
564 		;
565 	if (q->nr_sorted == 0)
566 		return;
567 	if (printed++ < 10) {
568 		printk(KERN_ERR "%s: forced dispatching is broken "
569 		       "(nr_sorted=%u), please report this\n",
570 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
571 	}
572 }
573 
574 void elv_insert(struct request_queue *q, struct request *rq, int where)
575 {
576 	struct list_head *pos;
577 	unsigned ordseq;
578 	int unplug_it = 1;
579 
580 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
581 
582 	rq->q = q;
583 
584 	switch (where) {
585 	case ELEVATOR_INSERT_FRONT:
586 		rq->cmd_flags |= REQ_SOFTBARRIER;
587 
588 		list_add(&rq->queuelist, &q->queue_head);
589 		break;
590 
591 	case ELEVATOR_INSERT_BACK:
592 		rq->cmd_flags |= REQ_SOFTBARRIER;
593 		elv_drain_elevator(q);
594 		list_add_tail(&rq->queuelist, &q->queue_head);
595 		/*
596 		 * We kick the queue here for the following reasons.
597 		 * - The elevator might have returned NULL previously
598 		 *   to delay requests and returned them now.  As the
599 		 *   queue wasn't empty before this request, ll_rw_blk
600 		 *   won't run the queue on return, resulting in hang.
601 		 * - Usually, back inserted requests won't be merged
602 		 *   with anything.  There's no point in delaying queue
603 		 *   processing.
604 		 */
605 		blk_remove_plug(q);
606 		q->request_fn(q);
607 		break;
608 
609 	case ELEVATOR_INSERT_SORT:
610 		BUG_ON(!blk_fs_request(rq));
611 		rq->cmd_flags |= REQ_SORTED;
612 		q->nr_sorted++;
613 		if (rq_mergeable(rq)) {
614 			elv_rqhash_add(q, rq);
615 			if (!q->last_merge)
616 				q->last_merge = rq;
617 		}
618 
619 		/*
620 		 * Some ioscheds (cfq) run q->request_fn directly, so
621 		 * rq cannot be accessed after calling
622 		 * elevator_add_req_fn.
623 		 */
624 		q->elevator->ops->elevator_add_req_fn(q, rq);
625 		break;
626 
627 	case ELEVATOR_INSERT_REQUEUE:
628 		/*
629 		 * If ordered flush isn't in progress, we do front
630 		 * insertion; otherwise, requests should be requeued
631 		 * in ordseq order.
632 		 */
633 		rq->cmd_flags |= REQ_SOFTBARRIER;
634 
635 		/*
636 		 * Most requeues happen because of a busy condition,
637 		 * don't force unplug of the queue for that case.
638 		 */
639 		unplug_it = 0;
640 
641 		if (q->ordseq == 0) {
642 			list_add(&rq->queuelist, &q->queue_head);
643 			break;
644 		}
645 
646 		ordseq = blk_ordered_req_seq(rq);
647 
648 		list_for_each(pos, &q->queue_head) {
649 			struct request *pos_rq = list_entry_rq(pos);
650 			if (ordseq <= blk_ordered_req_seq(pos_rq))
651 				break;
652 		}
653 
654 		list_add_tail(&rq->queuelist, pos);
655 		break;
656 
657 	default:
658 		printk(KERN_ERR "%s: bad insertion point %d\n",
659 		       __func__, where);
660 		BUG();
661 	}
662 
663 	if (unplug_it && blk_queue_plugged(q)) {
664 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
665 			- q->in_flight;
666 
667 		if (nrq >= q->unplug_thresh)
668 			__generic_unplug_device(q);
669 	}
670 }
671 
672 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
673 		       int plug)
674 {
675 	if (q->ordcolor)
676 		rq->cmd_flags |= REQ_ORDERED_COLOR;
677 
678 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
679 		/*
680 		 * toggle ordered color
681 		 */
682 		if (blk_barrier_rq(rq))
683 			q->ordcolor ^= 1;
684 
685 		/*
686 		 * barriers implicitly indicate back insertion
687 		 */
688 		if (where == ELEVATOR_INSERT_SORT)
689 			where = ELEVATOR_INSERT_BACK;
690 
691 		/*
692 		 * this request is scheduling boundary, update
693 		 * end_sector
694 		 */
695 		if (blk_fs_request(rq)) {
696 			q->end_sector = rq_end_sector(rq);
697 			q->boundary_rq = rq;
698 		}
699 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
700 		    where == ELEVATOR_INSERT_SORT)
701 		where = ELEVATOR_INSERT_BACK;
702 
703 	if (plug)
704 		blk_plug_device(q);
705 
706 	elv_insert(q, rq, where);
707 }
708 EXPORT_SYMBOL(__elv_add_request);
709 
710 void elv_add_request(struct request_queue *q, struct request *rq, int where,
711 		     int plug)
712 {
713 	unsigned long flags;
714 
715 	spin_lock_irqsave(q->queue_lock, flags);
716 	__elv_add_request(q, rq, where, plug);
717 	spin_unlock_irqrestore(q->queue_lock, flags);
718 }
719 EXPORT_SYMBOL(elv_add_request);
720 
721 static inline struct request *__elv_next_request(struct request_queue *q)
722 {
723 	struct request *rq;
724 
725 	while (1) {
726 		while (!list_empty(&q->queue_head)) {
727 			rq = list_entry_rq(q->queue_head.next);
728 			if (blk_do_ordered(q, &rq))
729 				return rq;
730 		}
731 
732 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
733 			return NULL;
734 	}
735 }
736 
737 struct request *elv_next_request(struct request_queue *q)
738 {
739 	struct request *rq;
740 	int ret;
741 
742 	while ((rq = __elv_next_request(q)) != NULL) {
743 		/*
744 		 * Kill the empty barrier place holder, the driver must
745 		 * not ever see it.
746 		 */
747 		if (blk_empty_barrier(rq)) {
748 			end_queued_request(rq, 1);
749 			continue;
750 		}
751 		if (!(rq->cmd_flags & REQ_STARTED)) {
752 			/*
753 			 * This is the first time the device driver
754 			 * sees this request (possibly after
755 			 * requeueing).  Notify IO scheduler.
756 			 */
757 			if (blk_sorted_rq(rq))
758 				elv_activate_rq(q, rq);
759 
760 			/*
761 			 * just mark as started even if we don't start
762 			 * it, a request that has been delayed should
763 			 * not be passed by new incoming requests
764 			 */
765 			rq->cmd_flags |= REQ_STARTED;
766 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
767 		}
768 
769 		if (!q->boundary_rq || q->boundary_rq == rq) {
770 			q->end_sector = rq_end_sector(rq);
771 			q->boundary_rq = NULL;
772 		}
773 
774 		if (rq->cmd_flags & REQ_DONTPREP)
775 			break;
776 
777 		if (q->dma_drain_size && rq->data_len) {
778 			/*
779 			 * make sure space for the drain appears we
780 			 * know we can do this because max_hw_segments
781 			 * has been adjusted to be one fewer than the
782 			 * device can handle
783 			 */
784 			rq->nr_phys_segments++;
785 			rq->nr_hw_segments++;
786 		}
787 
788 		if (!q->prep_rq_fn)
789 			break;
790 
791 		ret = q->prep_rq_fn(q, rq);
792 		if (ret == BLKPREP_OK) {
793 			break;
794 		} else if (ret == BLKPREP_DEFER) {
795 			/*
796 			 * the request may have been (partially) prepped.
797 			 * we need to keep this request in the front to
798 			 * avoid resource deadlock.  REQ_STARTED will
799 			 * prevent other fs requests from passing this one.
800 			 */
801 			if (q->dma_drain_size && rq->data_len &&
802 			    !(rq->cmd_flags & REQ_DONTPREP)) {
803 				/*
804 				 * remove the space for the drain we added
805 				 * so that we don't add it again
806 				 */
807 				--rq->nr_phys_segments;
808 				--rq->nr_hw_segments;
809 			}
810 
811 			rq = NULL;
812 			break;
813 		} else if (ret == BLKPREP_KILL) {
814 			rq->cmd_flags |= REQ_QUIET;
815 			end_queued_request(rq, 0);
816 		} else {
817 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
818 			break;
819 		}
820 	}
821 
822 	return rq;
823 }
824 EXPORT_SYMBOL(elv_next_request);
825 
826 void elv_dequeue_request(struct request_queue *q, struct request *rq)
827 {
828 	BUG_ON(list_empty(&rq->queuelist));
829 	BUG_ON(ELV_ON_HASH(rq));
830 
831 	list_del_init(&rq->queuelist);
832 
833 	/*
834 	 * the time frame between a request being removed from the lists
835 	 * and to it is freed is accounted as io that is in progress at
836 	 * the driver side.
837 	 */
838 	if (blk_account_rq(rq))
839 		q->in_flight++;
840 }
841 EXPORT_SYMBOL(elv_dequeue_request);
842 
843 int elv_queue_empty(struct request_queue *q)
844 {
845 	elevator_t *e = q->elevator;
846 
847 	if (!list_empty(&q->queue_head))
848 		return 0;
849 
850 	if (e->ops->elevator_queue_empty_fn)
851 		return e->ops->elevator_queue_empty_fn(q);
852 
853 	return 1;
854 }
855 EXPORT_SYMBOL(elv_queue_empty);
856 
857 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
858 {
859 	elevator_t *e = q->elevator;
860 
861 	if (e->ops->elevator_latter_req_fn)
862 		return e->ops->elevator_latter_req_fn(q, rq);
863 	return NULL;
864 }
865 
866 struct request *elv_former_request(struct request_queue *q, struct request *rq)
867 {
868 	elevator_t *e = q->elevator;
869 
870 	if (e->ops->elevator_former_req_fn)
871 		return e->ops->elevator_former_req_fn(q, rq);
872 	return NULL;
873 }
874 
875 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
876 {
877 	elevator_t *e = q->elevator;
878 
879 	if (e->ops->elevator_set_req_fn)
880 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
881 
882 	rq->elevator_private = NULL;
883 	return 0;
884 }
885 
886 void elv_put_request(struct request_queue *q, struct request *rq)
887 {
888 	elevator_t *e = q->elevator;
889 
890 	if (e->ops->elevator_put_req_fn)
891 		e->ops->elevator_put_req_fn(rq);
892 }
893 
894 int elv_may_queue(struct request_queue *q, int rw)
895 {
896 	elevator_t *e = q->elevator;
897 
898 	if (e->ops->elevator_may_queue_fn)
899 		return e->ops->elevator_may_queue_fn(q, rw);
900 
901 	return ELV_MQUEUE_MAY;
902 }
903 
904 void elv_completed_request(struct request_queue *q, struct request *rq)
905 {
906 	elevator_t *e = q->elevator;
907 
908 	/*
909 	 * request is released from the driver, io must be done
910 	 */
911 	if (blk_account_rq(rq)) {
912 		q->in_flight--;
913 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
914 			e->ops->elevator_completed_req_fn(q, rq);
915 	}
916 
917 	/*
918 	 * Check if the queue is waiting for fs requests to be
919 	 * drained for flush sequence.
920 	 */
921 	if (unlikely(q->ordseq)) {
922 		struct request *first_rq = list_entry_rq(q->queue_head.next);
923 		if (q->in_flight == 0 &&
924 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
925 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
926 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
927 			q->request_fn(q);
928 		}
929 	}
930 }
931 
932 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
933 
934 static ssize_t
935 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
936 {
937 	elevator_t *e = container_of(kobj, elevator_t, kobj);
938 	struct elv_fs_entry *entry = to_elv(attr);
939 	ssize_t error;
940 
941 	if (!entry->show)
942 		return -EIO;
943 
944 	mutex_lock(&e->sysfs_lock);
945 	error = e->ops ? entry->show(e, page) : -ENOENT;
946 	mutex_unlock(&e->sysfs_lock);
947 	return error;
948 }
949 
950 static ssize_t
951 elv_attr_store(struct kobject *kobj, struct attribute *attr,
952 	       const char *page, size_t length)
953 {
954 	elevator_t *e = container_of(kobj, elevator_t, kobj);
955 	struct elv_fs_entry *entry = to_elv(attr);
956 	ssize_t error;
957 
958 	if (!entry->store)
959 		return -EIO;
960 
961 	mutex_lock(&e->sysfs_lock);
962 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
963 	mutex_unlock(&e->sysfs_lock);
964 	return error;
965 }
966 
967 static struct sysfs_ops elv_sysfs_ops = {
968 	.show	= elv_attr_show,
969 	.store	= elv_attr_store,
970 };
971 
972 static struct kobj_type elv_ktype = {
973 	.sysfs_ops	= &elv_sysfs_ops,
974 	.release	= elevator_release,
975 };
976 
977 int elv_register_queue(struct request_queue *q)
978 {
979 	elevator_t *e = q->elevator;
980 	int error;
981 
982 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
983 	if (!error) {
984 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
985 		if (attr) {
986 			while (attr->attr.name) {
987 				if (sysfs_create_file(&e->kobj, &attr->attr))
988 					break;
989 				attr++;
990 			}
991 		}
992 		kobject_uevent(&e->kobj, KOBJ_ADD);
993 	}
994 	return error;
995 }
996 
997 static void __elv_unregister_queue(elevator_t *e)
998 {
999 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
1000 	kobject_del(&e->kobj);
1001 }
1002 
1003 void elv_unregister_queue(struct request_queue *q)
1004 {
1005 	if (q)
1006 		__elv_unregister_queue(q->elevator);
1007 }
1008 
1009 void elv_register(struct elevator_type *e)
1010 {
1011 	char *def = "";
1012 
1013 	spin_lock(&elv_list_lock);
1014 	BUG_ON(elevator_find(e->elevator_name));
1015 	list_add_tail(&e->list, &elv_list);
1016 	spin_unlock(&elv_list_lock);
1017 
1018 	if (!strcmp(e->elevator_name, chosen_elevator) ||
1019 			(!*chosen_elevator &&
1020 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1021 				def = " (default)";
1022 
1023 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1024 								def);
1025 }
1026 EXPORT_SYMBOL_GPL(elv_register);
1027 
1028 void elv_unregister(struct elevator_type *e)
1029 {
1030 	struct task_struct *g, *p;
1031 
1032 	/*
1033 	 * Iterate every thread in the process to remove the io contexts.
1034 	 */
1035 	if (e->ops.trim) {
1036 		read_lock(&tasklist_lock);
1037 		do_each_thread(g, p) {
1038 			task_lock(p);
1039 			if (p->io_context)
1040 				e->ops.trim(p->io_context);
1041 			task_unlock(p);
1042 		} while_each_thread(g, p);
1043 		read_unlock(&tasklist_lock);
1044 	}
1045 
1046 	spin_lock(&elv_list_lock);
1047 	list_del_init(&e->list);
1048 	spin_unlock(&elv_list_lock);
1049 }
1050 EXPORT_SYMBOL_GPL(elv_unregister);
1051 
1052 /*
1053  * switch to new_e io scheduler. be careful not to introduce deadlocks -
1054  * we don't free the old io scheduler, before we have allocated what we
1055  * need for the new one. this way we have a chance of going back to the old
1056  * one, if the new one fails init for some reason.
1057  */
1058 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1059 {
1060 	elevator_t *old_elevator, *e;
1061 	void *data;
1062 
1063 	/*
1064 	 * Allocate new elevator
1065 	 */
1066 	e = elevator_alloc(q, new_e);
1067 	if (!e)
1068 		return 0;
1069 
1070 	data = elevator_init_queue(q, e);
1071 	if (!data) {
1072 		kobject_put(&e->kobj);
1073 		return 0;
1074 	}
1075 
1076 	/*
1077 	 * Turn on BYPASS and drain all requests w/ elevator private data
1078 	 */
1079 	spin_lock_irq(q->queue_lock);
1080 
1081 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1082 
1083 	elv_drain_elevator(q);
1084 
1085 	while (q->rq.elvpriv) {
1086 		blk_remove_plug(q);
1087 		q->request_fn(q);
1088 		spin_unlock_irq(q->queue_lock);
1089 		msleep(10);
1090 		spin_lock_irq(q->queue_lock);
1091 		elv_drain_elevator(q);
1092 	}
1093 
1094 	/*
1095 	 * Remember old elevator.
1096 	 */
1097 	old_elevator = q->elevator;
1098 
1099 	/*
1100 	 * attach and start new elevator
1101 	 */
1102 	elevator_attach(q, e, data);
1103 
1104 	spin_unlock_irq(q->queue_lock);
1105 
1106 	__elv_unregister_queue(old_elevator);
1107 
1108 	if (elv_register_queue(q))
1109 		goto fail_register;
1110 
1111 	/*
1112 	 * finally exit old elevator and turn off BYPASS.
1113 	 */
1114 	elevator_exit(old_elevator);
1115 	spin_lock_irq(q->queue_lock);
1116 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1117 	spin_unlock_irq(q->queue_lock);
1118 
1119 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1120 
1121 	return 1;
1122 
1123 fail_register:
1124 	/*
1125 	 * switch failed, exit the new io scheduler and reattach the old
1126 	 * one again (along with re-adding the sysfs dir)
1127 	 */
1128 	elevator_exit(e);
1129 	q->elevator = old_elevator;
1130 	elv_register_queue(q);
1131 
1132 	spin_lock_irq(q->queue_lock);
1133 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1134 	spin_unlock_irq(q->queue_lock);
1135 
1136 	return 0;
1137 }
1138 
1139 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1140 			  size_t count)
1141 {
1142 	char elevator_name[ELV_NAME_MAX];
1143 	size_t len;
1144 	struct elevator_type *e;
1145 
1146 	elevator_name[sizeof(elevator_name) - 1] = '\0';
1147 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1148 	len = strlen(elevator_name);
1149 
1150 	if (len && elevator_name[len - 1] == '\n')
1151 		elevator_name[len - 1] = '\0';
1152 
1153 	e = elevator_get(elevator_name);
1154 	if (!e) {
1155 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1156 		return -EINVAL;
1157 	}
1158 
1159 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1160 		elevator_put(e);
1161 		return count;
1162 	}
1163 
1164 	if (!elevator_switch(q, e))
1165 		printk(KERN_ERR "elevator: switch to %s failed\n",
1166 							elevator_name);
1167 	return count;
1168 }
1169 
1170 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1171 {
1172 	elevator_t *e = q->elevator;
1173 	struct elevator_type *elv = e->elevator_type;
1174 	struct elevator_type *__e;
1175 	int len = 0;
1176 
1177 	spin_lock(&elv_list_lock);
1178 	list_for_each_entry(__e, &elv_list, list) {
1179 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1180 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1181 		else
1182 			len += sprintf(name+len, "%s ", __e->elevator_name);
1183 	}
1184 	spin_unlock(&elv_list_lock);
1185 
1186 	len += sprintf(len+name, "\n");
1187 	return len;
1188 }
1189 
1190 struct request *elv_rb_former_request(struct request_queue *q,
1191 				      struct request *rq)
1192 {
1193 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1194 
1195 	if (rbprev)
1196 		return rb_entry_rq(rbprev);
1197 
1198 	return NULL;
1199 }
1200 EXPORT_SYMBOL(elv_rb_former_request);
1201 
1202 struct request *elv_rb_latter_request(struct request_queue *q,
1203 				      struct request *rq)
1204 {
1205 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1206 
1207 	if (rbnext)
1208 		return rb_entry_rq(rbnext);
1209 
1210 	return NULL;
1211 }
1212 EXPORT_SYMBOL(elv_rb_latter_request);
1213