xref: /openbmc/linux/block/elevator.c (revision c21b37f6)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
48 #define ELV_HASH_FN(sec)	(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
50 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
52 
53 /*
54  * Query io scheduler to see if the current process issuing bio may be
55  * merged with rq.
56  */
57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
58 {
59 	struct request_queue *q = rq->q;
60 	elevator_t *e = q->elevator;
61 
62 	if (e->ops->elevator_allow_merge_fn)
63 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
64 
65 	return 1;
66 }
67 
68 /*
69  * can we safely merge with this request?
70  */
71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
72 {
73 	if (!rq_mergeable(rq))
74 		return 0;
75 
76 	/*
77 	 * different data direction or already started, don't merge
78 	 */
79 	if (bio_data_dir(bio) != rq_data_dir(rq))
80 		return 0;
81 
82 	/*
83 	 * must be same device and not a special request
84 	 */
85 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
86 		return 0;
87 
88 	if (!elv_iosched_allow_merge(rq, bio))
89 		return 0;
90 
91 	return 1;
92 }
93 EXPORT_SYMBOL(elv_rq_merge_ok);
94 
95 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
96 {
97 	int ret = ELEVATOR_NO_MERGE;
98 
99 	/*
100 	 * we can merge and sequence is ok, check if it's possible
101 	 */
102 	if (elv_rq_merge_ok(__rq, bio)) {
103 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
104 			ret = ELEVATOR_BACK_MERGE;
105 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
106 			ret = ELEVATOR_FRONT_MERGE;
107 	}
108 
109 	return ret;
110 }
111 
112 static struct elevator_type *elevator_find(const char *name)
113 {
114 	struct elevator_type *e;
115 
116 	list_for_each_entry(e, &elv_list, list) {
117 		if (!strcmp(e->elevator_name, name))
118 			return e;
119 	}
120 
121 	return NULL;
122 }
123 
124 static void elevator_put(struct elevator_type *e)
125 {
126 	module_put(e->elevator_owner);
127 }
128 
129 static struct elevator_type *elevator_get(const char *name)
130 {
131 	struct elevator_type *e;
132 
133 	spin_lock(&elv_list_lock);
134 
135 	e = elevator_find(name);
136 	if (e && !try_module_get(e->elevator_owner))
137 		e = NULL;
138 
139 	spin_unlock(&elv_list_lock);
140 
141 	return e;
142 }
143 
144 static void *elevator_init_queue(struct request_queue *q,
145 				 struct elevator_queue *eq)
146 {
147 	return eq->ops->elevator_init_fn(q);
148 }
149 
150 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
151 			   void *data)
152 {
153 	q->elevator = eq;
154 	eq->elevator_data = data;
155 }
156 
157 static char chosen_elevator[16];
158 
159 static int __init elevator_setup(char *str)
160 {
161 	/*
162 	 * Be backwards-compatible with previous kernels, so users
163 	 * won't get the wrong elevator.
164 	 */
165 	if (!strcmp(str, "as"))
166 		strcpy(chosen_elevator, "anticipatory");
167 	else
168 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
169 	return 1;
170 }
171 
172 __setup("elevator=", elevator_setup);
173 
174 static struct kobj_type elv_ktype;
175 
176 static elevator_t *elevator_alloc(struct request_queue *q,
177 				  struct elevator_type *e)
178 {
179 	elevator_t *eq;
180 	int i;
181 
182 	eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
183 	if (unlikely(!eq))
184 		goto err;
185 
186 	eq->ops = &e->ops;
187 	eq->elevator_type = e;
188 	kobject_init(&eq->kobj);
189 	snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
190 	eq->kobj.ktype = &elv_ktype;
191 	mutex_init(&eq->sysfs_lock);
192 
193 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
194 					GFP_KERNEL, q->node);
195 	if (!eq->hash)
196 		goto err;
197 
198 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
199 		INIT_HLIST_HEAD(&eq->hash[i]);
200 
201 	return eq;
202 err:
203 	kfree(eq);
204 	elevator_put(e);
205 	return NULL;
206 }
207 
208 static void elevator_release(struct kobject *kobj)
209 {
210 	elevator_t *e = container_of(kobj, elevator_t, kobj);
211 
212 	elevator_put(e->elevator_type);
213 	kfree(e->hash);
214 	kfree(e);
215 }
216 
217 int elevator_init(struct request_queue *q, char *name)
218 {
219 	struct elevator_type *e = NULL;
220 	struct elevator_queue *eq;
221 	int ret = 0;
222 	void *data;
223 
224 	INIT_LIST_HEAD(&q->queue_head);
225 	q->last_merge = NULL;
226 	q->end_sector = 0;
227 	q->boundary_rq = NULL;
228 
229 	if (name && !(e = elevator_get(name)))
230 		return -EINVAL;
231 
232 	if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
233 		printk("I/O scheduler %s not found\n", chosen_elevator);
234 
235 	if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
236 		printk("Default I/O scheduler not found, using no-op\n");
237 		e = elevator_get("noop");
238 	}
239 
240 	eq = elevator_alloc(q, e);
241 	if (!eq)
242 		return -ENOMEM;
243 
244 	data = elevator_init_queue(q, eq);
245 	if (!data) {
246 		kobject_put(&eq->kobj);
247 		return -ENOMEM;
248 	}
249 
250 	elevator_attach(q, eq, data);
251 	return ret;
252 }
253 
254 EXPORT_SYMBOL(elevator_init);
255 
256 void elevator_exit(elevator_t *e)
257 {
258 	mutex_lock(&e->sysfs_lock);
259 	if (e->ops->elevator_exit_fn)
260 		e->ops->elevator_exit_fn(e);
261 	e->ops = NULL;
262 	mutex_unlock(&e->sysfs_lock);
263 
264 	kobject_put(&e->kobj);
265 }
266 
267 EXPORT_SYMBOL(elevator_exit);
268 
269 static void elv_activate_rq(struct request_queue *q, struct request *rq)
270 {
271 	elevator_t *e = q->elevator;
272 
273 	if (e->ops->elevator_activate_req_fn)
274 		e->ops->elevator_activate_req_fn(q, rq);
275 }
276 
277 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
278 {
279 	elevator_t *e = q->elevator;
280 
281 	if (e->ops->elevator_deactivate_req_fn)
282 		e->ops->elevator_deactivate_req_fn(q, rq);
283 }
284 
285 static inline void __elv_rqhash_del(struct request *rq)
286 {
287 	hlist_del_init(&rq->hash);
288 }
289 
290 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
291 {
292 	if (ELV_ON_HASH(rq))
293 		__elv_rqhash_del(rq);
294 }
295 
296 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
297 {
298 	elevator_t *e = q->elevator;
299 
300 	BUG_ON(ELV_ON_HASH(rq));
301 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
302 }
303 
304 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
305 {
306 	__elv_rqhash_del(rq);
307 	elv_rqhash_add(q, rq);
308 }
309 
310 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
311 {
312 	elevator_t *e = q->elevator;
313 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
314 	struct hlist_node *entry, *next;
315 	struct request *rq;
316 
317 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
318 		BUG_ON(!ELV_ON_HASH(rq));
319 
320 		if (unlikely(!rq_mergeable(rq))) {
321 			__elv_rqhash_del(rq);
322 			continue;
323 		}
324 
325 		if (rq_hash_key(rq) == offset)
326 			return rq;
327 	}
328 
329 	return NULL;
330 }
331 
332 /*
333  * RB-tree support functions for inserting/lookup/removal of requests
334  * in a sorted RB tree.
335  */
336 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
337 {
338 	struct rb_node **p = &root->rb_node;
339 	struct rb_node *parent = NULL;
340 	struct request *__rq;
341 
342 	while (*p) {
343 		parent = *p;
344 		__rq = rb_entry(parent, struct request, rb_node);
345 
346 		if (rq->sector < __rq->sector)
347 			p = &(*p)->rb_left;
348 		else if (rq->sector > __rq->sector)
349 			p = &(*p)->rb_right;
350 		else
351 			return __rq;
352 	}
353 
354 	rb_link_node(&rq->rb_node, parent, p);
355 	rb_insert_color(&rq->rb_node, root);
356 	return NULL;
357 }
358 
359 EXPORT_SYMBOL(elv_rb_add);
360 
361 void elv_rb_del(struct rb_root *root, struct request *rq)
362 {
363 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
364 	rb_erase(&rq->rb_node, root);
365 	RB_CLEAR_NODE(&rq->rb_node);
366 }
367 
368 EXPORT_SYMBOL(elv_rb_del);
369 
370 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
371 {
372 	struct rb_node *n = root->rb_node;
373 	struct request *rq;
374 
375 	while (n) {
376 		rq = rb_entry(n, struct request, rb_node);
377 
378 		if (sector < rq->sector)
379 			n = n->rb_left;
380 		else if (sector > rq->sector)
381 			n = n->rb_right;
382 		else
383 			return rq;
384 	}
385 
386 	return NULL;
387 }
388 
389 EXPORT_SYMBOL(elv_rb_find);
390 
391 /*
392  * Insert rq into dispatch queue of q.  Queue lock must be held on
393  * entry.  rq is sort insted into the dispatch queue. To be used by
394  * specific elevators.
395  */
396 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
397 {
398 	sector_t boundary;
399 	struct list_head *entry;
400 
401 	if (q->last_merge == rq)
402 		q->last_merge = NULL;
403 
404 	elv_rqhash_del(q, rq);
405 
406 	q->nr_sorted--;
407 
408 	boundary = q->end_sector;
409 
410 	list_for_each_prev(entry, &q->queue_head) {
411 		struct request *pos = list_entry_rq(entry);
412 
413 		if (rq_data_dir(rq) != rq_data_dir(pos))
414 			break;
415 		if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
416 			break;
417 		if (rq->sector >= boundary) {
418 			if (pos->sector < boundary)
419 				continue;
420 		} else {
421 			if (pos->sector >= boundary)
422 				break;
423 		}
424 		if (rq->sector >= pos->sector)
425 			break;
426 	}
427 
428 	list_add(&rq->queuelist, entry);
429 }
430 
431 EXPORT_SYMBOL(elv_dispatch_sort);
432 
433 /*
434  * Insert rq into dispatch queue of q.  Queue lock must be held on
435  * entry.  rq is added to the back of the dispatch queue. To be used by
436  * specific elevators.
437  */
438 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
439 {
440 	if (q->last_merge == rq)
441 		q->last_merge = NULL;
442 
443 	elv_rqhash_del(q, rq);
444 
445 	q->nr_sorted--;
446 
447 	q->end_sector = rq_end_sector(rq);
448 	q->boundary_rq = rq;
449 	list_add_tail(&rq->queuelist, &q->queue_head);
450 }
451 
452 EXPORT_SYMBOL(elv_dispatch_add_tail);
453 
454 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
455 {
456 	elevator_t *e = q->elevator;
457 	struct request *__rq;
458 	int ret;
459 
460 	/*
461 	 * First try one-hit cache.
462 	 */
463 	if (q->last_merge) {
464 		ret = elv_try_merge(q->last_merge, bio);
465 		if (ret != ELEVATOR_NO_MERGE) {
466 			*req = q->last_merge;
467 			return ret;
468 		}
469 	}
470 
471 	/*
472 	 * See if our hash lookup can find a potential backmerge.
473 	 */
474 	__rq = elv_rqhash_find(q, bio->bi_sector);
475 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
476 		*req = __rq;
477 		return ELEVATOR_BACK_MERGE;
478 	}
479 
480 	if (e->ops->elevator_merge_fn)
481 		return e->ops->elevator_merge_fn(q, req, bio);
482 
483 	return ELEVATOR_NO_MERGE;
484 }
485 
486 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
487 {
488 	elevator_t *e = q->elevator;
489 
490 	if (e->ops->elevator_merged_fn)
491 		e->ops->elevator_merged_fn(q, rq, type);
492 
493 	if (type == ELEVATOR_BACK_MERGE)
494 		elv_rqhash_reposition(q, rq);
495 
496 	q->last_merge = rq;
497 }
498 
499 void elv_merge_requests(struct request_queue *q, struct request *rq,
500 			     struct request *next)
501 {
502 	elevator_t *e = q->elevator;
503 
504 	if (e->ops->elevator_merge_req_fn)
505 		e->ops->elevator_merge_req_fn(q, rq, next);
506 
507 	elv_rqhash_reposition(q, rq);
508 	elv_rqhash_del(q, next);
509 
510 	q->nr_sorted--;
511 	q->last_merge = rq;
512 }
513 
514 void elv_requeue_request(struct request_queue *q, struct request *rq)
515 {
516 	/*
517 	 * it already went through dequeue, we need to decrement the
518 	 * in_flight count again
519 	 */
520 	if (blk_account_rq(rq)) {
521 		q->in_flight--;
522 		if (blk_sorted_rq(rq))
523 			elv_deactivate_rq(q, rq);
524 	}
525 
526 	rq->cmd_flags &= ~REQ_STARTED;
527 
528 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
529 }
530 
531 static void elv_drain_elevator(struct request_queue *q)
532 {
533 	static int printed;
534 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
535 		;
536 	if (q->nr_sorted == 0)
537 		return;
538 	if (printed++ < 10) {
539 		printk(KERN_ERR "%s: forced dispatching is broken "
540 		       "(nr_sorted=%u), please report this\n",
541 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
542 	}
543 }
544 
545 void elv_insert(struct request_queue *q, struct request *rq, int where)
546 {
547 	struct list_head *pos;
548 	unsigned ordseq;
549 	int unplug_it = 1;
550 
551 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
552 
553 	rq->q = q;
554 
555 	switch (where) {
556 	case ELEVATOR_INSERT_FRONT:
557 		rq->cmd_flags |= REQ_SOFTBARRIER;
558 
559 		list_add(&rq->queuelist, &q->queue_head);
560 		break;
561 
562 	case ELEVATOR_INSERT_BACK:
563 		rq->cmd_flags |= REQ_SOFTBARRIER;
564 		elv_drain_elevator(q);
565 		list_add_tail(&rq->queuelist, &q->queue_head);
566 		/*
567 		 * We kick the queue here for the following reasons.
568 		 * - The elevator might have returned NULL previously
569 		 *   to delay requests and returned them now.  As the
570 		 *   queue wasn't empty before this request, ll_rw_blk
571 		 *   won't run the queue on return, resulting in hang.
572 		 * - Usually, back inserted requests won't be merged
573 		 *   with anything.  There's no point in delaying queue
574 		 *   processing.
575 		 */
576 		blk_remove_plug(q);
577 		q->request_fn(q);
578 		break;
579 
580 	case ELEVATOR_INSERT_SORT:
581 		BUG_ON(!blk_fs_request(rq));
582 		rq->cmd_flags |= REQ_SORTED;
583 		q->nr_sorted++;
584 		if (rq_mergeable(rq)) {
585 			elv_rqhash_add(q, rq);
586 			if (!q->last_merge)
587 				q->last_merge = rq;
588 		}
589 
590 		/*
591 		 * Some ioscheds (cfq) run q->request_fn directly, so
592 		 * rq cannot be accessed after calling
593 		 * elevator_add_req_fn.
594 		 */
595 		q->elevator->ops->elevator_add_req_fn(q, rq);
596 		break;
597 
598 	case ELEVATOR_INSERT_REQUEUE:
599 		/*
600 		 * If ordered flush isn't in progress, we do front
601 		 * insertion; otherwise, requests should be requeued
602 		 * in ordseq order.
603 		 */
604 		rq->cmd_flags |= REQ_SOFTBARRIER;
605 
606 		/*
607 		 * Most requeues happen because of a busy condition,
608 		 * don't force unplug of the queue for that case.
609 		 */
610 		unplug_it = 0;
611 
612 		if (q->ordseq == 0) {
613 			list_add(&rq->queuelist, &q->queue_head);
614 			break;
615 		}
616 
617 		ordseq = blk_ordered_req_seq(rq);
618 
619 		list_for_each(pos, &q->queue_head) {
620 			struct request *pos_rq = list_entry_rq(pos);
621 			if (ordseq <= blk_ordered_req_seq(pos_rq))
622 				break;
623 		}
624 
625 		list_add_tail(&rq->queuelist, pos);
626 		break;
627 
628 	default:
629 		printk(KERN_ERR "%s: bad insertion point %d\n",
630 		       __FUNCTION__, where);
631 		BUG();
632 	}
633 
634 	if (unplug_it && blk_queue_plugged(q)) {
635 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
636 			- q->in_flight;
637 
638 		if (nrq >= q->unplug_thresh)
639 			__generic_unplug_device(q);
640 	}
641 }
642 
643 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
644 		       int plug)
645 {
646 	if (q->ordcolor)
647 		rq->cmd_flags |= REQ_ORDERED_COLOR;
648 
649 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
650 		/*
651 		 * toggle ordered color
652 		 */
653 		if (blk_barrier_rq(rq))
654 			q->ordcolor ^= 1;
655 
656 		/*
657 		 * barriers implicitly indicate back insertion
658 		 */
659 		if (where == ELEVATOR_INSERT_SORT)
660 			where = ELEVATOR_INSERT_BACK;
661 
662 		/*
663 		 * this request is scheduling boundary, update
664 		 * end_sector
665 		 */
666 		if (blk_fs_request(rq)) {
667 			q->end_sector = rq_end_sector(rq);
668 			q->boundary_rq = rq;
669 		}
670 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
671 		where = ELEVATOR_INSERT_BACK;
672 
673 	if (plug)
674 		blk_plug_device(q);
675 
676 	elv_insert(q, rq, where);
677 }
678 
679 EXPORT_SYMBOL(__elv_add_request);
680 
681 void elv_add_request(struct request_queue *q, struct request *rq, int where,
682 		     int plug)
683 {
684 	unsigned long flags;
685 
686 	spin_lock_irqsave(q->queue_lock, flags);
687 	__elv_add_request(q, rq, where, plug);
688 	spin_unlock_irqrestore(q->queue_lock, flags);
689 }
690 
691 EXPORT_SYMBOL(elv_add_request);
692 
693 static inline struct request *__elv_next_request(struct request_queue *q)
694 {
695 	struct request *rq;
696 
697 	while (1) {
698 		while (!list_empty(&q->queue_head)) {
699 			rq = list_entry_rq(q->queue_head.next);
700 			if (blk_do_ordered(q, &rq))
701 				return rq;
702 		}
703 
704 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
705 			return NULL;
706 	}
707 }
708 
709 struct request *elv_next_request(struct request_queue *q)
710 {
711 	struct request *rq;
712 	int ret;
713 
714 	while ((rq = __elv_next_request(q)) != NULL) {
715 		if (!(rq->cmd_flags & REQ_STARTED)) {
716 			/*
717 			 * This is the first time the device driver
718 			 * sees this request (possibly after
719 			 * requeueing).  Notify IO scheduler.
720 			 */
721 			if (blk_sorted_rq(rq))
722 				elv_activate_rq(q, rq);
723 
724 			/*
725 			 * just mark as started even if we don't start
726 			 * it, a request that has been delayed should
727 			 * not be passed by new incoming requests
728 			 */
729 			rq->cmd_flags |= REQ_STARTED;
730 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
731 		}
732 
733 		if (!q->boundary_rq || q->boundary_rq == rq) {
734 			q->end_sector = rq_end_sector(rq);
735 			q->boundary_rq = NULL;
736 		}
737 
738 		if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
739 			break;
740 
741 		ret = q->prep_rq_fn(q, rq);
742 		if (ret == BLKPREP_OK) {
743 			break;
744 		} else if (ret == BLKPREP_DEFER) {
745 			/*
746 			 * the request may have been (partially) prepped.
747 			 * we need to keep this request in the front to
748 			 * avoid resource deadlock.  REQ_STARTED will
749 			 * prevent other fs requests from passing this one.
750 			 */
751 			rq = NULL;
752 			break;
753 		} else if (ret == BLKPREP_KILL) {
754 			int nr_bytes = rq->hard_nr_sectors << 9;
755 
756 			if (!nr_bytes)
757 				nr_bytes = rq->data_len;
758 
759 			blkdev_dequeue_request(rq);
760 			rq->cmd_flags |= REQ_QUIET;
761 			end_that_request_chunk(rq, 0, nr_bytes);
762 			end_that_request_last(rq, 0);
763 		} else {
764 			printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
765 								ret);
766 			break;
767 		}
768 	}
769 
770 	return rq;
771 }
772 
773 EXPORT_SYMBOL(elv_next_request);
774 
775 void elv_dequeue_request(struct request_queue *q, struct request *rq)
776 {
777 	BUG_ON(list_empty(&rq->queuelist));
778 	BUG_ON(ELV_ON_HASH(rq));
779 
780 	list_del_init(&rq->queuelist);
781 
782 	/*
783 	 * the time frame between a request being removed from the lists
784 	 * and to it is freed is accounted as io that is in progress at
785 	 * the driver side.
786 	 */
787 	if (blk_account_rq(rq))
788 		q->in_flight++;
789 }
790 
791 EXPORT_SYMBOL(elv_dequeue_request);
792 
793 int elv_queue_empty(struct request_queue *q)
794 {
795 	elevator_t *e = q->elevator;
796 
797 	if (!list_empty(&q->queue_head))
798 		return 0;
799 
800 	if (e->ops->elevator_queue_empty_fn)
801 		return e->ops->elevator_queue_empty_fn(q);
802 
803 	return 1;
804 }
805 
806 EXPORT_SYMBOL(elv_queue_empty);
807 
808 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
809 {
810 	elevator_t *e = q->elevator;
811 
812 	if (e->ops->elevator_latter_req_fn)
813 		return e->ops->elevator_latter_req_fn(q, rq);
814 	return NULL;
815 }
816 
817 struct request *elv_former_request(struct request_queue *q, struct request *rq)
818 {
819 	elevator_t *e = q->elevator;
820 
821 	if (e->ops->elevator_former_req_fn)
822 		return e->ops->elevator_former_req_fn(q, rq);
823 	return NULL;
824 }
825 
826 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
827 {
828 	elevator_t *e = q->elevator;
829 
830 	if (e->ops->elevator_set_req_fn)
831 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
832 
833 	rq->elevator_private = NULL;
834 	return 0;
835 }
836 
837 void elv_put_request(struct request_queue *q, struct request *rq)
838 {
839 	elevator_t *e = q->elevator;
840 
841 	if (e->ops->elevator_put_req_fn)
842 		e->ops->elevator_put_req_fn(rq);
843 }
844 
845 int elv_may_queue(struct request_queue *q, int rw)
846 {
847 	elevator_t *e = q->elevator;
848 
849 	if (e->ops->elevator_may_queue_fn)
850 		return e->ops->elevator_may_queue_fn(q, rw);
851 
852 	return ELV_MQUEUE_MAY;
853 }
854 
855 void elv_completed_request(struct request_queue *q, struct request *rq)
856 {
857 	elevator_t *e = q->elevator;
858 
859 	/*
860 	 * request is released from the driver, io must be done
861 	 */
862 	if (blk_account_rq(rq)) {
863 		q->in_flight--;
864 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
865 			e->ops->elevator_completed_req_fn(q, rq);
866 	}
867 
868 	/*
869 	 * Check if the queue is waiting for fs requests to be
870 	 * drained for flush sequence.
871 	 */
872 	if (unlikely(q->ordseq)) {
873 		struct request *first_rq = list_entry_rq(q->queue_head.next);
874 		if (q->in_flight == 0 &&
875 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
876 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
877 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
878 			q->request_fn(q);
879 		}
880 	}
881 }
882 
883 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
884 
885 static ssize_t
886 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
887 {
888 	elevator_t *e = container_of(kobj, elevator_t, kobj);
889 	struct elv_fs_entry *entry = to_elv(attr);
890 	ssize_t error;
891 
892 	if (!entry->show)
893 		return -EIO;
894 
895 	mutex_lock(&e->sysfs_lock);
896 	error = e->ops ? entry->show(e, page) : -ENOENT;
897 	mutex_unlock(&e->sysfs_lock);
898 	return error;
899 }
900 
901 static ssize_t
902 elv_attr_store(struct kobject *kobj, struct attribute *attr,
903 	       const char *page, size_t length)
904 {
905 	elevator_t *e = container_of(kobj, elevator_t, kobj);
906 	struct elv_fs_entry *entry = to_elv(attr);
907 	ssize_t error;
908 
909 	if (!entry->store)
910 		return -EIO;
911 
912 	mutex_lock(&e->sysfs_lock);
913 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
914 	mutex_unlock(&e->sysfs_lock);
915 	return error;
916 }
917 
918 static struct sysfs_ops elv_sysfs_ops = {
919 	.show	= elv_attr_show,
920 	.store	= elv_attr_store,
921 };
922 
923 static struct kobj_type elv_ktype = {
924 	.sysfs_ops	= &elv_sysfs_ops,
925 	.release	= elevator_release,
926 };
927 
928 int elv_register_queue(struct request_queue *q)
929 {
930 	elevator_t *e = q->elevator;
931 	int error;
932 
933 	e->kobj.parent = &q->kobj;
934 
935 	error = kobject_add(&e->kobj);
936 	if (!error) {
937 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
938 		if (attr) {
939 			while (attr->attr.name) {
940 				if (sysfs_create_file(&e->kobj, &attr->attr))
941 					break;
942 				attr++;
943 			}
944 		}
945 		kobject_uevent(&e->kobj, KOBJ_ADD);
946 	}
947 	return error;
948 }
949 
950 static void __elv_unregister_queue(elevator_t *e)
951 {
952 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
953 	kobject_del(&e->kobj);
954 }
955 
956 void elv_unregister_queue(struct request_queue *q)
957 {
958 	if (q)
959 		__elv_unregister_queue(q->elevator);
960 }
961 
962 int elv_register(struct elevator_type *e)
963 {
964 	char *def = "";
965 
966 	spin_lock(&elv_list_lock);
967 	BUG_ON(elevator_find(e->elevator_name));
968 	list_add_tail(&e->list, &elv_list);
969 	spin_unlock(&elv_list_lock);
970 
971 	if (!strcmp(e->elevator_name, chosen_elevator) ||
972 			(!*chosen_elevator &&
973 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
974 				def = " (default)";
975 
976 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def);
977 	return 0;
978 }
979 EXPORT_SYMBOL_GPL(elv_register);
980 
981 void elv_unregister(struct elevator_type *e)
982 {
983 	struct task_struct *g, *p;
984 
985 	/*
986 	 * Iterate every thread in the process to remove the io contexts.
987 	 */
988 	if (e->ops.trim) {
989 		read_lock(&tasklist_lock);
990 		do_each_thread(g, p) {
991 			task_lock(p);
992 			if (p->io_context)
993 				e->ops.trim(p->io_context);
994 			task_unlock(p);
995 		} while_each_thread(g, p);
996 		read_unlock(&tasklist_lock);
997 	}
998 
999 	spin_lock(&elv_list_lock);
1000 	list_del_init(&e->list);
1001 	spin_unlock(&elv_list_lock);
1002 }
1003 EXPORT_SYMBOL_GPL(elv_unregister);
1004 
1005 /*
1006  * switch to new_e io scheduler. be careful not to introduce deadlocks -
1007  * we don't free the old io scheduler, before we have allocated what we
1008  * need for the new one. this way we have a chance of going back to the old
1009  * one, if the new one fails init for some reason.
1010  */
1011 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1012 {
1013 	elevator_t *old_elevator, *e;
1014 	void *data;
1015 
1016 	/*
1017 	 * Allocate new elevator
1018 	 */
1019 	e = elevator_alloc(q, new_e);
1020 	if (!e)
1021 		return 0;
1022 
1023 	data = elevator_init_queue(q, e);
1024 	if (!data) {
1025 		kobject_put(&e->kobj);
1026 		return 0;
1027 	}
1028 
1029 	/*
1030 	 * Turn on BYPASS and drain all requests w/ elevator private data
1031 	 */
1032 	spin_lock_irq(q->queue_lock);
1033 
1034 	set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1035 
1036 	elv_drain_elevator(q);
1037 
1038 	while (q->rq.elvpriv) {
1039 		blk_remove_plug(q);
1040 		q->request_fn(q);
1041 		spin_unlock_irq(q->queue_lock);
1042 		msleep(10);
1043 		spin_lock_irq(q->queue_lock);
1044 		elv_drain_elevator(q);
1045 	}
1046 
1047 	/*
1048 	 * Remember old elevator.
1049 	 */
1050 	old_elevator = q->elevator;
1051 
1052 	/*
1053 	 * attach and start new elevator
1054 	 */
1055 	elevator_attach(q, e, data);
1056 
1057 	spin_unlock_irq(q->queue_lock);
1058 
1059 	__elv_unregister_queue(old_elevator);
1060 
1061 	if (elv_register_queue(q))
1062 		goto fail_register;
1063 
1064 	/*
1065 	 * finally exit old elevator and turn off BYPASS.
1066 	 */
1067 	elevator_exit(old_elevator);
1068 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1069 	return 1;
1070 
1071 fail_register:
1072 	/*
1073 	 * switch failed, exit the new io scheduler and reattach the old
1074 	 * one again (along with re-adding the sysfs dir)
1075 	 */
1076 	elevator_exit(e);
1077 	q->elevator = old_elevator;
1078 	elv_register_queue(q);
1079 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1080 	return 0;
1081 }
1082 
1083 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1084 			  size_t count)
1085 {
1086 	char elevator_name[ELV_NAME_MAX];
1087 	size_t len;
1088 	struct elevator_type *e;
1089 
1090 	elevator_name[sizeof(elevator_name) - 1] = '\0';
1091 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1092 	len = strlen(elevator_name);
1093 
1094 	if (len && elevator_name[len - 1] == '\n')
1095 		elevator_name[len - 1] = '\0';
1096 
1097 	e = elevator_get(elevator_name);
1098 	if (!e) {
1099 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1100 		return -EINVAL;
1101 	}
1102 
1103 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1104 		elevator_put(e);
1105 		return count;
1106 	}
1107 
1108 	if (!elevator_switch(q, e))
1109 		printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1110 	return count;
1111 }
1112 
1113 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1114 {
1115 	elevator_t *e = q->elevator;
1116 	struct elevator_type *elv = e->elevator_type;
1117 	struct elevator_type *__e;
1118 	int len = 0;
1119 
1120 	spin_lock(&elv_list_lock);
1121 	list_for_each_entry(__e, &elv_list, list) {
1122 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1123 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1124 		else
1125 			len += sprintf(name+len, "%s ", __e->elevator_name);
1126 	}
1127 	spin_unlock(&elv_list_lock);
1128 
1129 	len += sprintf(len+name, "\n");
1130 	return len;
1131 }
1132 
1133 struct request *elv_rb_former_request(struct request_queue *q,
1134 				      struct request *rq)
1135 {
1136 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1137 
1138 	if (rbprev)
1139 		return rb_entry_rq(rbprev);
1140 
1141 	return NULL;
1142 }
1143 
1144 EXPORT_SYMBOL(elv_rb_former_request);
1145 
1146 struct request *elv_rb_latter_request(struct request_queue *q,
1147 				      struct request *rq)
1148 {
1149 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1150 
1151 	if (rbnext)
1152 		return rb_entry_rq(rbnext);
1153 
1154 	return NULL;
1155 }
1156 
1157 EXPORT_SYMBOL(elv_rb_latter_request);
1158