1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 38 #include <asm/uaccess.h> 39 40 static DEFINE_SPINLOCK(elv_list_lock); 41 static LIST_HEAD(elv_list); 42 43 /* 44 * Merge hash stuff. 45 */ 46 static const int elv_hash_shift = 6; 47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 48 #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 49 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 50 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) 51 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash)) 52 53 /* 54 * Query io scheduler to see if the current process issuing bio may be 55 * merged with rq. 56 */ 57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 58 { 59 struct request_queue *q = rq->q; 60 elevator_t *e = q->elevator; 61 62 if (e->ops->elevator_allow_merge_fn) 63 return e->ops->elevator_allow_merge_fn(q, rq, bio); 64 65 return 1; 66 } 67 68 /* 69 * can we safely merge with this request? 70 */ 71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio) 72 { 73 if (!rq_mergeable(rq)) 74 return 0; 75 76 /* 77 * different data direction or already started, don't merge 78 */ 79 if (bio_data_dir(bio) != rq_data_dir(rq)) 80 return 0; 81 82 /* 83 * must be same device and not a special request 84 */ 85 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 86 return 0; 87 88 if (!elv_iosched_allow_merge(rq, bio)) 89 return 0; 90 91 return 1; 92 } 93 EXPORT_SYMBOL(elv_rq_merge_ok); 94 95 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 96 { 97 int ret = ELEVATOR_NO_MERGE; 98 99 /* 100 * we can merge and sequence is ok, check if it's possible 101 */ 102 if (elv_rq_merge_ok(__rq, bio)) { 103 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 104 ret = ELEVATOR_BACK_MERGE; 105 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 106 ret = ELEVATOR_FRONT_MERGE; 107 } 108 109 return ret; 110 } 111 112 static struct elevator_type *elevator_find(const char *name) 113 { 114 struct elevator_type *e; 115 116 list_for_each_entry(e, &elv_list, list) { 117 if (!strcmp(e->elevator_name, name)) 118 return e; 119 } 120 121 return NULL; 122 } 123 124 static void elevator_put(struct elevator_type *e) 125 { 126 module_put(e->elevator_owner); 127 } 128 129 static struct elevator_type *elevator_get(const char *name) 130 { 131 struct elevator_type *e; 132 133 spin_lock(&elv_list_lock); 134 135 e = elevator_find(name); 136 if (e && !try_module_get(e->elevator_owner)) 137 e = NULL; 138 139 spin_unlock(&elv_list_lock); 140 141 return e; 142 } 143 144 static void *elevator_init_queue(struct request_queue *q, 145 struct elevator_queue *eq) 146 { 147 return eq->ops->elevator_init_fn(q); 148 } 149 150 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 151 void *data) 152 { 153 q->elevator = eq; 154 eq->elevator_data = data; 155 } 156 157 static char chosen_elevator[16]; 158 159 static int __init elevator_setup(char *str) 160 { 161 /* 162 * Be backwards-compatible with previous kernels, so users 163 * won't get the wrong elevator. 164 */ 165 if (!strcmp(str, "as")) 166 strcpy(chosen_elevator, "anticipatory"); 167 else 168 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 169 return 1; 170 } 171 172 __setup("elevator=", elevator_setup); 173 174 static struct kobj_type elv_ktype; 175 176 static elevator_t *elevator_alloc(struct request_queue *q, 177 struct elevator_type *e) 178 { 179 elevator_t *eq; 180 int i; 181 182 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node); 183 if (unlikely(!eq)) 184 goto err; 185 186 eq->ops = &e->ops; 187 eq->elevator_type = e; 188 kobject_init(&eq->kobj); 189 snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched"); 190 eq->kobj.ktype = &elv_ktype; 191 mutex_init(&eq->sysfs_lock); 192 193 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 194 GFP_KERNEL, q->node); 195 if (!eq->hash) 196 goto err; 197 198 for (i = 0; i < ELV_HASH_ENTRIES; i++) 199 INIT_HLIST_HEAD(&eq->hash[i]); 200 201 return eq; 202 err: 203 kfree(eq); 204 elevator_put(e); 205 return NULL; 206 } 207 208 static void elevator_release(struct kobject *kobj) 209 { 210 elevator_t *e = container_of(kobj, elevator_t, kobj); 211 212 elevator_put(e->elevator_type); 213 kfree(e->hash); 214 kfree(e); 215 } 216 217 int elevator_init(struct request_queue *q, char *name) 218 { 219 struct elevator_type *e = NULL; 220 struct elevator_queue *eq; 221 int ret = 0; 222 void *data; 223 224 INIT_LIST_HEAD(&q->queue_head); 225 q->last_merge = NULL; 226 q->end_sector = 0; 227 q->boundary_rq = NULL; 228 229 if (name && !(e = elevator_get(name))) 230 return -EINVAL; 231 232 if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator))) 233 printk("I/O scheduler %s not found\n", chosen_elevator); 234 235 if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) { 236 printk("Default I/O scheduler not found, using no-op\n"); 237 e = elevator_get("noop"); 238 } 239 240 eq = elevator_alloc(q, e); 241 if (!eq) 242 return -ENOMEM; 243 244 data = elevator_init_queue(q, eq); 245 if (!data) { 246 kobject_put(&eq->kobj); 247 return -ENOMEM; 248 } 249 250 elevator_attach(q, eq, data); 251 return ret; 252 } 253 254 EXPORT_SYMBOL(elevator_init); 255 256 void elevator_exit(elevator_t *e) 257 { 258 mutex_lock(&e->sysfs_lock); 259 if (e->ops->elevator_exit_fn) 260 e->ops->elevator_exit_fn(e); 261 e->ops = NULL; 262 mutex_unlock(&e->sysfs_lock); 263 264 kobject_put(&e->kobj); 265 } 266 267 EXPORT_SYMBOL(elevator_exit); 268 269 static void elv_activate_rq(struct request_queue *q, struct request *rq) 270 { 271 elevator_t *e = q->elevator; 272 273 if (e->ops->elevator_activate_req_fn) 274 e->ops->elevator_activate_req_fn(q, rq); 275 } 276 277 static void elv_deactivate_rq(struct request_queue *q, struct request *rq) 278 { 279 elevator_t *e = q->elevator; 280 281 if (e->ops->elevator_deactivate_req_fn) 282 e->ops->elevator_deactivate_req_fn(q, rq); 283 } 284 285 static inline void __elv_rqhash_del(struct request *rq) 286 { 287 hlist_del_init(&rq->hash); 288 } 289 290 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 291 { 292 if (ELV_ON_HASH(rq)) 293 __elv_rqhash_del(rq); 294 } 295 296 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 297 { 298 elevator_t *e = q->elevator; 299 300 BUG_ON(ELV_ON_HASH(rq)); 301 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 302 } 303 304 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 305 { 306 __elv_rqhash_del(rq); 307 elv_rqhash_add(q, rq); 308 } 309 310 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 311 { 312 elevator_t *e = q->elevator; 313 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 314 struct hlist_node *entry, *next; 315 struct request *rq; 316 317 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 318 BUG_ON(!ELV_ON_HASH(rq)); 319 320 if (unlikely(!rq_mergeable(rq))) { 321 __elv_rqhash_del(rq); 322 continue; 323 } 324 325 if (rq_hash_key(rq) == offset) 326 return rq; 327 } 328 329 return NULL; 330 } 331 332 /* 333 * RB-tree support functions for inserting/lookup/removal of requests 334 * in a sorted RB tree. 335 */ 336 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 337 { 338 struct rb_node **p = &root->rb_node; 339 struct rb_node *parent = NULL; 340 struct request *__rq; 341 342 while (*p) { 343 parent = *p; 344 __rq = rb_entry(parent, struct request, rb_node); 345 346 if (rq->sector < __rq->sector) 347 p = &(*p)->rb_left; 348 else if (rq->sector > __rq->sector) 349 p = &(*p)->rb_right; 350 else 351 return __rq; 352 } 353 354 rb_link_node(&rq->rb_node, parent, p); 355 rb_insert_color(&rq->rb_node, root); 356 return NULL; 357 } 358 359 EXPORT_SYMBOL(elv_rb_add); 360 361 void elv_rb_del(struct rb_root *root, struct request *rq) 362 { 363 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 364 rb_erase(&rq->rb_node, root); 365 RB_CLEAR_NODE(&rq->rb_node); 366 } 367 368 EXPORT_SYMBOL(elv_rb_del); 369 370 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 371 { 372 struct rb_node *n = root->rb_node; 373 struct request *rq; 374 375 while (n) { 376 rq = rb_entry(n, struct request, rb_node); 377 378 if (sector < rq->sector) 379 n = n->rb_left; 380 else if (sector > rq->sector) 381 n = n->rb_right; 382 else 383 return rq; 384 } 385 386 return NULL; 387 } 388 389 EXPORT_SYMBOL(elv_rb_find); 390 391 /* 392 * Insert rq into dispatch queue of q. Queue lock must be held on 393 * entry. rq is sort insted into the dispatch queue. To be used by 394 * specific elevators. 395 */ 396 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 397 { 398 sector_t boundary; 399 struct list_head *entry; 400 401 if (q->last_merge == rq) 402 q->last_merge = NULL; 403 404 elv_rqhash_del(q, rq); 405 406 q->nr_sorted--; 407 408 boundary = q->end_sector; 409 410 list_for_each_prev(entry, &q->queue_head) { 411 struct request *pos = list_entry_rq(entry); 412 413 if (rq_data_dir(rq) != rq_data_dir(pos)) 414 break; 415 if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED)) 416 break; 417 if (rq->sector >= boundary) { 418 if (pos->sector < boundary) 419 continue; 420 } else { 421 if (pos->sector >= boundary) 422 break; 423 } 424 if (rq->sector >= pos->sector) 425 break; 426 } 427 428 list_add(&rq->queuelist, entry); 429 } 430 431 EXPORT_SYMBOL(elv_dispatch_sort); 432 433 /* 434 * Insert rq into dispatch queue of q. Queue lock must be held on 435 * entry. rq is added to the back of the dispatch queue. To be used by 436 * specific elevators. 437 */ 438 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 439 { 440 if (q->last_merge == rq) 441 q->last_merge = NULL; 442 443 elv_rqhash_del(q, rq); 444 445 q->nr_sorted--; 446 447 q->end_sector = rq_end_sector(rq); 448 q->boundary_rq = rq; 449 list_add_tail(&rq->queuelist, &q->queue_head); 450 } 451 452 EXPORT_SYMBOL(elv_dispatch_add_tail); 453 454 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 455 { 456 elevator_t *e = q->elevator; 457 struct request *__rq; 458 int ret; 459 460 /* 461 * First try one-hit cache. 462 */ 463 if (q->last_merge) { 464 ret = elv_try_merge(q->last_merge, bio); 465 if (ret != ELEVATOR_NO_MERGE) { 466 *req = q->last_merge; 467 return ret; 468 } 469 } 470 471 /* 472 * See if our hash lookup can find a potential backmerge. 473 */ 474 __rq = elv_rqhash_find(q, bio->bi_sector); 475 if (__rq && elv_rq_merge_ok(__rq, bio)) { 476 *req = __rq; 477 return ELEVATOR_BACK_MERGE; 478 } 479 480 if (e->ops->elevator_merge_fn) 481 return e->ops->elevator_merge_fn(q, req, bio); 482 483 return ELEVATOR_NO_MERGE; 484 } 485 486 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 487 { 488 elevator_t *e = q->elevator; 489 490 if (e->ops->elevator_merged_fn) 491 e->ops->elevator_merged_fn(q, rq, type); 492 493 if (type == ELEVATOR_BACK_MERGE) 494 elv_rqhash_reposition(q, rq); 495 496 q->last_merge = rq; 497 } 498 499 void elv_merge_requests(struct request_queue *q, struct request *rq, 500 struct request *next) 501 { 502 elevator_t *e = q->elevator; 503 504 if (e->ops->elevator_merge_req_fn) 505 e->ops->elevator_merge_req_fn(q, rq, next); 506 507 elv_rqhash_reposition(q, rq); 508 elv_rqhash_del(q, next); 509 510 q->nr_sorted--; 511 q->last_merge = rq; 512 } 513 514 void elv_requeue_request(struct request_queue *q, struct request *rq) 515 { 516 /* 517 * it already went through dequeue, we need to decrement the 518 * in_flight count again 519 */ 520 if (blk_account_rq(rq)) { 521 q->in_flight--; 522 if (blk_sorted_rq(rq)) 523 elv_deactivate_rq(q, rq); 524 } 525 526 rq->cmd_flags &= ~REQ_STARTED; 527 528 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 529 } 530 531 static void elv_drain_elevator(struct request_queue *q) 532 { 533 static int printed; 534 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 535 ; 536 if (q->nr_sorted == 0) 537 return; 538 if (printed++ < 10) { 539 printk(KERN_ERR "%s: forced dispatching is broken " 540 "(nr_sorted=%u), please report this\n", 541 q->elevator->elevator_type->elevator_name, q->nr_sorted); 542 } 543 } 544 545 void elv_insert(struct request_queue *q, struct request *rq, int where) 546 { 547 struct list_head *pos; 548 unsigned ordseq; 549 int unplug_it = 1; 550 551 blk_add_trace_rq(q, rq, BLK_TA_INSERT); 552 553 rq->q = q; 554 555 switch (where) { 556 case ELEVATOR_INSERT_FRONT: 557 rq->cmd_flags |= REQ_SOFTBARRIER; 558 559 list_add(&rq->queuelist, &q->queue_head); 560 break; 561 562 case ELEVATOR_INSERT_BACK: 563 rq->cmd_flags |= REQ_SOFTBARRIER; 564 elv_drain_elevator(q); 565 list_add_tail(&rq->queuelist, &q->queue_head); 566 /* 567 * We kick the queue here for the following reasons. 568 * - The elevator might have returned NULL previously 569 * to delay requests and returned them now. As the 570 * queue wasn't empty before this request, ll_rw_blk 571 * won't run the queue on return, resulting in hang. 572 * - Usually, back inserted requests won't be merged 573 * with anything. There's no point in delaying queue 574 * processing. 575 */ 576 blk_remove_plug(q); 577 q->request_fn(q); 578 break; 579 580 case ELEVATOR_INSERT_SORT: 581 BUG_ON(!blk_fs_request(rq)); 582 rq->cmd_flags |= REQ_SORTED; 583 q->nr_sorted++; 584 if (rq_mergeable(rq)) { 585 elv_rqhash_add(q, rq); 586 if (!q->last_merge) 587 q->last_merge = rq; 588 } 589 590 /* 591 * Some ioscheds (cfq) run q->request_fn directly, so 592 * rq cannot be accessed after calling 593 * elevator_add_req_fn. 594 */ 595 q->elevator->ops->elevator_add_req_fn(q, rq); 596 break; 597 598 case ELEVATOR_INSERT_REQUEUE: 599 /* 600 * If ordered flush isn't in progress, we do front 601 * insertion; otherwise, requests should be requeued 602 * in ordseq order. 603 */ 604 rq->cmd_flags |= REQ_SOFTBARRIER; 605 606 /* 607 * Most requeues happen because of a busy condition, 608 * don't force unplug of the queue for that case. 609 */ 610 unplug_it = 0; 611 612 if (q->ordseq == 0) { 613 list_add(&rq->queuelist, &q->queue_head); 614 break; 615 } 616 617 ordseq = blk_ordered_req_seq(rq); 618 619 list_for_each(pos, &q->queue_head) { 620 struct request *pos_rq = list_entry_rq(pos); 621 if (ordseq <= blk_ordered_req_seq(pos_rq)) 622 break; 623 } 624 625 list_add_tail(&rq->queuelist, pos); 626 break; 627 628 default: 629 printk(KERN_ERR "%s: bad insertion point %d\n", 630 __FUNCTION__, where); 631 BUG(); 632 } 633 634 if (unplug_it && blk_queue_plugged(q)) { 635 int nrq = q->rq.count[READ] + q->rq.count[WRITE] 636 - q->in_flight; 637 638 if (nrq >= q->unplug_thresh) 639 __generic_unplug_device(q); 640 } 641 } 642 643 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 644 int plug) 645 { 646 if (q->ordcolor) 647 rq->cmd_flags |= REQ_ORDERED_COLOR; 648 649 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 650 /* 651 * toggle ordered color 652 */ 653 if (blk_barrier_rq(rq)) 654 q->ordcolor ^= 1; 655 656 /* 657 * barriers implicitly indicate back insertion 658 */ 659 if (where == ELEVATOR_INSERT_SORT) 660 where = ELEVATOR_INSERT_BACK; 661 662 /* 663 * this request is scheduling boundary, update 664 * end_sector 665 */ 666 if (blk_fs_request(rq)) { 667 q->end_sector = rq_end_sector(rq); 668 q->boundary_rq = rq; 669 } 670 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT) 671 where = ELEVATOR_INSERT_BACK; 672 673 if (plug) 674 blk_plug_device(q); 675 676 elv_insert(q, rq, where); 677 } 678 679 EXPORT_SYMBOL(__elv_add_request); 680 681 void elv_add_request(struct request_queue *q, struct request *rq, int where, 682 int plug) 683 { 684 unsigned long flags; 685 686 spin_lock_irqsave(q->queue_lock, flags); 687 __elv_add_request(q, rq, where, plug); 688 spin_unlock_irqrestore(q->queue_lock, flags); 689 } 690 691 EXPORT_SYMBOL(elv_add_request); 692 693 static inline struct request *__elv_next_request(struct request_queue *q) 694 { 695 struct request *rq; 696 697 while (1) { 698 while (!list_empty(&q->queue_head)) { 699 rq = list_entry_rq(q->queue_head.next); 700 if (blk_do_ordered(q, &rq)) 701 return rq; 702 } 703 704 if (!q->elevator->ops->elevator_dispatch_fn(q, 0)) 705 return NULL; 706 } 707 } 708 709 struct request *elv_next_request(struct request_queue *q) 710 { 711 struct request *rq; 712 int ret; 713 714 while ((rq = __elv_next_request(q)) != NULL) { 715 if (!(rq->cmd_flags & REQ_STARTED)) { 716 /* 717 * This is the first time the device driver 718 * sees this request (possibly after 719 * requeueing). Notify IO scheduler. 720 */ 721 if (blk_sorted_rq(rq)) 722 elv_activate_rq(q, rq); 723 724 /* 725 * just mark as started even if we don't start 726 * it, a request that has been delayed should 727 * not be passed by new incoming requests 728 */ 729 rq->cmd_flags |= REQ_STARTED; 730 blk_add_trace_rq(q, rq, BLK_TA_ISSUE); 731 } 732 733 if (!q->boundary_rq || q->boundary_rq == rq) { 734 q->end_sector = rq_end_sector(rq); 735 q->boundary_rq = NULL; 736 } 737 738 if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn) 739 break; 740 741 ret = q->prep_rq_fn(q, rq); 742 if (ret == BLKPREP_OK) { 743 break; 744 } else if (ret == BLKPREP_DEFER) { 745 /* 746 * the request may have been (partially) prepped. 747 * we need to keep this request in the front to 748 * avoid resource deadlock. REQ_STARTED will 749 * prevent other fs requests from passing this one. 750 */ 751 rq = NULL; 752 break; 753 } else if (ret == BLKPREP_KILL) { 754 int nr_bytes = rq->hard_nr_sectors << 9; 755 756 if (!nr_bytes) 757 nr_bytes = rq->data_len; 758 759 blkdev_dequeue_request(rq); 760 rq->cmd_flags |= REQ_QUIET; 761 end_that_request_chunk(rq, 0, nr_bytes); 762 end_that_request_last(rq, 0); 763 } else { 764 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__, 765 ret); 766 break; 767 } 768 } 769 770 return rq; 771 } 772 773 EXPORT_SYMBOL(elv_next_request); 774 775 void elv_dequeue_request(struct request_queue *q, struct request *rq) 776 { 777 BUG_ON(list_empty(&rq->queuelist)); 778 BUG_ON(ELV_ON_HASH(rq)); 779 780 list_del_init(&rq->queuelist); 781 782 /* 783 * the time frame between a request being removed from the lists 784 * and to it is freed is accounted as io that is in progress at 785 * the driver side. 786 */ 787 if (blk_account_rq(rq)) 788 q->in_flight++; 789 } 790 791 EXPORT_SYMBOL(elv_dequeue_request); 792 793 int elv_queue_empty(struct request_queue *q) 794 { 795 elevator_t *e = q->elevator; 796 797 if (!list_empty(&q->queue_head)) 798 return 0; 799 800 if (e->ops->elevator_queue_empty_fn) 801 return e->ops->elevator_queue_empty_fn(q); 802 803 return 1; 804 } 805 806 EXPORT_SYMBOL(elv_queue_empty); 807 808 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 809 { 810 elevator_t *e = q->elevator; 811 812 if (e->ops->elevator_latter_req_fn) 813 return e->ops->elevator_latter_req_fn(q, rq); 814 return NULL; 815 } 816 817 struct request *elv_former_request(struct request_queue *q, struct request *rq) 818 { 819 elevator_t *e = q->elevator; 820 821 if (e->ops->elevator_former_req_fn) 822 return e->ops->elevator_former_req_fn(q, rq); 823 return NULL; 824 } 825 826 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 827 { 828 elevator_t *e = q->elevator; 829 830 if (e->ops->elevator_set_req_fn) 831 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 832 833 rq->elevator_private = NULL; 834 return 0; 835 } 836 837 void elv_put_request(struct request_queue *q, struct request *rq) 838 { 839 elevator_t *e = q->elevator; 840 841 if (e->ops->elevator_put_req_fn) 842 e->ops->elevator_put_req_fn(rq); 843 } 844 845 int elv_may_queue(struct request_queue *q, int rw) 846 { 847 elevator_t *e = q->elevator; 848 849 if (e->ops->elevator_may_queue_fn) 850 return e->ops->elevator_may_queue_fn(q, rw); 851 852 return ELV_MQUEUE_MAY; 853 } 854 855 void elv_completed_request(struct request_queue *q, struct request *rq) 856 { 857 elevator_t *e = q->elevator; 858 859 /* 860 * request is released from the driver, io must be done 861 */ 862 if (blk_account_rq(rq)) { 863 q->in_flight--; 864 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 865 e->ops->elevator_completed_req_fn(q, rq); 866 } 867 868 /* 869 * Check if the queue is waiting for fs requests to be 870 * drained for flush sequence. 871 */ 872 if (unlikely(q->ordseq)) { 873 struct request *first_rq = list_entry_rq(q->queue_head.next); 874 if (q->in_flight == 0 && 875 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 876 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) { 877 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 878 q->request_fn(q); 879 } 880 } 881 } 882 883 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 884 885 static ssize_t 886 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 887 { 888 elevator_t *e = container_of(kobj, elevator_t, kobj); 889 struct elv_fs_entry *entry = to_elv(attr); 890 ssize_t error; 891 892 if (!entry->show) 893 return -EIO; 894 895 mutex_lock(&e->sysfs_lock); 896 error = e->ops ? entry->show(e, page) : -ENOENT; 897 mutex_unlock(&e->sysfs_lock); 898 return error; 899 } 900 901 static ssize_t 902 elv_attr_store(struct kobject *kobj, struct attribute *attr, 903 const char *page, size_t length) 904 { 905 elevator_t *e = container_of(kobj, elevator_t, kobj); 906 struct elv_fs_entry *entry = to_elv(attr); 907 ssize_t error; 908 909 if (!entry->store) 910 return -EIO; 911 912 mutex_lock(&e->sysfs_lock); 913 error = e->ops ? entry->store(e, page, length) : -ENOENT; 914 mutex_unlock(&e->sysfs_lock); 915 return error; 916 } 917 918 static struct sysfs_ops elv_sysfs_ops = { 919 .show = elv_attr_show, 920 .store = elv_attr_store, 921 }; 922 923 static struct kobj_type elv_ktype = { 924 .sysfs_ops = &elv_sysfs_ops, 925 .release = elevator_release, 926 }; 927 928 int elv_register_queue(struct request_queue *q) 929 { 930 elevator_t *e = q->elevator; 931 int error; 932 933 e->kobj.parent = &q->kobj; 934 935 error = kobject_add(&e->kobj); 936 if (!error) { 937 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 938 if (attr) { 939 while (attr->attr.name) { 940 if (sysfs_create_file(&e->kobj, &attr->attr)) 941 break; 942 attr++; 943 } 944 } 945 kobject_uevent(&e->kobj, KOBJ_ADD); 946 } 947 return error; 948 } 949 950 static void __elv_unregister_queue(elevator_t *e) 951 { 952 kobject_uevent(&e->kobj, KOBJ_REMOVE); 953 kobject_del(&e->kobj); 954 } 955 956 void elv_unregister_queue(struct request_queue *q) 957 { 958 if (q) 959 __elv_unregister_queue(q->elevator); 960 } 961 962 int elv_register(struct elevator_type *e) 963 { 964 char *def = ""; 965 966 spin_lock(&elv_list_lock); 967 BUG_ON(elevator_find(e->elevator_name)); 968 list_add_tail(&e->list, &elv_list); 969 spin_unlock(&elv_list_lock); 970 971 if (!strcmp(e->elevator_name, chosen_elevator) || 972 (!*chosen_elevator && 973 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 974 def = " (default)"; 975 976 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def); 977 return 0; 978 } 979 EXPORT_SYMBOL_GPL(elv_register); 980 981 void elv_unregister(struct elevator_type *e) 982 { 983 struct task_struct *g, *p; 984 985 /* 986 * Iterate every thread in the process to remove the io contexts. 987 */ 988 if (e->ops.trim) { 989 read_lock(&tasklist_lock); 990 do_each_thread(g, p) { 991 task_lock(p); 992 if (p->io_context) 993 e->ops.trim(p->io_context); 994 task_unlock(p); 995 } while_each_thread(g, p); 996 read_unlock(&tasklist_lock); 997 } 998 999 spin_lock(&elv_list_lock); 1000 list_del_init(&e->list); 1001 spin_unlock(&elv_list_lock); 1002 } 1003 EXPORT_SYMBOL_GPL(elv_unregister); 1004 1005 /* 1006 * switch to new_e io scheduler. be careful not to introduce deadlocks - 1007 * we don't free the old io scheduler, before we have allocated what we 1008 * need for the new one. this way we have a chance of going back to the old 1009 * one, if the new one fails init for some reason. 1010 */ 1011 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 1012 { 1013 elevator_t *old_elevator, *e; 1014 void *data; 1015 1016 /* 1017 * Allocate new elevator 1018 */ 1019 e = elevator_alloc(q, new_e); 1020 if (!e) 1021 return 0; 1022 1023 data = elevator_init_queue(q, e); 1024 if (!data) { 1025 kobject_put(&e->kobj); 1026 return 0; 1027 } 1028 1029 /* 1030 * Turn on BYPASS and drain all requests w/ elevator private data 1031 */ 1032 spin_lock_irq(q->queue_lock); 1033 1034 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1035 1036 elv_drain_elevator(q); 1037 1038 while (q->rq.elvpriv) { 1039 blk_remove_plug(q); 1040 q->request_fn(q); 1041 spin_unlock_irq(q->queue_lock); 1042 msleep(10); 1043 spin_lock_irq(q->queue_lock); 1044 elv_drain_elevator(q); 1045 } 1046 1047 /* 1048 * Remember old elevator. 1049 */ 1050 old_elevator = q->elevator; 1051 1052 /* 1053 * attach and start new elevator 1054 */ 1055 elevator_attach(q, e, data); 1056 1057 spin_unlock_irq(q->queue_lock); 1058 1059 __elv_unregister_queue(old_elevator); 1060 1061 if (elv_register_queue(q)) 1062 goto fail_register; 1063 1064 /* 1065 * finally exit old elevator and turn off BYPASS. 1066 */ 1067 elevator_exit(old_elevator); 1068 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1069 return 1; 1070 1071 fail_register: 1072 /* 1073 * switch failed, exit the new io scheduler and reattach the old 1074 * one again (along with re-adding the sysfs dir) 1075 */ 1076 elevator_exit(e); 1077 q->elevator = old_elevator; 1078 elv_register_queue(q); 1079 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1080 return 0; 1081 } 1082 1083 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1084 size_t count) 1085 { 1086 char elevator_name[ELV_NAME_MAX]; 1087 size_t len; 1088 struct elevator_type *e; 1089 1090 elevator_name[sizeof(elevator_name) - 1] = '\0'; 1091 strncpy(elevator_name, name, sizeof(elevator_name) - 1); 1092 len = strlen(elevator_name); 1093 1094 if (len && elevator_name[len - 1] == '\n') 1095 elevator_name[len - 1] = '\0'; 1096 1097 e = elevator_get(elevator_name); 1098 if (!e) { 1099 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1100 return -EINVAL; 1101 } 1102 1103 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1104 elevator_put(e); 1105 return count; 1106 } 1107 1108 if (!elevator_switch(q, e)) 1109 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name); 1110 return count; 1111 } 1112 1113 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1114 { 1115 elevator_t *e = q->elevator; 1116 struct elevator_type *elv = e->elevator_type; 1117 struct elevator_type *__e; 1118 int len = 0; 1119 1120 spin_lock(&elv_list_lock); 1121 list_for_each_entry(__e, &elv_list, list) { 1122 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1123 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1124 else 1125 len += sprintf(name+len, "%s ", __e->elevator_name); 1126 } 1127 spin_unlock(&elv_list_lock); 1128 1129 len += sprintf(len+name, "\n"); 1130 return len; 1131 } 1132 1133 struct request *elv_rb_former_request(struct request_queue *q, 1134 struct request *rq) 1135 { 1136 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1137 1138 if (rbprev) 1139 return rb_entry_rq(rbprev); 1140 1141 return NULL; 1142 } 1143 1144 EXPORT_SYMBOL(elv_rb_former_request); 1145 1146 struct request *elv_rb_latter_request(struct request_queue *q, 1147 struct request *rq) 1148 { 1149 struct rb_node *rbnext = rb_next(&rq->rb_node); 1150 1151 if (rbnext) 1152 return rb_entry_rq(rbnext); 1153 1154 return NULL; 1155 } 1156 1157 EXPORT_SYMBOL(elv_rb_latter_request); 1158