1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <trace/block.h> 37 #include <linux/hash.h> 38 #include <linux/uaccess.h> 39 40 #include "blk.h" 41 42 static DEFINE_SPINLOCK(elv_list_lock); 43 static LIST_HEAD(elv_list); 44 45 DEFINE_TRACE(block_rq_abort); 46 47 /* 48 * Merge hash stuff. 49 */ 50 static const int elv_hash_shift = 6; 51 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 52 #define ELV_HASH_FN(sec) \ 53 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 54 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 55 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) 56 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash)) 57 58 DEFINE_TRACE(block_rq_insert); 59 DEFINE_TRACE(block_rq_issue); 60 61 /* 62 * Query io scheduler to see if the current process issuing bio may be 63 * merged with rq. 64 */ 65 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 66 { 67 struct request_queue *q = rq->q; 68 struct elevator_queue *e = q->elevator; 69 70 if (e->ops->elevator_allow_merge_fn) 71 return e->ops->elevator_allow_merge_fn(q, rq, bio); 72 73 return 1; 74 } 75 76 /* 77 * can we safely merge with this request? 78 */ 79 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 80 { 81 if (!rq_mergeable(rq)) 82 return 0; 83 84 /* 85 * Don't merge file system requests and discard requests 86 */ 87 if (bio_discard(bio) != bio_discard(rq->bio)) 88 return 0; 89 90 /* 91 * different data direction or already started, don't merge 92 */ 93 if (bio_data_dir(bio) != rq_data_dir(rq)) 94 return 0; 95 96 /* 97 * must be same device and not a special request 98 */ 99 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 100 return 0; 101 102 /* 103 * only merge integrity protected bio into ditto rq 104 */ 105 if (bio_integrity(bio) != blk_integrity_rq(rq)) 106 return 0; 107 108 if (!elv_iosched_allow_merge(rq, bio)) 109 return 0; 110 111 return 1; 112 } 113 EXPORT_SYMBOL(elv_rq_merge_ok); 114 115 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 116 { 117 int ret = ELEVATOR_NO_MERGE; 118 119 /* 120 * we can merge and sequence is ok, check if it's possible 121 */ 122 if (elv_rq_merge_ok(__rq, bio)) { 123 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 124 ret = ELEVATOR_BACK_MERGE; 125 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 126 ret = ELEVATOR_FRONT_MERGE; 127 } 128 129 return ret; 130 } 131 132 static struct elevator_type *elevator_find(const char *name) 133 { 134 struct elevator_type *e; 135 136 list_for_each_entry(e, &elv_list, list) { 137 if (!strcmp(e->elevator_name, name)) 138 return e; 139 } 140 141 return NULL; 142 } 143 144 static void elevator_put(struct elevator_type *e) 145 { 146 module_put(e->elevator_owner); 147 } 148 149 static struct elevator_type *elevator_get(const char *name) 150 { 151 struct elevator_type *e; 152 153 spin_lock(&elv_list_lock); 154 155 e = elevator_find(name); 156 if (!e) { 157 char elv[ELV_NAME_MAX + strlen("-iosched")]; 158 159 spin_unlock(&elv_list_lock); 160 161 if (!strcmp(name, "anticipatory")) 162 sprintf(elv, "as-iosched"); 163 else 164 sprintf(elv, "%s-iosched", name); 165 166 request_module("%s", elv); 167 spin_lock(&elv_list_lock); 168 e = elevator_find(name); 169 } 170 171 if (e && !try_module_get(e->elevator_owner)) 172 e = NULL; 173 174 spin_unlock(&elv_list_lock); 175 176 return e; 177 } 178 179 static void *elevator_init_queue(struct request_queue *q, 180 struct elevator_queue *eq) 181 { 182 return eq->ops->elevator_init_fn(q); 183 } 184 185 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 186 void *data) 187 { 188 q->elevator = eq; 189 eq->elevator_data = data; 190 } 191 192 static char chosen_elevator[16]; 193 194 static int __init elevator_setup(char *str) 195 { 196 /* 197 * Be backwards-compatible with previous kernels, so users 198 * won't get the wrong elevator. 199 */ 200 if (!strcmp(str, "as")) 201 strcpy(chosen_elevator, "anticipatory"); 202 else 203 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 204 return 1; 205 } 206 207 __setup("elevator=", elevator_setup); 208 209 static struct kobj_type elv_ktype; 210 211 static struct elevator_queue *elevator_alloc(struct request_queue *q, 212 struct elevator_type *e) 213 { 214 struct elevator_queue *eq; 215 int i; 216 217 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 218 if (unlikely(!eq)) 219 goto err; 220 221 eq->ops = &e->ops; 222 eq->elevator_type = e; 223 kobject_init(&eq->kobj, &elv_ktype); 224 mutex_init(&eq->sysfs_lock); 225 226 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 227 GFP_KERNEL, q->node); 228 if (!eq->hash) 229 goto err; 230 231 for (i = 0; i < ELV_HASH_ENTRIES; i++) 232 INIT_HLIST_HEAD(&eq->hash[i]); 233 234 return eq; 235 err: 236 kfree(eq); 237 elevator_put(e); 238 return NULL; 239 } 240 241 static void elevator_release(struct kobject *kobj) 242 { 243 struct elevator_queue *e; 244 245 e = container_of(kobj, struct elevator_queue, kobj); 246 elevator_put(e->elevator_type); 247 kfree(e->hash); 248 kfree(e); 249 } 250 251 int elevator_init(struct request_queue *q, char *name) 252 { 253 struct elevator_type *e = NULL; 254 struct elevator_queue *eq; 255 int ret = 0; 256 void *data; 257 258 INIT_LIST_HEAD(&q->queue_head); 259 q->last_merge = NULL; 260 q->end_sector = 0; 261 q->boundary_rq = NULL; 262 263 if (name) { 264 e = elevator_get(name); 265 if (!e) 266 return -EINVAL; 267 } 268 269 if (!e && *chosen_elevator) { 270 e = elevator_get(chosen_elevator); 271 if (!e) 272 printk(KERN_ERR "I/O scheduler %s not found\n", 273 chosen_elevator); 274 } 275 276 if (!e) { 277 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 278 if (!e) { 279 printk(KERN_ERR 280 "Default I/O scheduler not found. " \ 281 "Using noop.\n"); 282 e = elevator_get("noop"); 283 } 284 } 285 286 eq = elevator_alloc(q, e); 287 if (!eq) 288 return -ENOMEM; 289 290 data = elevator_init_queue(q, eq); 291 if (!data) { 292 kobject_put(&eq->kobj); 293 return -ENOMEM; 294 } 295 296 elevator_attach(q, eq, data); 297 return ret; 298 } 299 EXPORT_SYMBOL(elevator_init); 300 301 void elevator_exit(struct elevator_queue *e) 302 { 303 mutex_lock(&e->sysfs_lock); 304 if (e->ops->elevator_exit_fn) 305 e->ops->elevator_exit_fn(e); 306 e->ops = NULL; 307 mutex_unlock(&e->sysfs_lock); 308 309 kobject_put(&e->kobj); 310 } 311 EXPORT_SYMBOL(elevator_exit); 312 313 static void elv_activate_rq(struct request_queue *q, struct request *rq) 314 { 315 struct elevator_queue *e = q->elevator; 316 317 if (e->ops->elevator_activate_req_fn) 318 e->ops->elevator_activate_req_fn(q, rq); 319 } 320 321 static void elv_deactivate_rq(struct request_queue *q, struct request *rq) 322 { 323 struct elevator_queue *e = q->elevator; 324 325 if (e->ops->elevator_deactivate_req_fn) 326 e->ops->elevator_deactivate_req_fn(q, rq); 327 } 328 329 static inline void __elv_rqhash_del(struct request *rq) 330 { 331 hlist_del_init(&rq->hash); 332 } 333 334 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 335 { 336 if (ELV_ON_HASH(rq)) 337 __elv_rqhash_del(rq); 338 } 339 340 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 341 { 342 struct elevator_queue *e = q->elevator; 343 344 BUG_ON(ELV_ON_HASH(rq)); 345 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 346 } 347 348 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 349 { 350 __elv_rqhash_del(rq); 351 elv_rqhash_add(q, rq); 352 } 353 354 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 355 { 356 struct elevator_queue *e = q->elevator; 357 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 358 struct hlist_node *entry, *next; 359 struct request *rq; 360 361 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 362 BUG_ON(!ELV_ON_HASH(rq)); 363 364 if (unlikely(!rq_mergeable(rq))) { 365 __elv_rqhash_del(rq); 366 continue; 367 } 368 369 if (rq_hash_key(rq) == offset) 370 return rq; 371 } 372 373 return NULL; 374 } 375 376 /* 377 * RB-tree support functions for inserting/lookup/removal of requests 378 * in a sorted RB tree. 379 */ 380 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 381 { 382 struct rb_node **p = &root->rb_node; 383 struct rb_node *parent = NULL; 384 struct request *__rq; 385 386 while (*p) { 387 parent = *p; 388 __rq = rb_entry(parent, struct request, rb_node); 389 390 if (rq->sector < __rq->sector) 391 p = &(*p)->rb_left; 392 else if (rq->sector > __rq->sector) 393 p = &(*p)->rb_right; 394 else 395 return __rq; 396 } 397 398 rb_link_node(&rq->rb_node, parent, p); 399 rb_insert_color(&rq->rb_node, root); 400 return NULL; 401 } 402 EXPORT_SYMBOL(elv_rb_add); 403 404 void elv_rb_del(struct rb_root *root, struct request *rq) 405 { 406 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 407 rb_erase(&rq->rb_node, root); 408 RB_CLEAR_NODE(&rq->rb_node); 409 } 410 EXPORT_SYMBOL(elv_rb_del); 411 412 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 413 { 414 struct rb_node *n = root->rb_node; 415 struct request *rq; 416 417 while (n) { 418 rq = rb_entry(n, struct request, rb_node); 419 420 if (sector < rq->sector) 421 n = n->rb_left; 422 else if (sector > rq->sector) 423 n = n->rb_right; 424 else 425 return rq; 426 } 427 428 return NULL; 429 } 430 EXPORT_SYMBOL(elv_rb_find); 431 432 /* 433 * Insert rq into dispatch queue of q. Queue lock must be held on 434 * entry. rq is sort instead into the dispatch queue. To be used by 435 * specific elevators. 436 */ 437 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 438 { 439 sector_t boundary; 440 struct list_head *entry; 441 int stop_flags; 442 443 if (q->last_merge == rq) 444 q->last_merge = NULL; 445 446 elv_rqhash_del(q, rq); 447 448 q->nr_sorted--; 449 450 boundary = q->end_sector; 451 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 452 list_for_each_prev(entry, &q->queue_head) { 453 struct request *pos = list_entry_rq(entry); 454 455 if (blk_discard_rq(rq) != blk_discard_rq(pos)) 456 break; 457 if (rq_data_dir(rq) != rq_data_dir(pos)) 458 break; 459 if (pos->cmd_flags & stop_flags) 460 break; 461 if (rq->sector >= boundary) { 462 if (pos->sector < boundary) 463 continue; 464 } else { 465 if (pos->sector >= boundary) 466 break; 467 } 468 if (rq->sector >= pos->sector) 469 break; 470 } 471 472 list_add(&rq->queuelist, entry); 473 } 474 EXPORT_SYMBOL(elv_dispatch_sort); 475 476 /* 477 * Insert rq into dispatch queue of q. Queue lock must be held on 478 * entry. rq is added to the back of the dispatch queue. To be used by 479 * specific elevators. 480 */ 481 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 482 { 483 if (q->last_merge == rq) 484 q->last_merge = NULL; 485 486 elv_rqhash_del(q, rq); 487 488 q->nr_sorted--; 489 490 q->end_sector = rq_end_sector(rq); 491 q->boundary_rq = rq; 492 list_add_tail(&rq->queuelist, &q->queue_head); 493 } 494 EXPORT_SYMBOL(elv_dispatch_add_tail); 495 496 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 497 { 498 struct elevator_queue *e = q->elevator; 499 struct request *__rq; 500 int ret; 501 502 /* 503 * First try one-hit cache. 504 */ 505 if (q->last_merge) { 506 ret = elv_try_merge(q->last_merge, bio); 507 if (ret != ELEVATOR_NO_MERGE) { 508 *req = q->last_merge; 509 return ret; 510 } 511 } 512 513 if (blk_queue_nomerges(q)) 514 return ELEVATOR_NO_MERGE; 515 516 /* 517 * See if our hash lookup can find a potential backmerge. 518 */ 519 __rq = elv_rqhash_find(q, bio->bi_sector); 520 if (__rq && elv_rq_merge_ok(__rq, bio)) { 521 *req = __rq; 522 return ELEVATOR_BACK_MERGE; 523 } 524 525 if (e->ops->elevator_merge_fn) 526 return e->ops->elevator_merge_fn(q, req, bio); 527 528 return ELEVATOR_NO_MERGE; 529 } 530 531 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 532 { 533 struct elevator_queue *e = q->elevator; 534 535 if (e->ops->elevator_merged_fn) 536 e->ops->elevator_merged_fn(q, rq, type); 537 538 if (type == ELEVATOR_BACK_MERGE) 539 elv_rqhash_reposition(q, rq); 540 541 q->last_merge = rq; 542 } 543 544 void elv_merge_requests(struct request_queue *q, struct request *rq, 545 struct request *next) 546 { 547 struct elevator_queue *e = q->elevator; 548 549 if (e->ops->elevator_merge_req_fn) 550 e->ops->elevator_merge_req_fn(q, rq, next); 551 552 elv_rqhash_reposition(q, rq); 553 elv_rqhash_del(q, next); 554 555 q->nr_sorted--; 556 q->last_merge = rq; 557 } 558 559 void elv_requeue_request(struct request_queue *q, struct request *rq) 560 { 561 /* 562 * it already went through dequeue, we need to decrement the 563 * in_flight count again 564 */ 565 if (blk_account_rq(rq)) { 566 q->in_flight--; 567 if (blk_sorted_rq(rq)) 568 elv_deactivate_rq(q, rq); 569 } 570 571 rq->cmd_flags &= ~REQ_STARTED; 572 573 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 574 } 575 576 static void elv_drain_elevator(struct request_queue *q) 577 { 578 static int printed; 579 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 580 ; 581 if (q->nr_sorted == 0) 582 return; 583 if (printed++ < 10) { 584 printk(KERN_ERR "%s: forced dispatching is broken " 585 "(nr_sorted=%u), please report this\n", 586 q->elevator->elevator_type->elevator_name, q->nr_sorted); 587 } 588 } 589 590 void elv_insert(struct request_queue *q, struct request *rq, int where) 591 { 592 struct list_head *pos; 593 unsigned ordseq; 594 int unplug_it = 1; 595 596 trace_block_rq_insert(q, rq); 597 598 rq->q = q; 599 600 switch (where) { 601 case ELEVATOR_INSERT_FRONT: 602 rq->cmd_flags |= REQ_SOFTBARRIER; 603 604 list_add(&rq->queuelist, &q->queue_head); 605 break; 606 607 case ELEVATOR_INSERT_BACK: 608 rq->cmd_flags |= REQ_SOFTBARRIER; 609 elv_drain_elevator(q); 610 list_add_tail(&rq->queuelist, &q->queue_head); 611 /* 612 * We kick the queue here for the following reasons. 613 * - The elevator might have returned NULL previously 614 * to delay requests and returned them now. As the 615 * queue wasn't empty before this request, ll_rw_blk 616 * won't run the queue on return, resulting in hang. 617 * - Usually, back inserted requests won't be merged 618 * with anything. There's no point in delaying queue 619 * processing. 620 */ 621 blk_remove_plug(q); 622 blk_start_queueing(q); 623 break; 624 625 case ELEVATOR_INSERT_SORT: 626 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq)); 627 rq->cmd_flags |= REQ_SORTED; 628 q->nr_sorted++; 629 if (rq_mergeable(rq)) { 630 elv_rqhash_add(q, rq); 631 if (!q->last_merge) 632 q->last_merge = rq; 633 } 634 635 /* 636 * Some ioscheds (cfq) run q->request_fn directly, so 637 * rq cannot be accessed after calling 638 * elevator_add_req_fn. 639 */ 640 q->elevator->ops->elevator_add_req_fn(q, rq); 641 break; 642 643 case ELEVATOR_INSERT_REQUEUE: 644 /* 645 * If ordered flush isn't in progress, we do front 646 * insertion; otherwise, requests should be requeued 647 * in ordseq order. 648 */ 649 rq->cmd_flags |= REQ_SOFTBARRIER; 650 651 /* 652 * Most requeues happen because of a busy condition, 653 * don't force unplug of the queue for that case. 654 */ 655 unplug_it = 0; 656 657 if (q->ordseq == 0) { 658 list_add(&rq->queuelist, &q->queue_head); 659 break; 660 } 661 662 ordseq = blk_ordered_req_seq(rq); 663 664 list_for_each(pos, &q->queue_head) { 665 struct request *pos_rq = list_entry_rq(pos); 666 if (ordseq <= blk_ordered_req_seq(pos_rq)) 667 break; 668 } 669 670 list_add_tail(&rq->queuelist, pos); 671 break; 672 673 default: 674 printk(KERN_ERR "%s: bad insertion point %d\n", 675 __func__, where); 676 BUG(); 677 } 678 679 if (unplug_it && blk_queue_plugged(q)) { 680 int nrq = q->rq.count[READ] + q->rq.count[WRITE] 681 - q->in_flight; 682 683 if (nrq >= q->unplug_thresh) 684 __generic_unplug_device(q); 685 } 686 } 687 688 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 689 int plug) 690 { 691 if (q->ordcolor) 692 rq->cmd_flags |= REQ_ORDERED_COLOR; 693 694 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 695 /* 696 * toggle ordered color 697 */ 698 if (blk_barrier_rq(rq)) 699 q->ordcolor ^= 1; 700 701 /* 702 * barriers implicitly indicate back insertion 703 */ 704 if (where == ELEVATOR_INSERT_SORT) 705 where = ELEVATOR_INSERT_BACK; 706 707 /* 708 * this request is scheduling boundary, update 709 * end_sector 710 */ 711 if (blk_fs_request(rq) || blk_discard_rq(rq)) { 712 q->end_sector = rq_end_sector(rq); 713 q->boundary_rq = rq; 714 } 715 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 716 where == ELEVATOR_INSERT_SORT) 717 where = ELEVATOR_INSERT_BACK; 718 719 if (plug) 720 blk_plug_device(q); 721 722 elv_insert(q, rq, where); 723 } 724 EXPORT_SYMBOL(__elv_add_request); 725 726 void elv_add_request(struct request_queue *q, struct request *rq, int where, 727 int plug) 728 { 729 unsigned long flags; 730 731 spin_lock_irqsave(q->queue_lock, flags); 732 __elv_add_request(q, rq, where, plug); 733 spin_unlock_irqrestore(q->queue_lock, flags); 734 } 735 EXPORT_SYMBOL(elv_add_request); 736 737 static inline struct request *__elv_next_request(struct request_queue *q) 738 { 739 struct request *rq; 740 741 while (1) { 742 while (!list_empty(&q->queue_head)) { 743 rq = list_entry_rq(q->queue_head.next); 744 if (blk_do_ordered(q, &rq)) 745 return rq; 746 } 747 748 if (!q->elevator->ops->elevator_dispatch_fn(q, 0)) 749 return NULL; 750 } 751 } 752 753 struct request *elv_next_request(struct request_queue *q) 754 { 755 struct request *rq; 756 int ret; 757 758 while ((rq = __elv_next_request(q)) != NULL) { 759 if (!(rq->cmd_flags & REQ_STARTED)) { 760 /* 761 * This is the first time the device driver 762 * sees this request (possibly after 763 * requeueing). Notify IO scheduler. 764 */ 765 if (blk_sorted_rq(rq)) 766 elv_activate_rq(q, rq); 767 768 /* 769 * just mark as started even if we don't start 770 * it, a request that has been delayed should 771 * not be passed by new incoming requests 772 */ 773 rq->cmd_flags |= REQ_STARTED; 774 trace_block_rq_issue(q, rq); 775 } 776 777 if (!q->boundary_rq || q->boundary_rq == rq) { 778 q->end_sector = rq_end_sector(rq); 779 q->boundary_rq = NULL; 780 } 781 782 if (rq->cmd_flags & REQ_DONTPREP) 783 break; 784 785 if (q->dma_drain_size && rq->data_len) { 786 /* 787 * make sure space for the drain appears we 788 * know we can do this because max_hw_segments 789 * has been adjusted to be one fewer than the 790 * device can handle 791 */ 792 rq->nr_phys_segments++; 793 } 794 795 if (!q->prep_rq_fn) 796 break; 797 798 ret = q->prep_rq_fn(q, rq); 799 if (ret == BLKPREP_OK) { 800 break; 801 } else if (ret == BLKPREP_DEFER) { 802 /* 803 * the request may have been (partially) prepped. 804 * we need to keep this request in the front to 805 * avoid resource deadlock. REQ_STARTED will 806 * prevent other fs requests from passing this one. 807 */ 808 if (q->dma_drain_size && rq->data_len && 809 !(rq->cmd_flags & REQ_DONTPREP)) { 810 /* 811 * remove the space for the drain we added 812 * so that we don't add it again 813 */ 814 --rq->nr_phys_segments; 815 } 816 817 rq = NULL; 818 break; 819 } else if (ret == BLKPREP_KILL) { 820 rq->cmd_flags |= REQ_QUIET; 821 __blk_end_request(rq, -EIO, blk_rq_bytes(rq)); 822 } else { 823 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 824 break; 825 } 826 } 827 828 return rq; 829 } 830 EXPORT_SYMBOL(elv_next_request); 831 832 void elv_dequeue_request(struct request_queue *q, struct request *rq) 833 { 834 BUG_ON(list_empty(&rq->queuelist)); 835 BUG_ON(ELV_ON_HASH(rq)); 836 837 list_del_init(&rq->queuelist); 838 839 /* 840 * the time frame between a request being removed from the lists 841 * and to it is freed is accounted as io that is in progress at 842 * the driver side. 843 */ 844 if (blk_account_rq(rq)) 845 q->in_flight++; 846 } 847 848 int elv_queue_empty(struct request_queue *q) 849 { 850 struct elevator_queue *e = q->elevator; 851 852 if (!list_empty(&q->queue_head)) 853 return 0; 854 855 if (e->ops->elevator_queue_empty_fn) 856 return e->ops->elevator_queue_empty_fn(q); 857 858 return 1; 859 } 860 EXPORT_SYMBOL(elv_queue_empty); 861 862 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 863 { 864 struct elevator_queue *e = q->elevator; 865 866 if (e->ops->elevator_latter_req_fn) 867 return e->ops->elevator_latter_req_fn(q, rq); 868 return NULL; 869 } 870 871 struct request *elv_former_request(struct request_queue *q, struct request *rq) 872 { 873 struct elevator_queue *e = q->elevator; 874 875 if (e->ops->elevator_former_req_fn) 876 return e->ops->elevator_former_req_fn(q, rq); 877 return NULL; 878 } 879 880 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 881 { 882 struct elevator_queue *e = q->elevator; 883 884 if (e->ops->elevator_set_req_fn) 885 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 886 887 rq->elevator_private = NULL; 888 return 0; 889 } 890 891 void elv_put_request(struct request_queue *q, struct request *rq) 892 { 893 struct elevator_queue *e = q->elevator; 894 895 if (e->ops->elevator_put_req_fn) 896 e->ops->elevator_put_req_fn(rq); 897 } 898 899 int elv_may_queue(struct request_queue *q, int rw) 900 { 901 struct elevator_queue *e = q->elevator; 902 903 if (e->ops->elevator_may_queue_fn) 904 return e->ops->elevator_may_queue_fn(q, rw); 905 906 return ELV_MQUEUE_MAY; 907 } 908 909 void elv_abort_queue(struct request_queue *q) 910 { 911 struct request *rq; 912 913 while (!list_empty(&q->queue_head)) { 914 rq = list_entry_rq(q->queue_head.next); 915 rq->cmd_flags |= REQ_QUIET; 916 trace_block_rq_abort(q, rq); 917 __blk_end_request(rq, -EIO, blk_rq_bytes(rq)); 918 } 919 } 920 EXPORT_SYMBOL(elv_abort_queue); 921 922 void elv_completed_request(struct request_queue *q, struct request *rq) 923 { 924 struct elevator_queue *e = q->elevator; 925 926 /* 927 * request is released from the driver, io must be done 928 */ 929 if (blk_account_rq(rq)) { 930 q->in_flight--; 931 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 932 e->ops->elevator_completed_req_fn(q, rq); 933 } 934 935 /* 936 * Check if the queue is waiting for fs requests to be 937 * drained for flush sequence. 938 */ 939 if (unlikely(q->ordseq)) { 940 struct request *next = NULL; 941 942 if (!list_empty(&q->queue_head)) 943 next = list_entry_rq(q->queue_head.next); 944 945 if (!q->in_flight && 946 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 947 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) { 948 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 949 blk_start_queueing(q); 950 } 951 } 952 } 953 954 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 955 956 static ssize_t 957 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 958 { 959 struct elv_fs_entry *entry = to_elv(attr); 960 struct elevator_queue *e; 961 ssize_t error; 962 963 if (!entry->show) 964 return -EIO; 965 966 e = container_of(kobj, struct elevator_queue, kobj); 967 mutex_lock(&e->sysfs_lock); 968 error = e->ops ? entry->show(e, page) : -ENOENT; 969 mutex_unlock(&e->sysfs_lock); 970 return error; 971 } 972 973 static ssize_t 974 elv_attr_store(struct kobject *kobj, struct attribute *attr, 975 const char *page, size_t length) 976 { 977 struct elv_fs_entry *entry = to_elv(attr); 978 struct elevator_queue *e; 979 ssize_t error; 980 981 if (!entry->store) 982 return -EIO; 983 984 e = container_of(kobj, struct elevator_queue, kobj); 985 mutex_lock(&e->sysfs_lock); 986 error = e->ops ? entry->store(e, page, length) : -ENOENT; 987 mutex_unlock(&e->sysfs_lock); 988 return error; 989 } 990 991 static struct sysfs_ops elv_sysfs_ops = { 992 .show = elv_attr_show, 993 .store = elv_attr_store, 994 }; 995 996 static struct kobj_type elv_ktype = { 997 .sysfs_ops = &elv_sysfs_ops, 998 .release = elevator_release, 999 }; 1000 1001 int elv_register_queue(struct request_queue *q) 1002 { 1003 struct elevator_queue *e = q->elevator; 1004 int error; 1005 1006 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 1007 if (!error) { 1008 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 1009 if (attr) { 1010 while (attr->attr.name) { 1011 if (sysfs_create_file(&e->kobj, &attr->attr)) 1012 break; 1013 attr++; 1014 } 1015 } 1016 kobject_uevent(&e->kobj, KOBJ_ADD); 1017 } 1018 return error; 1019 } 1020 1021 static void __elv_unregister_queue(struct elevator_queue *e) 1022 { 1023 kobject_uevent(&e->kobj, KOBJ_REMOVE); 1024 kobject_del(&e->kobj); 1025 } 1026 1027 void elv_unregister_queue(struct request_queue *q) 1028 { 1029 if (q) 1030 __elv_unregister_queue(q->elevator); 1031 } 1032 1033 void elv_register(struct elevator_type *e) 1034 { 1035 char *def = ""; 1036 1037 spin_lock(&elv_list_lock); 1038 BUG_ON(elevator_find(e->elevator_name)); 1039 list_add_tail(&e->list, &elv_list); 1040 spin_unlock(&elv_list_lock); 1041 1042 if (!strcmp(e->elevator_name, chosen_elevator) || 1043 (!*chosen_elevator && 1044 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 1045 def = " (default)"; 1046 1047 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 1048 def); 1049 } 1050 EXPORT_SYMBOL_GPL(elv_register); 1051 1052 void elv_unregister(struct elevator_type *e) 1053 { 1054 struct task_struct *g, *p; 1055 1056 /* 1057 * Iterate every thread in the process to remove the io contexts. 1058 */ 1059 if (e->ops.trim) { 1060 read_lock(&tasklist_lock); 1061 do_each_thread(g, p) { 1062 task_lock(p); 1063 if (p->io_context) 1064 e->ops.trim(p->io_context); 1065 task_unlock(p); 1066 } while_each_thread(g, p); 1067 read_unlock(&tasklist_lock); 1068 } 1069 1070 spin_lock(&elv_list_lock); 1071 list_del_init(&e->list); 1072 spin_unlock(&elv_list_lock); 1073 } 1074 EXPORT_SYMBOL_GPL(elv_unregister); 1075 1076 /* 1077 * switch to new_e io scheduler. be careful not to introduce deadlocks - 1078 * we don't free the old io scheduler, before we have allocated what we 1079 * need for the new one. this way we have a chance of going back to the old 1080 * one, if the new one fails init for some reason. 1081 */ 1082 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 1083 { 1084 struct elevator_queue *old_elevator, *e; 1085 void *data; 1086 1087 /* 1088 * Allocate new elevator 1089 */ 1090 e = elevator_alloc(q, new_e); 1091 if (!e) 1092 return 0; 1093 1094 data = elevator_init_queue(q, e); 1095 if (!data) { 1096 kobject_put(&e->kobj); 1097 return 0; 1098 } 1099 1100 /* 1101 * Turn on BYPASS and drain all requests w/ elevator private data 1102 */ 1103 spin_lock_irq(q->queue_lock); 1104 1105 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 1106 1107 elv_drain_elevator(q); 1108 1109 while (q->rq.elvpriv) { 1110 blk_start_queueing(q); 1111 spin_unlock_irq(q->queue_lock); 1112 msleep(10); 1113 spin_lock_irq(q->queue_lock); 1114 elv_drain_elevator(q); 1115 } 1116 1117 /* 1118 * Remember old elevator. 1119 */ 1120 old_elevator = q->elevator; 1121 1122 /* 1123 * attach and start new elevator 1124 */ 1125 elevator_attach(q, e, data); 1126 1127 spin_unlock_irq(q->queue_lock); 1128 1129 __elv_unregister_queue(old_elevator); 1130 1131 if (elv_register_queue(q)) 1132 goto fail_register; 1133 1134 /* 1135 * finally exit old elevator and turn off BYPASS. 1136 */ 1137 elevator_exit(old_elevator); 1138 spin_lock_irq(q->queue_lock); 1139 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1140 spin_unlock_irq(q->queue_lock); 1141 1142 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1143 1144 return 1; 1145 1146 fail_register: 1147 /* 1148 * switch failed, exit the new io scheduler and reattach the old 1149 * one again (along with re-adding the sysfs dir) 1150 */ 1151 elevator_exit(e); 1152 q->elevator = old_elevator; 1153 elv_register_queue(q); 1154 1155 spin_lock_irq(q->queue_lock); 1156 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1157 spin_unlock_irq(q->queue_lock); 1158 1159 return 0; 1160 } 1161 1162 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1163 size_t count) 1164 { 1165 char elevator_name[ELV_NAME_MAX]; 1166 struct elevator_type *e; 1167 1168 strlcpy(elevator_name, name, sizeof(elevator_name)); 1169 strstrip(elevator_name); 1170 1171 e = elevator_get(elevator_name); 1172 if (!e) { 1173 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1174 return -EINVAL; 1175 } 1176 1177 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1178 elevator_put(e); 1179 return count; 1180 } 1181 1182 if (!elevator_switch(q, e)) 1183 printk(KERN_ERR "elevator: switch to %s failed\n", 1184 elevator_name); 1185 return count; 1186 } 1187 1188 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1189 { 1190 struct elevator_queue *e = q->elevator; 1191 struct elevator_type *elv = e->elevator_type; 1192 struct elevator_type *__e; 1193 int len = 0; 1194 1195 spin_lock(&elv_list_lock); 1196 list_for_each_entry(__e, &elv_list, list) { 1197 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1198 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1199 else 1200 len += sprintf(name+len, "%s ", __e->elevator_name); 1201 } 1202 spin_unlock(&elv_list_lock); 1203 1204 len += sprintf(len+name, "\n"); 1205 return len; 1206 } 1207 1208 struct request *elv_rb_former_request(struct request_queue *q, 1209 struct request *rq) 1210 { 1211 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1212 1213 if (rbprev) 1214 return rb_entry_rq(rbprev); 1215 1216 return NULL; 1217 } 1218 EXPORT_SYMBOL(elv_rb_former_request); 1219 1220 struct request *elv_rb_latter_request(struct request_queue *q, 1221 struct request *rq) 1222 { 1223 struct rb_node *rbnext = rb_next(&rq->rb_node); 1224 1225 if (rbnext) 1226 return rb_entry_rq(rbnext); 1227 1228 return NULL; 1229 } 1230 EXPORT_SYMBOL(elv_rb_latter_request); 1231