xref: /openbmc/linux/block/elevator.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <trace/block.h>
37 #include <linux/hash.h>
38 #include <linux/uaccess.h>
39 
40 #include "blk.h"
41 
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
44 
45 DEFINE_TRACE(block_rq_abort);
46 
47 /*
48  * Merge hash stuff.
49  */
50 static const int elv_hash_shift = 6;
51 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
52 #define ELV_HASH_FN(sec)	\
53 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
54 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
55 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
56 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
57 
58 DEFINE_TRACE(block_rq_insert);
59 DEFINE_TRACE(block_rq_issue);
60 
61 /*
62  * Query io scheduler to see if the current process issuing bio may be
63  * merged with rq.
64  */
65 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
66 {
67 	struct request_queue *q = rq->q;
68 	struct elevator_queue *e = q->elevator;
69 
70 	if (e->ops->elevator_allow_merge_fn)
71 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
72 
73 	return 1;
74 }
75 
76 /*
77  * can we safely merge with this request?
78  */
79 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
80 {
81 	if (!rq_mergeable(rq))
82 		return 0;
83 
84 	/*
85 	 * Don't merge file system requests and discard requests
86 	 */
87 	if (bio_discard(bio) != bio_discard(rq->bio))
88 		return 0;
89 
90 	/*
91 	 * different data direction or already started, don't merge
92 	 */
93 	if (bio_data_dir(bio) != rq_data_dir(rq))
94 		return 0;
95 
96 	/*
97 	 * must be same device and not a special request
98 	 */
99 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
100 		return 0;
101 
102 	/*
103 	 * only merge integrity protected bio into ditto rq
104 	 */
105 	if (bio_integrity(bio) != blk_integrity_rq(rq))
106 		return 0;
107 
108 	if (!elv_iosched_allow_merge(rq, bio))
109 		return 0;
110 
111 	return 1;
112 }
113 EXPORT_SYMBOL(elv_rq_merge_ok);
114 
115 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
116 {
117 	int ret = ELEVATOR_NO_MERGE;
118 
119 	/*
120 	 * we can merge and sequence is ok, check if it's possible
121 	 */
122 	if (elv_rq_merge_ok(__rq, bio)) {
123 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
124 			ret = ELEVATOR_BACK_MERGE;
125 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
126 			ret = ELEVATOR_FRONT_MERGE;
127 	}
128 
129 	return ret;
130 }
131 
132 static struct elevator_type *elevator_find(const char *name)
133 {
134 	struct elevator_type *e;
135 
136 	list_for_each_entry(e, &elv_list, list) {
137 		if (!strcmp(e->elevator_name, name))
138 			return e;
139 	}
140 
141 	return NULL;
142 }
143 
144 static void elevator_put(struct elevator_type *e)
145 {
146 	module_put(e->elevator_owner);
147 }
148 
149 static struct elevator_type *elevator_get(const char *name)
150 {
151 	struct elevator_type *e;
152 
153 	spin_lock(&elv_list_lock);
154 
155 	e = elevator_find(name);
156 	if (!e) {
157 		char elv[ELV_NAME_MAX + strlen("-iosched")];
158 
159 		spin_unlock(&elv_list_lock);
160 
161 		if (!strcmp(name, "anticipatory"))
162 			sprintf(elv, "as-iosched");
163 		else
164 			sprintf(elv, "%s-iosched", name);
165 
166 		request_module("%s", elv);
167 		spin_lock(&elv_list_lock);
168 		e = elevator_find(name);
169 	}
170 
171 	if (e && !try_module_get(e->elevator_owner))
172 		e = NULL;
173 
174 	spin_unlock(&elv_list_lock);
175 
176 	return e;
177 }
178 
179 static void *elevator_init_queue(struct request_queue *q,
180 				 struct elevator_queue *eq)
181 {
182 	return eq->ops->elevator_init_fn(q);
183 }
184 
185 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
186 			   void *data)
187 {
188 	q->elevator = eq;
189 	eq->elevator_data = data;
190 }
191 
192 static char chosen_elevator[16];
193 
194 static int __init elevator_setup(char *str)
195 {
196 	/*
197 	 * Be backwards-compatible with previous kernels, so users
198 	 * won't get the wrong elevator.
199 	 */
200 	if (!strcmp(str, "as"))
201 		strcpy(chosen_elevator, "anticipatory");
202 	else
203 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
204 	return 1;
205 }
206 
207 __setup("elevator=", elevator_setup);
208 
209 static struct kobj_type elv_ktype;
210 
211 static struct elevator_queue *elevator_alloc(struct request_queue *q,
212 				  struct elevator_type *e)
213 {
214 	struct elevator_queue *eq;
215 	int i;
216 
217 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
218 	if (unlikely(!eq))
219 		goto err;
220 
221 	eq->ops = &e->ops;
222 	eq->elevator_type = e;
223 	kobject_init(&eq->kobj, &elv_ktype);
224 	mutex_init(&eq->sysfs_lock);
225 
226 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
227 					GFP_KERNEL, q->node);
228 	if (!eq->hash)
229 		goto err;
230 
231 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
232 		INIT_HLIST_HEAD(&eq->hash[i]);
233 
234 	return eq;
235 err:
236 	kfree(eq);
237 	elevator_put(e);
238 	return NULL;
239 }
240 
241 static void elevator_release(struct kobject *kobj)
242 {
243 	struct elevator_queue *e;
244 
245 	e = container_of(kobj, struct elevator_queue, kobj);
246 	elevator_put(e->elevator_type);
247 	kfree(e->hash);
248 	kfree(e);
249 }
250 
251 int elevator_init(struct request_queue *q, char *name)
252 {
253 	struct elevator_type *e = NULL;
254 	struct elevator_queue *eq;
255 	int ret = 0;
256 	void *data;
257 
258 	INIT_LIST_HEAD(&q->queue_head);
259 	q->last_merge = NULL;
260 	q->end_sector = 0;
261 	q->boundary_rq = NULL;
262 
263 	if (name) {
264 		e = elevator_get(name);
265 		if (!e)
266 			return -EINVAL;
267 	}
268 
269 	if (!e && *chosen_elevator) {
270 		e = elevator_get(chosen_elevator);
271 		if (!e)
272 			printk(KERN_ERR "I/O scheduler %s not found\n",
273 							chosen_elevator);
274 	}
275 
276 	if (!e) {
277 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
278 		if (!e) {
279 			printk(KERN_ERR
280 				"Default I/O scheduler not found. " \
281 				"Using noop.\n");
282 			e = elevator_get("noop");
283 		}
284 	}
285 
286 	eq = elevator_alloc(q, e);
287 	if (!eq)
288 		return -ENOMEM;
289 
290 	data = elevator_init_queue(q, eq);
291 	if (!data) {
292 		kobject_put(&eq->kobj);
293 		return -ENOMEM;
294 	}
295 
296 	elevator_attach(q, eq, data);
297 	return ret;
298 }
299 EXPORT_SYMBOL(elevator_init);
300 
301 void elevator_exit(struct elevator_queue *e)
302 {
303 	mutex_lock(&e->sysfs_lock);
304 	if (e->ops->elevator_exit_fn)
305 		e->ops->elevator_exit_fn(e);
306 	e->ops = NULL;
307 	mutex_unlock(&e->sysfs_lock);
308 
309 	kobject_put(&e->kobj);
310 }
311 EXPORT_SYMBOL(elevator_exit);
312 
313 static void elv_activate_rq(struct request_queue *q, struct request *rq)
314 {
315 	struct elevator_queue *e = q->elevator;
316 
317 	if (e->ops->elevator_activate_req_fn)
318 		e->ops->elevator_activate_req_fn(q, rq);
319 }
320 
321 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
322 {
323 	struct elevator_queue *e = q->elevator;
324 
325 	if (e->ops->elevator_deactivate_req_fn)
326 		e->ops->elevator_deactivate_req_fn(q, rq);
327 }
328 
329 static inline void __elv_rqhash_del(struct request *rq)
330 {
331 	hlist_del_init(&rq->hash);
332 }
333 
334 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
335 {
336 	if (ELV_ON_HASH(rq))
337 		__elv_rqhash_del(rq);
338 }
339 
340 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
341 {
342 	struct elevator_queue *e = q->elevator;
343 
344 	BUG_ON(ELV_ON_HASH(rq));
345 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
346 }
347 
348 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
349 {
350 	__elv_rqhash_del(rq);
351 	elv_rqhash_add(q, rq);
352 }
353 
354 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
355 {
356 	struct elevator_queue *e = q->elevator;
357 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
358 	struct hlist_node *entry, *next;
359 	struct request *rq;
360 
361 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
362 		BUG_ON(!ELV_ON_HASH(rq));
363 
364 		if (unlikely(!rq_mergeable(rq))) {
365 			__elv_rqhash_del(rq);
366 			continue;
367 		}
368 
369 		if (rq_hash_key(rq) == offset)
370 			return rq;
371 	}
372 
373 	return NULL;
374 }
375 
376 /*
377  * RB-tree support functions for inserting/lookup/removal of requests
378  * in a sorted RB tree.
379  */
380 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
381 {
382 	struct rb_node **p = &root->rb_node;
383 	struct rb_node *parent = NULL;
384 	struct request *__rq;
385 
386 	while (*p) {
387 		parent = *p;
388 		__rq = rb_entry(parent, struct request, rb_node);
389 
390 		if (rq->sector < __rq->sector)
391 			p = &(*p)->rb_left;
392 		else if (rq->sector > __rq->sector)
393 			p = &(*p)->rb_right;
394 		else
395 			return __rq;
396 	}
397 
398 	rb_link_node(&rq->rb_node, parent, p);
399 	rb_insert_color(&rq->rb_node, root);
400 	return NULL;
401 }
402 EXPORT_SYMBOL(elv_rb_add);
403 
404 void elv_rb_del(struct rb_root *root, struct request *rq)
405 {
406 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
407 	rb_erase(&rq->rb_node, root);
408 	RB_CLEAR_NODE(&rq->rb_node);
409 }
410 EXPORT_SYMBOL(elv_rb_del);
411 
412 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
413 {
414 	struct rb_node *n = root->rb_node;
415 	struct request *rq;
416 
417 	while (n) {
418 		rq = rb_entry(n, struct request, rb_node);
419 
420 		if (sector < rq->sector)
421 			n = n->rb_left;
422 		else if (sector > rq->sector)
423 			n = n->rb_right;
424 		else
425 			return rq;
426 	}
427 
428 	return NULL;
429 }
430 EXPORT_SYMBOL(elv_rb_find);
431 
432 /*
433  * Insert rq into dispatch queue of q.  Queue lock must be held on
434  * entry.  rq is sort instead into the dispatch queue. To be used by
435  * specific elevators.
436  */
437 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
438 {
439 	sector_t boundary;
440 	struct list_head *entry;
441 	int stop_flags;
442 
443 	if (q->last_merge == rq)
444 		q->last_merge = NULL;
445 
446 	elv_rqhash_del(q, rq);
447 
448 	q->nr_sorted--;
449 
450 	boundary = q->end_sector;
451 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
452 	list_for_each_prev(entry, &q->queue_head) {
453 		struct request *pos = list_entry_rq(entry);
454 
455 		if (blk_discard_rq(rq) != blk_discard_rq(pos))
456 			break;
457 		if (rq_data_dir(rq) != rq_data_dir(pos))
458 			break;
459 		if (pos->cmd_flags & stop_flags)
460 			break;
461 		if (rq->sector >= boundary) {
462 			if (pos->sector < boundary)
463 				continue;
464 		} else {
465 			if (pos->sector >= boundary)
466 				break;
467 		}
468 		if (rq->sector >= pos->sector)
469 			break;
470 	}
471 
472 	list_add(&rq->queuelist, entry);
473 }
474 EXPORT_SYMBOL(elv_dispatch_sort);
475 
476 /*
477  * Insert rq into dispatch queue of q.  Queue lock must be held on
478  * entry.  rq is added to the back of the dispatch queue. To be used by
479  * specific elevators.
480  */
481 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
482 {
483 	if (q->last_merge == rq)
484 		q->last_merge = NULL;
485 
486 	elv_rqhash_del(q, rq);
487 
488 	q->nr_sorted--;
489 
490 	q->end_sector = rq_end_sector(rq);
491 	q->boundary_rq = rq;
492 	list_add_tail(&rq->queuelist, &q->queue_head);
493 }
494 EXPORT_SYMBOL(elv_dispatch_add_tail);
495 
496 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
497 {
498 	struct elevator_queue *e = q->elevator;
499 	struct request *__rq;
500 	int ret;
501 
502 	/*
503 	 * First try one-hit cache.
504 	 */
505 	if (q->last_merge) {
506 		ret = elv_try_merge(q->last_merge, bio);
507 		if (ret != ELEVATOR_NO_MERGE) {
508 			*req = q->last_merge;
509 			return ret;
510 		}
511 	}
512 
513 	if (blk_queue_nomerges(q))
514 		return ELEVATOR_NO_MERGE;
515 
516 	/*
517 	 * See if our hash lookup can find a potential backmerge.
518 	 */
519 	__rq = elv_rqhash_find(q, bio->bi_sector);
520 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
521 		*req = __rq;
522 		return ELEVATOR_BACK_MERGE;
523 	}
524 
525 	if (e->ops->elevator_merge_fn)
526 		return e->ops->elevator_merge_fn(q, req, bio);
527 
528 	return ELEVATOR_NO_MERGE;
529 }
530 
531 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
532 {
533 	struct elevator_queue *e = q->elevator;
534 
535 	if (e->ops->elevator_merged_fn)
536 		e->ops->elevator_merged_fn(q, rq, type);
537 
538 	if (type == ELEVATOR_BACK_MERGE)
539 		elv_rqhash_reposition(q, rq);
540 
541 	q->last_merge = rq;
542 }
543 
544 void elv_merge_requests(struct request_queue *q, struct request *rq,
545 			     struct request *next)
546 {
547 	struct elevator_queue *e = q->elevator;
548 
549 	if (e->ops->elevator_merge_req_fn)
550 		e->ops->elevator_merge_req_fn(q, rq, next);
551 
552 	elv_rqhash_reposition(q, rq);
553 	elv_rqhash_del(q, next);
554 
555 	q->nr_sorted--;
556 	q->last_merge = rq;
557 }
558 
559 void elv_requeue_request(struct request_queue *q, struct request *rq)
560 {
561 	/*
562 	 * it already went through dequeue, we need to decrement the
563 	 * in_flight count again
564 	 */
565 	if (blk_account_rq(rq)) {
566 		q->in_flight--;
567 		if (blk_sorted_rq(rq))
568 			elv_deactivate_rq(q, rq);
569 	}
570 
571 	rq->cmd_flags &= ~REQ_STARTED;
572 
573 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
574 }
575 
576 static void elv_drain_elevator(struct request_queue *q)
577 {
578 	static int printed;
579 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
580 		;
581 	if (q->nr_sorted == 0)
582 		return;
583 	if (printed++ < 10) {
584 		printk(KERN_ERR "%s: forced dispatching is broken "
585 		       "(nr_sorted=%u), please report this\n",
586 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
587 	}
588 }
589 
590 void elv_insert(struct request_queue *q, struct request *rq, int where)
591 {
592 	struct list_head *pos;
593 	unsigned ordseq;
594 	int unplug_it = 1;
595 
596 	trace_block_rq_insert(q, rq);
597 
598 	rq->q = q;
599 
600 	switch (where) {
601 	case ELEVATOR_INSERT_FRONT:
602 		rq->cmd_flags |= REQ_SOFTBARRIER;
603 
604 		list_add(&rq->queuelist, &q->queue_head);
605 		break;
606 
607 	case ELEVATOR_INSERT_BACK:
608 		rq->cmd_flags |= REQ_SOFTBARRIER;
609 		elv_drain_elevator(q);
610 		list_add_tail(&rq->queuelist, &q->queue_head);
611 		/*
612 		 * We kick the queue here for the following reasons.
613 		 * - The elevator might have returned NULL previously
614 		 *   to delay requests and returned them now.  As the
615 		 *   queue wasn't empty before this request, ll_rw_blk
616 		 *   won't run the queue on return, resulting in hang.
617 		 * - Usually, back inserted requests won't be merged
618 		 *   with anything.  There's no point in delaying queue
619 		 *   processing.
620 		 */
621 		blk_remove_plug(q);
622 		blk_start_queueing(q);
623 		break;
624 
625 	case ELEVATOR_INSERT_SORT:
626 		BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
627 		rq->cmd_flags |= REQ_SORTED;
628 		q->nr_sorted++;
629 		if (rq_mergeable(rq)) {
630 			elv_rqhash_add(q, rq);
631 			if (!q->last_merge)
632 				q->last_merge = rq;
633 		}
634 
635 		/*
636 		 * Some ioscheds (cfq) run q->request_fn directly, so
637 		 * rq cannot be accessed after calling
638 		 * elevator_add_req_fn.
639 		 */
640 		q->elevator->ops->elevator_add_req_fn(q, rq);
641 		break;
642 
643 	case ELEVATOR_INSERT_REQUEUE:
644 		/*
645 		 * If ordered flush isn't in progress, we do front
646 		 * insertion; otherwise, requests should be requeued
647 		 * in ordseq order.
648 		 */
649 		rq->cmd_flags |= REQ_SOFTBARRIER;
650 
651 		/*
652 		 * Most requeues happen because of a busy condition,
653 		 * don't force unplug of the queue for that case.
654 		 */
655 		unplug_it = 0;
656 
657 		if (q->ordseq == 0) {
658 			list_add(&rq->queuelist, &q->queue_head);
659 			break;
660 		}
661 
662 		ordseq = blk_ordered_req_seq(rq);
663 
664 		list_for_each(pos, &q->queue_head) {
665 			struct request *pos_rq = list_entry_rq(pos);
666 			if (ordseq <= blk_ordered_req_seq(pos_rq))
667 				break;
668 		}
669 
670 		list_add_tail(&rq->queuelist, pos);
671 		break;
672 
673 	default:
674 		printk(KERN_ERR "%s: bad insertion point %d\n",
675 		       __func__, where);
676 		BUG();
677 	}
678 
679 	if (unplug_it && blk_queue_plugged(q)) {
680 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
681 			- q->in_flight;
682 
683 		if (nrq >= q->unplug_thresh)
684 			__generic_unplug_device(q);
685 	}
686 }
687 
688 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
689 		       int plug)
690 {
691 	if (q->ordcolor)
692 		rq->cmd_flags |= REQ_ORDERED_COLOR;
693 
694 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
695 		/*
696 		 * toggle ordered color
697 		 */
698 		if (blk_barrier_rq(rq))
699 			q->ordcolor ^= 1;
700 
701 		/*
702 		 * barriers implicitly indicate back insertion
703 		 */
704 		if (where == ELEVATOR_INSERT_SORT)
705 			where = ELEVATOR_INSERT_BACK;
706 
707 		/*
708 		 * this request is scheduling boundary, update
709 		 * end_sector
710 		 */
711 		if (blk_fs_request(rq) || blk_discard_rq(rq)) {
712 			q->end_sector = rq_end_sector(rq);
713 			q->boundary_rq = rq;
714 		}
715 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
716 		    where == ELEVATOR_INSERT_SORT)
717 		where = ELEVATOR_INSERT_BACK;
718 
719 	if (plug)
720 		blk_plug_device(q);
721 
722 	elv_insert(q, rq, where);
723 }
724 EXPORT_SYMBOL(__elv_add_request);
725 
726 void elv_add_request(struct request_queue *q, struct request *rq, int where,
727 		     int plug)
728 {
729 	unsigned long flags;
730 
731 	spin_lock_irqsave(q->queue_lock, flags);
732 	__elv_add_request(q, rq, where, plug);
733 	spin_unlock_irqrestore(q->queue_lock, flags);
734 }
735 EXPORT_SYMBOL(elv_add_request);
736 
737 static inline struct request *__elv_next_request(struct request_queue *q)
738 {
739 	struct request *rq;
740 
741 	while (1) {
742 		while (!list_empty(&q->queue_head)) {
743 			rq = list_entry_rq(q->queue_head.next);
744 			if (blk_do_ordered(q, &rq))
745 				return rq;
746 		}
747 
748 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
749 			return NULL;
750 	}
751 }
752 
753 struct request *elv_next_request(struct request_queue *q)
754 {
755 	struct request *rq;
756 	int ret;
757 
758 	while ((rq = __elv_next_request(q)) != NULL) {
759 		if (!(rq->cmd_flags & REQ_STARTED)) {
760 			/*
761 			 * This is the first time the device driver
762 			 * sees this request (possibly after
763 			 * requeueing).  Notify IO scheduler.
764 			 */
765 			if (blk_sorted_rq(rq))
766 				elv_activate_rq(q, rq);
767 
768 			/*
769 			 * just mark as started even if we don't start
770 			 * it, a request that has been delayed should
771 			 * not be passed by new incoming requests
772 			 */
773 			rq->cmd_flags |= REQ_STARTED;
774 			trace_block_rq_issue(q, rq);
775 		}
776 
777 		if (!q->boundary_rq || q->boundary_rq == rq) {
778 			q->end_sector = rq_end_sector(rq);
779 			q->boundary_rq = NULL;
780 		}
781 
782 		if (rq->cmd_flags & REQ_DONTPREP)
783 			break;
784 
785 		if (q->dma_drain_size && rq->data_len) {
786 			/*
787 			 * make sure space for the drain appears we
788 			 * know we can do this because max_hw_segments
789 			 * has been adjusted to be one fewer than the
790 			 * device can handle
791 			 */
792 			rq->nr_phys_segments++;
793 		}
794 
795 		if (!q->prep_rq_fn)
796 			break;
797 
798 		ret = q->prep_rq_fn(q, rq);
799 		if (ret == BLKPREP_OK) {
800 			break;
801 		} else if (ret == BLKPREP_DEFER) {
802 			/*
803 			 * the request may have been (partially) prepped.
804 			 * we need to keep this request in the front to
805 			 * avoid resource deadlock.  REQ_STARTED will
806 			 * prevent other fs requests from passing this one.
807 			 */
808 			if (q->dma_drain_size && rq->data_len &&
809 			    !(rq->cmd_flags & REQ_DONTPREP)) {
810 				/*
811 				 * remove the space for the drain we added
812 				 * so that we don't add it again
813 				 */
814 				--rq->nr_phys_segments;
815 			}
816 
817 			rq = NULL;
818 			break;
819 		} else if (ret == BLKPREP_KILL) {
820 			rq->cmd_flags |= REQ_QUIET;
821 			__blk_end_request(rq, -EIO, blk_rq_bytes(rq));
822 		} else {
823 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
824 			break;
825 		}
826 	}
827 
828 	return rq;
829 }
830 EXPORT_SYMBOL(elv_next_request);
831 
832 void elv_dequeue_request(struct request_queue *q, struct request *rq)
833 {
834 	BUG_ON(list_empty(&rq->queuelist));
835 	BUG_ON(ELV_ON_HASH(rq));
836 
837 	list_del_init(&rq->queuelist);
838 
839 	/*
840 	 * the time frame between a request being removed from the lists
841 	 * and to it is freed is accounted as io that is in progress at
842 	 * the driver side.
843 	 */
844 	if (blk_account_rq(rq))
845 		q->in_flight++;
846 }
847 
848 int elv_queue_empty(struct request_queue *q)
849 {
850 	struct elevator_queue *e = q->elevator;
851 
852 	if (!list_empty(&q->queue_head))
853 		return 0;
854 
855 	if (e->ops->elevator_queue_empty_fn)
856 		return e->ops->elevator_queue_empty_fn(q);
857 
858 	return 1;
859 }
860 EXPORT_SYMBOL(elv_queue_empty);
861 
862 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
863 {
864 	struct elevator_queue *e = q->elevator;
865 
866 	if (e->ops->elevator_latter_req_fn)
867 		return e->ops->elevator_latter_req_fn(q, rq);
868 	return NULL;
869 }
870 
871 struct request *elv_former_request(struct request_queue *q, struct request *rq)
872 {
873 	struct elevator_queue *e = q->elevator;
874 
875 	if (e->ops->elevator_former_req_fn)
876 		return e->ops->elevator_former_req_fn(q, rq);
877 	return NULL;
878 }
879 
880 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
881 {
882 	struct elevator_queue *e = q->elevator;
883 
884 	if (e->ops->elevator_set_req_fn)
885 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
886 
887 	rq->elevator_private = NULL;
888 	return 0;
889 }
890 
891 void elv_put_request(struct request_queue *q, struct request *rq)
892 {
893 	struct elevator_queue *e = q->elevator;
894 
895 	if (e->ops->elevator_put_req_fn)
896 		e->ops->elevator_put_req_fn(rq);
897 }
898 
899 int elv_may_queue(struct request_queue *q, int rw)
900 {
901 	struct elevator_queue *e = q->elevator;
902 
903 	if (e->ops->elevator_may_queue_fn)
904 		return e->ops->elevator_may_queue_fn(q, rw);
905 
906 	return ELV_MQUEUE_MAY;
907 }
908 
909 void elv_abort_queue(struct request_queue *q)
910 {
911 	struct request *rq;
912 
913 	while (!list_empty(&q->queue_head)) {
914 		rq = list_entry_rq(q->queue_head.next);
915 		rq->cmd_flags |= REQ_QUIET;
916 		trace_block_rq_abort(q, rq);
917 		__blk_end_request(rq, -EIO, blk_rq_bytes(rq));
918 	}
919 }
920 EXPORT_SYMBOL(elv_abort_queue);
921 
922 void elv_completed_request(struct request_queue *q, struct request *rq)
923 {
924 	struct elevator_queue *e = q->elevator;
925 
926 	/*
927 	 * request is released from the driver, io must be done
928 	 */
929 	if (blk_account_rq(rq)) {
930 		q->in_flight--;
931 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
932 			e->ops->elevator_completed_req_fn(q, rq);
933 	}
934 
935 	/*
936 	 * Check if the queue is waiting for fs requests to be
937 	 * drained for flush sequence.
938 	 */
939 	if (unlikely(q->ordseq)) {
940 		struct request *next = NULL;
941 
942 		if (!list_empty(&q->queue_head))
943 			next = list_entry_rq(q->queue_head.next);
944 
945 		if (!q->in_flight &&
946 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
947 		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
948 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
949 			blk_start_queueing(q);
950 		}
951 	}
952 }
953 
954 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
955 
956 static ssize_t
957 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
958 {
959 	struct elv_fs_entry *entry = to_elv(attr);
960 	struct elevator_queue *e;
961 	ssize_t error;
962 
963 	if (!entry->show)
964 		return -EIO;
965 
966 	e = container_of(kobj, struct elevator_queue, kobj);
967 	mutex_lock(&e->sysfs_lock);
968 	error = e->ops ? entry->show(e, page) : -ENOENT;
969 	mutex_unlock(&e->sysfs_lock);
970 	return error;
971 }
972 
973 static ssize_t
974 elv_attr_store(struct kobject *kobj, struct attribute *attr,
975 	       const char *page, size_t length)
976 {
977 	struct elv_fs_entry *entry = to_elv(attr);
978 	struct elevator_queue *e;
979 	ssize_t error;
980 
981 	if (!entry->store)
982 		return -EIO;
983 
984 	e = container_of(kobj, struct elevator_queue, kobj);
985 	mutex_lock(&e->sysfs_lock);
986 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
987 	mutex_unlock(&e->sysfs_lock);
988 	return error;
989 }
990 
991 static struct sysfs_ops elv_sysfs_ops = {
992 	.show	= elv_attr_show,
993 	.store	= elv_attr_store,
994 };
995 
996 static struct kobj_type elv_ktype = {
997 	.sysfs_ops	= &elv_sysfs_ops,
998 	.release	= elevator_release,
999 };
1000 
1001 int elv_register_queue(struct request_queue *q)
1002 {
1003 	struct elevator_queue *e = q->elevator;
1004 	int error;
1005 
1006 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
1007 	if (!error) {
1008 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
1009 		if (attr) {
1010 			while (attr->attr.name) {
1011 				if (sysfs_create_file(&e->kobj, &attr->attr))
1012 					break;
1013 				attr++;
1014 			}
1015 		}
1016 		kobject_uevent(&e->kobj, KOBJ_ADD);
1017 	}
1018 	return error;
1019 }
1020 
1021 static void __elv_unregister_queue(struct elevator_queue *e)
1022 {
1023 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
1024 	kobject_del(&e->kobj);
1025 }
1026 
1027 void elv_unregister_queue(struct request_queue *q)
1028 {
1029 	if (q)
1030 		__elv_unregister_queue(q->elevator);
1031 }
1032 
1033 void elv_register(struct elevator_type *e)
1034 {
1035 	char *def = "";
1036 
1037 	spin_lock(&elv_list_lock);
1038 	BUG_ON(elevator_find(e->elevator_name));
1039 	list_add_tail(&e->list, &elv_list);
1040 	spin_unlock(&elv_list_lock);
1041 
1042 	if (!strcmp(e->elevator_name, chosen_elevator) ||
1043 			(!*chosen_elevator &&
1044 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1045 				def = " (default)";
1046 
1047 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1048 								def);
1049 }
1050 EXPORT_SYMBOL_GPL(elv_register);
1051 
1052 void elv_unregister(struct elevator_type *e)
1053 {
1054 	struct task_struct *g, *p;
1055 
1056 	/*
1057 	 * Iterate every thread in the process to remove the io contexts.
1058 	 */
1059 	if (e->ops.trim) {
1060 		read_lock(&tasklist_lock);
1061 		do_each_thread(g, p) {
1062 			task_lock(p);
1063 			if (p->io_context)
1064 				e->ops.trim(p->io_context);
1065 			task_unlock(p);
1066 		} while_each_thread(g, p);
1067 		read_unlock(&tasklist_lock);
1068 	}
1069 
1070 	spin_lock(&elv_list_lock);
1071 	list_del_init(&e->list);
1072 	spin_unlock(&elv_list_lock);
1073 }
1074 EXPORT_SYMBOL_GPL(elv_unregister);
1075 
1076 /*
1077  * switch to new_e io scheduler. be careful not to introduce deadlocks -
1078  * we don't free the old io scheduler, before we have allocated what we
1079  * need for the new one. this way we have a chance of going back to the old
1080  * one, if the new one fails init for some reason.
1081  */
1082 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1083 {
1084 	struct elevator_queue *old_elevator, *e;
1085 	void *data;
1086 
1087 	/*
1088 	 * Allocate new elevator
1089 	 */
1090 	e = elevator_alloc(q, new_e);
1091 	if (!e)
1092 		return 0;
1093 
1094 	data = elevator_init_queue(q, e);
1095 	if (!data) {
1096 		kobject_put(&e->kobj);
1097 		return 0;
1098 	}
1099 
1100 	/*
1101 	 * Turn on BYPASS and drain all requests w/ elevator private data
1102 	 */
1103 	spin_lock_irq(q->queue_lock);
1104 
1105 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1106 
1107 	elv_drain_elevator(q);
1108 
1109 	while (q->rq.elvpriv) {
1110 		blk_start_queueing(q);
1111 		spin_unlock_irq(q->queue_lock);
1112 		msleep(10);
1113 		spin_lock_irq(q->queue_lock);
1114 		elv_drain_elevator(q);
1115 	}
1116 
1117 	/*
1118 	 * Remember old elevator.
1119 	 */
1120 	old_elevator = q->elevator;
1121 
1122 	/*
1123 	 * attach and start new elevator
1124 	 */
1125 	elevator_attach(q, e, data);
1126 
1127 	spin_unlock_irq(q->queue_lock);
1128 
1129 	__elv_unregister_queue(old_elevator);
1130 
1131 	if (elv_register_queue(q))
1132 		goto fail_register;
1133 
1134 	/*
1135 	 * finally exit old elevator and turn off BYPASS.
1136 	 */
1137 	elevator_exit(old_elevator);
1138 	spin_lock_irq(q->queue_lock);
1139 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1140 	spin_unlock_irq(q->queue_lock);
1141 
1142 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1143 
1144 	return 1;
1145 
1146 fail_register:
1147 	/*
1148 	 * switch failed, exit the new io scheduler and reattach the old
1149 	 * one again (along with re-adding the sysfs dir)
1150 	 */
1151 	elevator_exit(e);
1152 	q->elevator = old_elevator;
1153 	elv_register_queue(q);
1154 
1155 	spin_lock_irq(q->queue_lock);
1156 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1157 	spin_unlock_irq(q->queue_lock);
1158 
1159 	return 0;
1160 }
1161 
1162 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1163 			  size_t count)
1164 {
1165 	char elevator_name[ELV_NAME_MAX];
1166 	struct elevator_type *e;
1167 
1168 	strlcpy(elevator_name, name, sizeof(elevator_name));
1169 	strstrip(elevator_name);
1170 
1171 	e = elevator_get(elevator_name);
1172 	if (!e) {
1173 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1174 		return -EINVAL;
1175 	}
1176 
1177 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1178 		elevator_put(e);
1179 		return count;
1180 	}
1181 
1182 	if (!elevator_switch(q, e))
1183 		printk(KERN_ERR "elevator: switch to %s failed\n",
1184 							elevator_name);
1185 	return count;
1186 }
1187 
1188 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1189 {
1190 	struct elevator_queue *e = q->elevator;
1191 	struct elevator_type *elv = e->elevator_type;
1192 	struct elevator_type *__e;
1193 	int len = 0;
1194 
1195 	spin_lock(&elv_list_lock);
1196 	list_for_each_entry(__e, &elv_list, list) {
1197 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1198 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1199 		else
1200 			len += sprintf(name+len, "%s ", __e->elevator_name);
1201 	}
1202 	spin_unlock(&elv_list_lock);
1203 
1204 	len += sprintf(len+name, "\n");
1205 	return len;
1206 }
1207 
1208 struct request *elv_rb_former_request(struct request_queue *q,
1209 				      struct request *rq)
1210 {
1211 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1212 
1213 	if (rbprev)
1214 		return rb_entry_rq(rbprev);
1215 
1216 	return NULL;
1217 }
1218 EXPORT_SYMBOL(elv_rb_former_request);
1219 
1220 struct request *elv_rb_latter_request(struct request_queue *q,
1221 				      struct request *rq)
1222 {
1223 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1224 
1225 	if (rbnext)
1226 		return rb_entry_rq(rbnext);
1227 
1228 	return NULL;
1229 }
1230 EXPORT_SYMBOL(elv_rb_latter_request);
1231