1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/blktrace_api.h> 35 #include <linux/hash.h> 36 #include <linux/uaccess.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 44 static DEFINE_SPINLOCK(elv_list_lock); 45 static LIST_HEAD(elv_list); 46 47 /* 48 * Merge hash stuff. 49 */ 50 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 51 52 /* 53 * Query io scheduler to see if the current process issuing bio may be 54 * merged with rq. 55 */ 56 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 57 { 58 struct request_queue *q = rq->q; 59 struct elevator_queue *e = q->elevator; 60 61 if (e->type->ops.elevator_allow_merge_fn) 62 return e->type->ops.elevator_allow_merge_fn(q, rq, bio); 63 64 return 1; 65 } 66 67 /* 68 * can we safely merge with this request? 69 */ 70 bool elv_rq_merge_ok(struct request *rq, struct bio *bio) 71 { 72 if (!blk_rq_merge_ok(rq, bio)) 73 return 0; 74 75 if (!elv_iosched_allow_merge(rq, bio)) 76 return 0; 77 78 return 1; 79 } 80 EXPORT_SYMBOL(elv_rq_merge_ok); 81 82 static struct elevator_type *elevator_find(const char *name) 83 { 84 struct elevator_type *e; 85 86 list_for_each_entry(e, &elv_list, list) { 87 if (!strcmp(e->elevator_name, name)) 88 return e; 89 } 90 91 return NULL; 92 } 93 94 static void elevator_put(struct elevator_type *e) 95 { 96 module_put(e->elevator_owner); 97 } 98 99 static struct elevator_type *elevator_get(const char *name, bool try_loading) 100 { 101 struct elevator_type *e; 102 103 spin_lock(&elv_list_lock); 104 105 e = elevator_find(name); 106 if (!e && try_loading) { 107 spin_unlock(&elv_list_lock); 108 request_module("%s-iosched", name); 109 spin_lock(&elv_list_lock); 110 e = elevator_find(name); 111 } 112 113 if (e && !try_module_get(e->elevator_owner)) 114 e = NULL; 115 116 spin_unlock(&elv_list_lock); 117 118 return e; 119 } 120 121 static char chosen_elevator[ELV_NAME_MAX]; 122 123 static int __init elevator_setup(char *str) 124 { 125 /* 126 * Be backwards-compatible with previous kernels, so users 127 * won't get the wrong elevator. 128 */ 129 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 130 return 1; 131 } 132 133 __setup("elevator=", elevator_setup); 134 135 /* called during boot to load the elevator chosen by the elevator param */ 136 void __init load_default_elevator_module(void) 137 { 138 struct elevator_type *e; 139 140 if (!chosen_elevator[0]) 141 return; 142 143 spin_lock(&elv_list_lock); 144 e = elevator_find(chosen_elevator); 145 spin_unlock(&elv_list_lock); 146 147 if (!e) 148 request_module("%s-iosched", chosen_elevator); 149 } 150 151 static struct kobj_type elv_ktype; 152 153 struct elevator_queue *elevator_alloc(struct request_queue *q, 154 struct elevator_type *e) 155 { 156 struct elevator_queue *eq; 157 158 eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node); 159 if (unlikely(!eq)) 160 return NULL; 161 162 eq->type = e; 163 kobject_init(&eq->kobj, &elv_ktype); 164 mutex_init(&eq->sysfs_lock); 165 hash_init(eq->hash); 166 167 return eq; 168 } 169 EXPORT_SYMBOL(elevator_alloc); 170 171 static void elevator_release(struct kobject *kobj) 172 { 173 struct elevator_queue *e; 174 175 e = container_of(kobj, struct elevator_queue, kobj); 176 elevator_put(e->type); 177 kfree(e); 178 } 179 180 int elevator_init(struct request_queue *q, char *name) 181 { 182 struct elevator_type *e = NULL; 183 int err; 184 185 /* 186 * q->sysfs_lock must be held to provide mutual exclusion between 187 * elevator_switch() and here. 188 */ 189 lockdep_assert_held(&q->sysfs_lock); 190 191 if (unlikely(q->elevator)) 192 return 0; 193 194 INIT_LIST_HEAD(&q->queue_head); 195 q->last_merge = NULL; 196 q->end_sector = 0; 197 q->boundary_rq = NULL; 198 199 if (name) { 200 e = elevator_get(name, true); 201 if (!e) 202 return -EINVAL; 203 } 204 205 /* 206 * Use the default elevator specified by config boot param or 207 * config option. Don't try to load modules as we could be running 208 * off async and request_module() isn't allowed from async. 209 */ 210 if (!e && *chosen_elevator) { 211 e = elevator_get(chosen_elevator, false); 212 if (!e) 213 printk(KERN_ERR "I/O scheduler %s not found\n", 214 chosen_elevator); 215 } 216 217 if (!e) { 218 e = elevator_get(CONFIG_DEFAULT_IOSCHED, false); 219 if (!e) { 220 printk(KERN_ERR 221 "Default I/O scheduler not found. " \ 222 "Using noop.\n"); 223 e = elevator_get("noop", false); 224 } 225 } 226 227 err = e->ops.elevator_init_fn(q, e); 228 if (err) 229 elevator_put(e); 230 return err; 231 } 232 EXPORT_SYMBOL(elevator_init); 233 234 void elevator_exit(struct elevator_queue *e) 235 { 236 mutex_lock(&e->sysfs_lock); 237 if (e->type->ops.elevator_exit_fn) 238 e->type->ops.elevator_exit_fn(e); 239 mutex_unlock(&e->sysfs_lock); 240 241 kobject_put(&e->kobj); 242 } 243 EXPORT_SYMBOL(elevator_exit); 244 245 static inline void __elv_rqhash_del(struct request *rq) 246 { 247 hash_del(&rq->hash); 248 rq->cmd_flags &= ~REQ_HASHED; 249 } 250 251 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 252 { 253 if (ELV_ON_HASH(rq)) 254 __elv_rqhash_del(rq); 255 } 256 257 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 258 { 259 struct elevator_queue *e = q->elevator; 260 261 BUG_ON(ELV_ON_HASH(rq)); 262 hash_add(e->hash, &rq->hash, rq_hash_key(rq)); 263 rq->cmd_flags |= REQ_HASHED; 264 } 265 266 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 267 { 268 __elv_rqhash_del(rq); 269 elv_rqhash_add(q, rq); 270 } 271 272 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 273 { 274 struct elevator_queue *e = q->elevator; 275 struct hlist_node *next; 276 struct request *rq; 277 278 hash_for_each_possible_safe(e->hash, rq, next, hash, offset) { 279 BUG_ON(!ELV_ON_HASH(rq)); 280 281 if (unlikely(!rq_mergeable(rq))) { 282 __elv_rqhash_del(rq); 283 continue; 284 } 285 286 if (rq_hash_key(rq) == offset) 287 return rq; 288 } 289 290 return NULL; 291 } 292 293 /* 294 * RB-tree support functions for inserting/lookup/removal of requests 295 * in a sorted RB tree. 296 */ 297 void elv_rb_add(struct rb_root *root, struct request *rq) 298 { 299 struct rb_node **p = &root->rb_node; 300 struct rb_node *parent = NULL; 301 struct request *__rq; 302 303 while (*p) { 304 parent = *p; 305 __rq = rb_entry(parent, struct request, rb_node); 306 307 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 308 p = &(*p)->rb_left; 309 else if (blk_rq_pos(rq) >= blk_rq_pos(__rq)) 310 p = &(*p)->rb_right; 311 } 312 313 rb_link_node(&rq->rb_node, parent, p); 314 rb_insert_color(&rq->rb_node, root); 315 } 316 EXPORT_SYMBOL(elv_rb_add); 317 318 void elv_rb_del(struct rb_root *root, struct request *rq) 319 { 320 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 321 rb_erase(&rq->rb_node, root); 322 RB_CLEAR_NODE(&rq->rb_node); 323 } 324 EXPORT_SYMBOL(elv_rb_del); 325 326 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 327 { 328 struct rb_node *n = root->rb_node; 329 struct request *rq; 330 331 while (n) { 332 rq = rb_entry(n, struct request, rb_node); 333 334 if (sector < blk_rq_pos(rq)) 335 n = n->rb_left; 336 else if (sector > blk_rq_pos(rq)) 337 n = n->rb_right; 338 else 339 return rq; 340 } 341 342 return NULL; 343 } 344 EXPORT_SYMBOL(elv_rb_find); 345 346 /* 347 * Insert rq into dispatch queue of q. Queue lock must be held on 348 * entry. rq is sort instead into the dispatch queue. To be used by 349 * specific elevators. 350 */ 351 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 352 { 353 sector_t boundary; 354 struct list_head *entry; 355 int stop_flags; 356 357 if (q->last_merge == rq) 358 q->last_merge = NULL; 359 360 elv_rqhash_del(q, rq); 361 362 q->nr_sorted--; 363 364 boundary = q->end_sector; 365 stop_flags = REQ_SOFTBARRIER | REQ_STARTED; 366 list_for_each_prev(entry, &q->queue_head) { 367 struct request *pos = list_entry_rq(entry); 368 369 if ((rq->cmd_flags & REQ_DISCARD) != 370 (pos->cmd_flags & REQ_DISCARD)) 371 break; 372 if (rq_data_dir(rq) != rq_data_dir(pos)) 373 break; 374 if (pos->cmd_flags & stop_flags) 375 break; 376 if (blk_rq_pos(rq) >= boundary) { 377 if (blk_rq_pos(pos) < boundary) 378 continue; 379 } else { 380 if (blk_rq_pos(pos) >= boundary) 381 break; 382 } 383 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 384 break; 385 } 386 387 list_add(&rq->queuelist, entry); 388 } 389 EXPORT_SYMBOL(elv_dispatch_sort); 390 391 /* 392 * Insert rq into dispatch queue of q. Queue lock must be held on 393 * entry. rq is added to the back of the dispatch queue. To be used by 394 * specific elevators. 395 */ 396 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 397 { 398 if (q->last_merge == rq) 399 q->last_merge = NULL; 400 401 elv_rqhash_del(q, rq); 402 403 q->nr_sorted--; 404 405 q->end_sector = rq_end_sector(rq); 406 q->boundary_rq = rq; 407 list_add_tail(&rq->queuelist, &q->queue_head); 408 } 409 EXPORT_SYMBOL(elv_dispatch_add_tail); 410 411 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 412 { 413 struct elevator_queue *e = q->elevator; 414 struct request *__rq; 415 int ret; 416 417 /* 418 * Levels of merges: 419 * nomerges: No merges at all attempted 420 * noxmerges: Only simple one-hit cache try 421 * merges: All merge tries attempted 422 */ 423 if (blk_queue_nomerges(q) || !bio_mergeable(bio)) 424 return ELEVATOR_NO_MERGE; 425 426 /* 427 * First try one-hit cache. 428 */ 429 if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) { 430 ret = blk_try_merge(q->last_merge, bio); 431 if (ret != ELEVATOR_NO_MERGE) { 432 *req = q->last_merge; 433 return ret; 434 } 435 } 436 437 if (blk_queue_noxmerges(q)) 438 return ELEVATOR_NO_MERGE; 439 440 /* 441 * See if our hash lookup can find a potential backmerge. 442 */ 443 __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector); 444 if (__rq && elv_rq_merge_ok(__rq, bio)) { 445 *req = __rq; 446 return ELEVATOR_BACK_MERGE; 447 } 448 449 if (e->type->ops.elevator_merge_fn) 450 return e->type->ops.elevator_merge_fn(q, req, bio); 451 452 return ELEVATOR_NO_MERGE; 453 } 454 455 /* 456 * Attempt to do an insertion back merge. Only check for the case where 457 * we can append 'rq' to an existing request, so we can throw 'rq' away 458 * afterwards. 459 * 460 * Returns true if we merged, false otherwise 461 */ 462 static bool elv_attempt_insert_merge(struct request_queue *q, 463 struct request *rq) 464 { 465 struct request *__rq; 466 bool ret; 467 468 if (blk_queue_nomerges(q)) 469 return false; 470 471 /* 472 * First try one-hit cache. 473 */ 474 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) 475 return true; 476 477 if (blk_queue_noxmerges(q)) 478 return false; 479 480 ret = false; 481 /* 482 * See if our hash lookup can find a potential backmerge. 483 */ 484 while (1) { 485 __rq = elv_rqhash_find(q, blk_rq_pos(rq)); 486 if (!__rq || !blk_attempt_req_merge(q, __rq, rq)) 487 break; 488 489 /* The merged request could be merged with others, try again */ 490 ret = true; 491 rq = __rq; 492 } 493 494 return ret; 495 } 496 497 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 498 { 499 struct elevator_queue *e = q->elevator; 500 501 if (e->type->ops.elevator_merged_fn) 502 e->type->ops.elevator_merged_fn(q, rq, type); 503 504 if (type == ELEVATOR_BACK_MERGE) 505 elv_rqhash_reposition(q, rq); 506 507 q->last_merge = rq; 508 } 509 510 void elv_merge_requests(struct request_queue *q, struct request *rq, 511 struct request *next) 512 { 513 struct elevator_queue *e = q->elevator; 514 const int next_sorted = next->cmd_flags & REQ_SORTED; 515 516 if (next_sorted && e->type->ops.elevator_merge_req_fn) 517 e->type->ops.elevator_merge_req_fn(q, rq, next); 518 519 elv_rqhash_reposition(q, rq); 520 521 if (next_sorted) { 522 elv_rqhash_del(q, next); 523 q->nr_sorted--; 524 } 525 526 q->last_merge = rq; 527 } 528 529 void elv_bio_merged(struct request_queue *q, struct request *rq, 530 struct bio *bio) 531 { 532 struct elevator_queue *e = q->elevator; 533 534 if (e->type->ops.elevator_bio_merged_fn) 535 e->type->ops.elevator_bio_merged_fn(q, rq, bio); 536 } 537 538 #ifdef CONFIG_PM 539 static void blk_pm_requeue_request(struct request *rq) 540 { 541 if (rq->q->dev && !(rq->cmd_flags & REQ_PM)) 542 rq->q->nr_pending--; 543 } 544 545 static void blk_pm_add_request(struct request_queue *q, struct request *rq) 546 { 547 if (q->dev && !(rq->cmd_flags & REQ_PM) && q->nr_pending++ == 0 && 548 (q->rpm_status == RPM_SUSPENDED || q->rpm_status == RPM_SUSPENDING)) 549 pm_request_resume(q->dev); 550 } 551 #else 552 static inline void blk_pm_requeue_request(struct request *rq) {} 553 static inline void blk_pm_add_request(struct request_queue *q, 554 struct request *rq) 555 { 556 } 557 #endif 558 559 void elv_requeue_request(struct request_queue *q, struct request *rq) 560 { 561 /* 562 * it already went through dequeue, we need to decrement the 563 * in_flight count again 564 */ 565 if (blk_account_rq(rq)) { 566 q->in_flight[rq_is_sync(rq)]--; 567 if (rq->cmd_flags & REQ_SORTED) 568 elv_deactivate_rq(q, rq); 569 } 570 571 rq->cmd_flags &= ~REQ_STARTED; 572 573 blk_pm_requeue_request(rq); 574 575 __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE); 576 } 577 578 void elv_drain_elevator(struct request_queue *q) 579 { 580 static int printed; 581 582 lockdep_assert_held(q->queue_lock); 583 584 while (q->elevator->type->ops.elevator_dispatch_fn(q, 1)) 585 ; 586 if (q->nr_sorted && printed++ < 10) { 587 printk(KERN_ERR "%s: forced dispatching is broken " 588 "(nr_sorted=%u), please report this\n", 589 q->elevator->type->elevator_name, q->nr_sorted); 590 } 591 } 592 593 void __elv_add_request(struct request_queue *q, struct request *rq, int where) 594 { 595 trace_block_rq_insert(q, rq); 596 597 blk_pm_add_request(q, rq); 598 599 rq->q = q; 600 601 if (rq->cmd_flags & REQ_SOFTBARRIER) { 602 /* barriers are scheduling boundary, update end_sector */ 603 if (rq->cmd_type == REQ_TYPE_FS) { 604 q->end_sector = rq_end_sector(rq); 605 q->boundary_rq = rq; 606 } 607 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 608 (where == ELEVATOR_INSERT_SORT || 609 where == ELEVATOR_INSERT_SORT_MERGE)) 610 where = ELEVATOR_INSERT_BACK; 611 612 switch (where) { 613 case ELEVATOR_INSERT_REQUEUE: 614 case ELEVATOR_INSERT_FRONT: 615 rq->cmd_flags |= REQ_SOFTBARRIER; 616 list_add(&rq->queuelist, &q->queue_head); 617 break; 618 619 case ELEVATOR_INSERT_BACK: 620 rq->cmd_flags |= REQ_SOFTBARRIER; 621 elv_drain_elevator(q); 622 list_add_tail(&rq->queuelist, &q->queue_head); 623 /* 624 * We kick the queue here for the following reasons. 625 * - The elevator might have returned NULL previously 626 * to delay requests and returned them now. As the 627 * queue wasn't empty before this request, ll_rw_blk 628 * won't run the queue on return, resulting in hang. 629 * - Usually, back inserted requests won't be merged 630 * with anything. There's no point in delaying queue 631 * processing. 632 */ 633 __blk_run_queue(q); 634 break; 635 636 case ELEVATOR_INSERT_SORT_MERGE: 637 /* 638 * If we succeed in merging this request with one in the 639 * queue already, we are done - rq has now been freed, 640 * so no need to do anything further. 641 */ 642 if (elv_attempt_insert_merge(q, rq)) 643 break; 644 case ELEVATOR_INSERT_SORT: 645 BUG_ON(rq->cmd_type != REQ_TYPE_FS); 646 rq->cmd_flags |= REQ_SORTED; 647 q->nr_sorted++; 648 if (rq_mergeable(rq)) { 649 elv_rqhash_add(q, rq); 650 if (!q->last_merge) 651 q->last_merge = rq; 652 } 653 654 /* 655 * Some ioscheds (cfq) run q->request_fn directly, so 656 * rq cannot be accessed after calling 657 * elevator_add_req_fn. 658 */ 659 q->elevator->type->ops.elevator_add_req_fn(q, rq); 660 break; 661 662 case ELEVATOR_INSERT_FLUSH: 663 rq->cmd_flags |= REQ_SOFTBARRIER; 664 blk_insert_flush(rq); 665 break; 666 default: 667 printk(KERN_ERR "%s: bad insertion point %d\n", 668 __func__, where); 669 BUG(); 670 } 671 } 672 EXPORT_SYMBOL(__elv_add_request); 673 674 void elv_add_request(struct request_queue *q, struct request *rq, int where) 675 { 676 unsigned long flags; 677 678 spin_lock_irqsave(q->queue_lock, flags); 679 __elv_add_request(q, rq, where); 680 spin_unlock_irqrestore(q->queue_lock, flags); 681 } 682 EXPORT_SYMBOL(elv_add_request); 683 684 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 685 { 686 struct elevator_queue *e = q->elevator; 687 688 if (e->type->ops.elevator_latter_req_fn) 689 return e->type->ops.elevator_latter_req_fn(q, rq); 690 return NULL; 691 } 692 693 struct request *elv_former_request(struct request_queue *q, struct request *rq) 694 { 695 struct elevator_queue *e = q->elevator; 696 697 if (e->type->ops.elevator_former_req_fn) 698 return e->type->ops.elevator_former_req_fn(q, rq); 699 return NULL; 700 } 701 702 int elv_set_request(struct request_queue *q, struct request *rq, 703 struct bio *bio, gfp_t gfp_mask) 704 { 705 struct elevator_queue *e = q->elevator; 706 707 if (e->type->ops.elevator_set_req_fn) 708 return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask); 709 return 0; 710 } 711 712 void elv_put_request(struct request_queue *q, struct request *rq) 713 { 714 struct elevator_queue *e = q->elevator; 715 716 if (e->type->ops.elevator_put_req_fn) 717 e->type->ops.elevator_put_req_fn(rq); 718 } 719 720 int elv_may_queue(struct request_queue *q, int rw) 721 { 722 struct elevator_queue *e = q->elevator; 723 724 if (e->type->ops.elevator_may_queue_fn) 725 return e->type->ops.elevator_may_queue_fn(q, rw); 726 727 return ELV_MQUEUE_MAY; 728 } 729 730 void elv_completed_request(struct request_queue *q, struct request *rq) 731 { 732 struct elevator_queue *e = q->elevator; 733 734 /* 735 * request is released from the driver, io must be done 736 */ 737 if (blk_account_rq(rq)) { 738 q->in_flight[rq_is_sync(rq)]--; 739 if ((rq->cmd_flags & REQ_SORTED) && 740 e->type->ops.elevator_completed_req_fn) 741 e->type->ops.elevator_completed_req_fn(q, rq); 742 } 743 } 744 745 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 746 747 static ssize_t 748 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 749 { 750 struct elv_fs_entry *entry = to_elv(attr); 751 struct elevator_queue *e; 752 ssize_t error; 753 754 if (!entry->show) 755 return -EIO; 756 757 e = container_of(kobj, struct elevator_queue, kobj); 758 mutex_lock(&e->sysfs_lock); 759 error = e->type ? entry->show(e, page) : -ENOENT; 760 mutex_unlock(&e->sysfs_lock); 761 return error; 762 } 763 764 static ssize_t 765 elv_attr_store(struct kobject *kobj, struct attribute *attr, 766 const char *page, size_t length) 767 { 768 struct elv_fs_entry *entry = to_elv(attr); 769 struct elevator_queue *e; 770 ssize_t error; 771 772 if (!entry->store) 773 return -EIO; 774 775 e = container_of(kobj, struct elevator_queue, kobj); 776 mutex_lock(&e->sysfs_lock); 777 error = e->type ? entry->store(e, page, length) : -ENOENT; 778 mutex_unlock(&e->sysfs_lock); 779 return error; 780 } 781 782 static const struct sysfs_ops elv_sysfs_ops = { 783 .show = elv_attr_show, 784 .store = elv_attr_store, 785 }; 786 787 static struct kobj_type elv_ktype = { 788 .sysfs_ops = &elv_sysfs_ops, 789 .release = elevator_release, 790 }; 791 792 int elv_register_queue(struct request_queue *q) 793 { 794 struct elevator_queue *e = q->elevator; 795 int error; 796 797 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 798 if (!error) { 799 struct elv_fs_entry *attr = e->type->elevator_attrs; 800 if (attr) { 801 while (attr->attr.name) { 802 if (sysfs_create_file(&e->kobj, &attr->attr)) 803 break; 804 attr++; 805 } 806 } 807 kobject_uevent(&e->kobj, KOBJ_ADD); 808 e->registered = 1; 809 if (e->type->ops.elevator_registered_fn) 810 e->type->ops.elevator_registered_fn(q); 811 } 812 return error; 813 } 814 EXPORT_SYMBOL(elv_register_queue); 815 816 void elv_unregister_queue(struct request_queue *q) 817 { 818 if (q) { 819 struct elevator_queue *e = q->elevator; 820 821 kobject_uevent(&e->kobj, KOBJ_REMOVE); 822 kobject_del(&e->kobj); 823 e->registered = 0; 824 } 825 } 826 EXPORT_SYMBOL(elv_unregister_queue); 827 828 int elv_register(struct elevator_type *e) 829 { 830 char *def = ""; 831 832 /* create icq_cache if requested */ 833 if (e->icq_size) { 834 if (WARN_ON(e->icq_size < sizeof(struct io_cq)) || 835 WARN_ON(e->icq_align < __alignof__(struct io_cq))) 836 return -EINVAL; 837 838 snprintf(e->icq_cache_name, sizeof(e->icq_cache_name), 839 "%s_io_cq", e->elevator_name); 840 e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size, 841 e->icq_align, 0, NULL); 842 if (!e->icq_cache) 843 return -ENOMEM; 844 } 845 846 /* register, don't allow duplicate names */ 847 spin_lock(&elv_list_lock); 848 if (elevator_find(e->elevator_name)) { 849 spin_unlock(&elv_list_lock); 850 if (e->icq_cache) 851 kmem_cache_destroy(e->icq_cache); 852 return -EBUSY; 853 } 854 list_add_tail(&e->list, &elv_list); 855 spin_unlock(&elv_list_lock); 856 857 /* print pretty message */ 858 if (!strcmp(e->elevator_name, chosen_elevator) || 859 (!*chosen_elevator && 860 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 861 def = " (default)"; 862 863 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 864 def); 865 return 0; 866 } 867 EXPORT_SYMBOL_GPL(elv_register); 868 869 void elv_unregister(struct elevator_type *e) 870 { 871 /* unregister */ 872 spin_lock(&elv_list_lock); 873 list_del_init(&e->list); 874 spin_unlock(&elv_list_lock); 875 876 /* 877 * Destroy icq_cache if it exists. icq's are RCU managed. Make 878 * sure all RCU operations are complete before proceeding. 879 */ 880 if (e->icq_cache) { 881 rcu_barrier(); 882 kmem_cache_destroy(e->icq_cache); 883 e->icq_cache = NULL; 884 } 885 } 886 EXPORT_SYMBOL_GPL(elv_unregister); 887 888 /* 889 * switch to new_e io scheduler. be careful not to introduce deadlocks - 890 * we don't free the old io scheduler, before we have allocated what we 891 * need for the new one. this way we have a chance of going back to the old 892 * one, if the new one fails init for some reason. 893 */ 894 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 895 { 896 struct elevator_queue *old = q->elevator; 897 bool registered = old->registered; 898 int err; 899 900 /* 901 * Turn on BYPASS and drain all requests w/ elevator private data. 902 * Block layer doesn't call into a quiesced elevator - all requests 903 * are directly put on the dispatch list without elevator data 904 * using INSERT_BACK. All requests have SOFTBARRIER set and no 905 * merge happens either. 906 */ 907 blk_queue_bypass_start(q); 908 909 /* unregister and clear all auxiliary data of the old elevator */ 910 if (registered) 911 elv_unregister_queue(q); 912 913 spin_lock_irq(q->queue_lock); 914 ioc_clear_queue(q); 915 spin_unlock_irq(q->queue_lock); 916 917 /* allocate, init and register new elevator */ 918 err = new_e->ops.elevator_init_fn(q, new_e); 919 if (err) 920 goto fail_init; 921 922 if (registered) { 923 err = elv_register_queue(q); 924 if (err) 925 goto fail_register; 926 } 927 928 /* done, kill the old one and finish */ 929 elevator_exit(old); 930 blk_queue_bypass_end(q); 931 932 blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name); 933 934 return 0; 935 936 fail_register: 937 elevator_exit(q->elevator); 938 fail_init: 939 /* switch failed, restore and re-register old elevator */ 940 q->elevator = old; 941 elv_register_queue(q); 942 blk_queue_bypass_end(q); 943 944 return err; 945 } 946 947 /* 948 * Switch this queue to the given IO scheduler. 949 */ 950 static int __elevator_change(struct request_queue *q, const char *name) 951 { 952 char elevator_name[ELV_NAME_MAX]; 953 struct elevator_type *e; 954 955 if (!q->elevator) 956 return -ENXIO; 957 958 strlcpy(elevator_name, name, sizeof(elevator_name)); 959 e = elevator_get(strstrip(elevator_name), true); 960 if (!e) { 961 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 962 return -EINVAL; 963 } 964 965 if (!strcmp(elevator_name, q->elevator->type->elevator_name)) { 966 elevator_put(e); 967 return 0; 968 } 969 970 return elevator_switch(q, e); 971 } 972 973 int elevator_change(struct request_queue *q, const char *name) 974 { 975 int ret; 976 977 /* Protect q->elevator from elevator_init() */ 978 mutex_lock(&q->sysfs_lock); 979 ret = __elevator_change(q, name); 980 mutex_unlock(&q->sysfs_lock); 981 982 return ret; 983 } 984 EXPORT_SYMBOL(elevator_change); 985 986 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 987 size_t count) 988 { 989 int ret; 990 991 if (!q->elevator) 992 return count; 993 994 ret = __elevator_change(q, name); 995 if (!ret) 996 return count; 997 998 printk(KERN_ERR "elevator: switch to %s failed\n", name); 999 return ret; 1000 } 1001 1002 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1003 { 1004 struct elevator_queue *e = q->elevator; 1005 struct elevator_type *elv; 1006 struct elevator_type *__e; 1007 int len = 0; 1008 1009 if (!q->elevator || !blk_queue_stackable(q)) 1010 return sprintf(name, "none\n"); 1011 1012 elv = e->type; 1013 1014 spin_lock(&elv_list_lock); 1015 list_for_each_entry(__e, &elv_list, list) { 1016 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1017 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1018 else 1019 len += sprintf(name+len, "%s ", __e->elevator_name); 1020 } 1021 spin_unlock(&elv_list_lock); 1022 1023 len += sprintf(len+name, "\n"); 1024 return len; 1025 } 1026 1027 struct request *elv_rb_former_request(struct request_queue *q, 1028 struct request *rq) 1029 { 1030 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1031 1032 if (rbprev) 1033 return rb_entry_rq(rbprev); 1034 1035 return NULL; 1036 } 1037 EXPORT_SYMBOL(elv_rb_former_request); 1038 1039 struct request *elv_rb_latter_request(struct request_queue *q, 1040 struct request *rq) 1041 { 1042 struct rb_node *rbnext = rb_next(&rq->rb_node); 1043 1044 if (rbnext) 1045 return rb_entry_rq(rbnext); 1046 1047 return NULL; 1048 } 1049 EXPORT_SYMBOL(elv_rb_latter_request); 1050