1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <trace/block.h> 37 #include <linux/hash.h> 38 #include <linux/uaccess.h> 39 40 #include "blk.h" 41 42 static DEFINE_SPINLOCK(elv_list_lock); 43 static LIST_HEAD(elv_list); 44 45 DEFINE_TRACE(block_rq_abort); 46 47 /* 48 * Merge hash stuff. 49 */ 50 static const int elv_hash_shift = 6; 51 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 52 #define ELV_HASH_FN(sec) \ 53 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 54 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 55 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) 56 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash)) 57 58 DEFINE_TRACE(block_rq_insert); 59 DEFINE_TRACE(block_rq_issue); 60 61 /* 62 * Query io scheduler to see if the current process issuing bio may be 63 * merged with rq. 64 */ 65 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 66 { 67 struct request_queue *q = rq->q; 68 struct elevator_queue *e = q->elevator; 69 70 if (e->ops->elevator_allow_merge_fn) 71 return e->ops->elevator_allow_merge_fn(q, rq, bio); 72 73 return 1; 74 } 75 76 /* 77 * can we safely merge with this request? 78 */ 79 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 80 { 81 if (!rq_mergeable(rq)) 82 return 0; 83 84 /* 85 * Don't merge file system requests and discard requests 86 */ 87 if (bio_discard(bio) != bio_discard(rq->bio)) 88 return 0; 89 90 /* 91 * different data direction or already started, don't merge 92 */ 93 if (bio_data_dir(bio) != rq_data_dir(rq)) 94 return 0; 95 96 /* 97 * must be same device and not a special request 98 */ 99 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 100 return 0; 101 102 /* 103 * only merge integrity protected bio into ditto rq 104 */ 105 if (bio_integrity(bio) != blk_integrity_rq(rq)) 106 return 0; 107 108 if (!elv_iosched_allow_merge(rq, bio)) 109 return 0; 110 111 return 1; 112 } 113 EXPORT_SYMBOL(elv_rq_merge_ok); 114 115 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 116 { 117 int ret = ELEVATOR_NO_MERGE; 118 119 /* 120 * we can merge and sequence is ok, check if it's possible 121 */ 122 if (elv_rq_merge_ok(__rq, bio)) { 123 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 124 ret = ELEVATOR_BACK_MERGE; 125 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 126 ret = ELEVATOR_FRONT_MERGE; 127 } 128 129 return ret; 130 } 131 132 static struct elevator_type *elevator_find(const char *name) 133 { 134 struct elevator_type *e; 135 136 list_for_each_entry(e, &elv_list, list) { 137 if (!strcmp(e->elevator_name, name)) 138 return e; 139 } 140 141 return NULL; 142 } 143 144 static void elevator_put(struct elevator_type *e) 145 { 146 module_put(e->elevator_owner); 147 } 148 149 static struct elevator_type *elevator_get(const char *name) 150 { 151 struct elevator_type *e; 152 153 spin_lock(&elv_list_lock); 154 155 e = elevator_find(name); 156 if (!e) { 157 char elv[ELV_NAME_MAX + strlen("-iosched")]; 158 159 spin_unlock(&elv_list_lock); 160 161 if (!strcmp(name, "anticipatory")) 162 sprintf(elv, "as-iosched"); 163 else 164 sprintf(elv, "%s-iosched", name); 165 166 request_module("%s", elv); 167 spin_lock(&elv_list_lock); 168 e = elevator_find(name); 169 } 170 171 if (e && !try_module_get(e->elevator_owner)) 172 e = NULL; 173 174 spin_unlock(&elv_list_lock); 175 176 return e; 177 } 178 179 static void *elevator_init_queue(struct request_queue *q, 180 struct elevator_queue *eq) 181 { 182 return eq->ops->elevator_init_fn(q); 183 } 184 185 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 186 void *data) 187 { 188 q->elevator = eq; 189 eq->elevator_data = data; 190 } 191 192 static char chosen_elevator[16]; 193 194 static int __init elevator_setup(char *str) 195 { 196 /* 197 * Be backwards-compatible with previous kernels, so users 198 * won't get the wrong elevator. 199 */ 200 if (!strcmp(str, "as")) 201 strcpy(chosen_elevator, "anticipatory"); 202 else 203 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 204 return 1; 205 } 206 207 __setup("elevator=", elevator_setup); 208 209 static struct kobj_type elv_ktype; 210 211 static struct elevator_queue *elevator_alloc(struct request_queue *q, 212 struct elevator_type *e) 213 { 214 struct elevator_queue *eq; 215 int i; 216 217 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 218 if (unlikely(!eq)) 219 goto err; 220 221 eq->ops = &e->ops; 222 eq->elevator_type = e; 223 kobject_init(&eq->kobj, &elv_ktype); 224 mutex_init(&eq->sysfs_lock); 225 226 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 227 GFP_KERNEL, q->node); 228 if (!eq->hash) 229 goto err; 230 231 for (i = 0; i < ELV_HASH_ENTRIES; i++) 232 INIT_HLIST_HEAD(&eq->hash[i]); 233 234 return eq; 235 err: 236 kfree(eq); 237 elevator_put(e); 238 return NULL; 239 } 240 241 static void elevator_release(struct kobject *kobj) 242 { 243 struct elevator_queue *e; 244 245 e = container_of(kobj, struct elevator_queue, kobj); 246 elevator_put(e->elevator_type); 247 kfree(e->hash); 248 kfree(e); 249 } 250 251 int elevator_init(struct request_queue *q, char *name) 252 { 253 struct elevator_type *e = NULL; 254 struct elevator_queue *eq; 255 int ret = 0; 256 void *data; 257 258 INIT_LIST_HEAD(&q->queue_head); 259 q->last_merge = NULL; 260 q->end_sector = 0; 261 q->boundary_rq = NULL; 262 263 if (name) { 264 e = elevator_get(name); 265 if (!e) 266 return -EINVAL; 267 } 268 269 if (!e && *chosen_elevator) { 270 e = elevator_get(chosen_elevator); 271 if (!e) 272 printk(KERN_ERR "I/O scheduler %s not found\n", 273 chosen_elevator); 274 } 275 276 if (!e) { 277 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 278 if (!e) { 279 printk(KERN_ERR 280 "Default I/O scheduler not found. " \ 281 "Using noop.\n"); 282 e = elevator_get("noop"); 283 } 284 } 285 286 eq = elevator_alloc(q, e); 287 if (!eq) 288 return -ENOMEM; 289 290 data = elevator_init_queue(q, eq); 291 if (!data) { 292 kobject_put(&eq->kobj); 293 return -ENOMEM; 294 } 295 296 elevator_attach(q, eq, data); 297 return ret; 298 } 299 EXPORT_SYMBOL(elevator_init); 300 301 void elevator_exit(struct elevator_queue *e) 302 { 303 mutex_lock(&e->sysfs_lock); 304 if (e->ops->elevator_exit_fn) 305 e->ops->elevator_exit_fn(e); 306 e->ops = NULL; 307 mutex_unlock(&e->sysfs_lock); 308 309 kobject_put(&e->kobj); 310 } 311 EXPORT_SYMBOL(elevator_exit); 312 313 static void elv_activate_rq(struct request_queue *q, struct request *rq) 314 { 315 struct elevator_queue *e = q->elevator; 316 317 if (e->ops->elevator_activate_req_fn) 318 e->ops->elevator_activate_req_fn(q, rq); 319 } 320 321 static void elv_deactivate_rq(struct request_queue *q, struct request *rq) 322 { 323 struct elevator_queue *e = q->elevator; 324 325 if (e->ops->elevator_deactivate_req_fn) 326 e->ops->elevator_deactivate_req_fn(q, rq); 327 } 328 329 static inline void __elv_rqhash_del(struct request *rq) 330 { 331 hlist_del_init(&rq->hash); 332 } 333 334 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 335 { 336 if (ELV_ON_HASH(rq)) 337 __elv_rqhash_del(rq); 338 } 339 340 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 341 { 342 struct elevator_queue *e = q->elevator; 343 344 BUG_ON(ELV_ON_HASH(rq)); 345 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 346 } 347 348 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 349 { 350 __elv_rqhash_del(rq); 351 elv_rqhash_add(q, rq); 352 } 353 354 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 355 { 356 struct elevator_queue *e = q->elevator; 357 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 358 struct hlist_node *entry, *next; 359 struct request *rq; 360 361 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 362 BUG_ON(!ELV_ON_HASH(rq)); 363 364 if (unlikely(!rq_mergeable(rq))) { 365 __elv_rqhash_del(rq); 366 continue; 367 } 368 369 if (rq_hash_key(rq) == offset) 370 return rq; 371 } 372 373 return NULL; 374 } 375 376 /* 377 * RB-tree support functions for inserting/lookup/removal of requests 378 * in a sorted RB tree. 379 */ 380 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 381 { 382 struct rb_node **p = &root->rb_node; 383 struct rb_node *parent = NULL; 384 struct request *__rq; 385 386 while (*p) { 387 parent = *p; 388 __rq = rb_entry(parent, struct request, rb_node); 389 390 if (rq->sector < __rq->sector) 391 p = &(*p)->rb_left; 392 else if (rq->sector > __rq->sector) 393 p = &(*p)->rb_right; 394 else 395 return __rq; 396 } 397 398 rb_link_node(&rq->rb_node, parent, p); 399 rb_insert_color(&rq->rb_node, root); 400 return NULL; 401 } 402 EXPORT_SYMBOL(elv_rb_add); 403 404 void elv_rb_del(struct rb_root *root, struct request *rq) 405 { 406 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 407 rb_erase(&rq->rb_node, root); 408 RB_CLEAR_NODE(&rq->rb_node); 409 } 410 EXPORT_SYMBOL(elv_rb_del); 411 412 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 413 { 414 struct rb_node *n = root->rb_node; 415 struct request *rq; 416 417 while (n) { 418 rq = rb_entry(n, struct request, rb_node); 419 420 if (sector < rq->sector) 421 n = n->rb_left; 422 else if (sector > rq->sector) 423 n = n->rb_right; 424 else 425 return rq; 426 } 427 428 return NULL; 429 } 430 EXPORT_SYMBOL(elv_rb_find); 431 432 /* 433 * Insert rq into dispatch queue of q. Queue lock must be held on 434 * entry. rq is sort instead into the dispatch queue. To be used by 435 * specific elevators. 436 */ 437 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 438 { 439 sector_t boundary; 440 struct list_head *entry; 441 int stop_flags; 442 443 if (q->last_merge == rq) 444 q->last_merge = NULL; 445 446 elv_rqhash_del(q, rq); 447 448 q->nr_sorted--; 449 450 boundary = q->end_sector; 451 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 452 list_for_each_prev(entry, &q->queue_head) { 453 struct request *pos = list_entry_rq(entry); 454 455 if (blk_discard_rq(rq) != blk_discard_rq(pos)) 456 break; 457 if (rq_data_dir(rq) != rq_data_dir(pos)) 458 break; 459 if (pos->cmd_flags & stop_flags) 460 break; 461 if (rq->sector >= boundary) { 462 if (pos->sector < boundary) 463 continue; 464 } else { 465 if (pos->sector >= boundary) 466 break; 467 } 468 if (rq->sector >= pos->sector) 469 break; 470 } 471 472 list_add(&rq->queuelist, entry); 473 } 474 EXPORT_SYMBOL(elv_dispatch_sort); 475 476 /* 477 * Insert rq into dispatch queue of q. Queue lock must be held on 478 * entry. rq is added to the back of the dispatch queue. To be used by 479 * specific elevators. 480 */ 481 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 482 { 483 if (q->last_merge == rq) 484 q->last_merge = NULL; 485 486 elv_rqhash_del(q, rq); 487 488 q->nr_sorted--; 489 490 q->end_sector = rq_end_sector(rq); 491 q->boundary_rq = rq; 492 list_add_tail(&rq->queuelist, &q->queue_head); 493 } 494 EXPORT_SYMBOL(elv_dispatch_add_tail); 495 496 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 497 { 498 struct elevator_queue *e = q->elevator; 499 struct request *__rq; 500 int ret; 501 502 /* 503 * First try one-hit cache. 504 */ 505 if (q->last_merge) { 506 ret = elv_try_merge(q->last_merge, bio); 507 if (ret != ELEVATOR_NO_MERGE) { 508 *req = q->last_merge; 509 return ret; 510 } 511 } 512 513 if (blk_queue_nomerges(q)) 514 return ELEVATOR_NO_MERGE; 515 516 /* 517 * See if our hash lookup can find a potential backmerge. 518 */ 519 __rq = elv_rqhash_find(q, bio->bi_sector); 520 if (__rq && elv_rq_merge_ok(__rq, bio)) { 521 *req = __rq; 522 return ELEVATOR_BACK_MERGE; 523 } 524 525 if (e->ops->elevator_merge_fn) 526 return e->ops->elevator_merge_fn(q, req, bio); 527 528 return ELEVATOR_NO_MERGE; 529 } 530 531 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 532 { 533 struct elevator_queue *e = q->elevator; 534 535 if (e->ops->elevator_merged_fn) 536 e->ops->elevator_merged_fn(q, rq, type); 537 538 if (type == ELEVATOR_BACK_MERGE) 539 elv_rqhash_reposition(q, rq); 540 541 q->last_merge = rq; 542 } 543 544 void elv_merge_requests(struct request_queue *q, struct request *rq, 545 struct request *next) 546 { 547 struct elevator_queue *e = q->elevator; 548 549 if (e->ops->elevator_merge_req_fn) 550 e->ops->elevator_merge_req_fn(q, rq, next); 551 552 elv_rqhash_reposition(q, rq); 553 elv_rqhash_del(q, next); 554 555 q->nr_sorted--; 556 q->last_merge = rq; 557 } 558 559 void elv_requeue_request(struct request_queue *q, struct request *rq) 560 { 561 /* 562 * it already went through dequeue, we need to decrement the 563 * in_flight count again 564 */ 565 if (blk_account_rq(rq)) { 566 q->in_flight--; 567 if (blk_sorted_rq(rq)) 568 elv_deactivate_rq(q, rq); 569 } 570 571 rq->cmd_flags &= ~REQ_STARTED; 572 573 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 574 } 575 576 void elv_drain_elevator(struct request_queue *q) 577 { 578 static int printed; 579 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 580 ; 581 if (q->nr_sorted == 0) 582 return; 583 if (printed++ < 10) { 584 printk(KERN_ERR "%s: forced dispatching is broken " 585 "(nr_sorted=%u), please report this\n", 586 q->elevator->elevator_type->elevator_name, q->nr_sorted); 587 } 588 } 589 590 /* 591 * Call with queue lock held, interrupts disabled 592 */ 593 void elv_quiesce_start(struct request_queue *q) 594 { 595 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 596 597 /* 598 * make sure we don't have any requests in flight 599 */ 600 elv_drain_elevator(q); 601 while (q->rq.elvpriv) { 602 blk_start_queueing(q); 603 spin_unlock_irq(q->queue_lock); 604 msleep(10); 605 spin_lock_irq(q->queue_lock); 606 elv_drain_elevator(q); 607 } 608 } 609 610 void elv_quiesce_end(struct request_queue *q) 611 { 612 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 613 } 614 615 void elv_insert(struct request_queue *q, struct request *rq, int where) 616 { 617 struct list_head *pos; 618 unsigned ordseq; 619 int unplug_it = 1; 620 621 trace_block_rq_insert(q, rq); 622 623 rq->q = q; 624 625 switch (where) { 626 case ELEVATOR_INSERT_FRONT: 627 rq->cmd_flags |= REQ_SOFTBARRIER; 628 629 list_add(&rq->queuelist, &q->queue_head); 630 break; 631 632 case ELEVATOR_INSERT_BACK: 633 rq->cmd_flags |= REQ_SOFTBARRIER; 634 elv_drain_elevator(q); 635 list_add_tail(&rq->queuelist, &q->queue_head); 636 /* 637 * We kick the queue here for the following reasons. 638 * - The elevator might have returned NULL previously 639 * to delay requests and returned them now. As the 640 * queue wasn't empty before this request, ll_rw_blk 641 * won't run the queue on return, resulting in hang. 642 * - Usually, back inserted requests won't be merged 643 * with anything. There's no point in delaying queue 644 * processing. 645 */ 646 blk_remove_plug(q); 647 blk_start_queueing(q); 648 break; 649 650 case ELEVATOR_INSERT_SORT: 651 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq)); 652 rq->cmd_flags |= REQ_SORTED; 653 q->nr_sorted++; 654 if (rq_mergeable(rq)) { 655 elv_rqhash_add(q, rq); 656 if (!q->last_merge) 657 q->last_merge = rq; 658 } 659 660 /* 661 * Some ioscheds (cfq) run q->request_fn directly, so 662 * rq cannot be accessed after calling 663 * elevator_add_req_fn. 664 */ 665 q->elevator->ops->elevator_add_req_fn(q, rq); 666 break; 667 668 case ELEVATOR_INSERT_REQUEUE: 669 /* 670 * If ordered flush isn't in progress, we do front 671 * insertion; otherwise, requests should be requeued 672 * in ordseq order. 673 */ 674 rq->cmd_flags |= REQ_SOFTBARRIER; 675 676 /* 677 * Most requeues happen because of a busy condition, 678 * don't force unplug of the queue for that case. 679 */ 680 unplug_it = 0; 681 682 if (q->ordseq == 0) { 683 list_add(&rq->queuelist, &q->queue_head); 684 break; 685 } 686 687 ordseq = blk_ordered_req_seq(rq); 688 689 list_for_each(pos, &q->queue_head) { 690 struct request *pos_rq = list_entry_rq(pos); 691 if (ordseq <= blk_ordered_req_seq(pos_rq)) 692 break; 693 } 694 695 list_add_tail(&rq->queuelist, pos); 696 break; 697 698 default: 699 printk(KERN_ERR "%s: bad insertion point %d\n", 700 __func__, where); 701 BUG(); 702 } 703 704 if (unplug_it && blk_queue_plugged(q)) { 705 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC] 706 - q->in_flight; 707 708 if (nrq >= q->unplug_thresh) 709 __generic_unplug_device(q); 710 } 711 } 712 713 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 714 int plug) 715 { 716 if (q->ordcolor) 717 rq->cmd_flags |= REQ_ORDERED_COLOR; 718 719 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 720 /* 721 * toggle ordered color 722 */ 723 if (blk_barrier_rq(rq)) 724 q->ordcolor ^= 1; 725 726 /* 727 * barriers implicitly indicate back insertion 728 */ 729 if (where == ELEVATOR_INSERT_SORT) 730 where = ELEVATOR_INSERT_BACK; 731 732 /* 733 * this request is scheduling boundary, update 734 * end_sector 735 */ 736 if (blk_fs_request(rq) || blk_discard_rq(rq)) { 737 q->end_sector = rq_end_sector(rq); 738 q->boundary_rq = rq; 739 } 740 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 741 where == ELEVATOR_INSERT_SORT) 742 where = ELEVATOR_INSERT_BACK; 743 744 if (plug) 745 blk_plug_device(q); 746 747 elv_insert(q, rq, where); 748 } 749 EXPORT_SYMBOL(__elv_add_request); 750 751 void elv_add_request(struct request_queue *q, struct request *rq, int where, 752 int plug) 753 { 754 unsigned long flags; 755 756 spin_lock_irqsave(q->queue_lock, flags); 757 __elv_add_request(q, rq, where, plug); 758 spin_unlock_irqrestore(q->queue_lock, flags); 759 } 760 EXPORT_SYMBOL(elv_add_request); 761 762 static inline struct request *__elv_next_request(struct request_queue *q) 763 { 764 struct request *rq; 765 766 while (1) { 767 while (!list_empty(&q->queue_head)) { 768 rq = list_entry_rq(q->queue_head.next); 769 if (blk_do_ordered(q, &rq)) 770 return rq; 771 } 772 773 if (!q->elevator->ops->elevator_dispatch_fn(q, 0)) 774 return NULL; 775 } 776 } 777 778 struct request *elv_next_request(struct request_queue *q) 779 { 780 struct request *rq; 781 int ret; 782 783 while ((rq = __elv_next_request(q)) != NULL) { 784 if (!(rq->cmd_flags & REQ_STARTED)) { 785 /* 786 * This is the first time the device driver 787 * sees this request (possibly after 788 * requeueing). Notify IO scheduler. 789 */ 790 if (blk_sorted_rq(rq)) 791 elv_activate_rq(q, rq); 792 793 /* 794 * just mark as started even if we don't start 795 * it, a request that has been delayed should 796 * not be passed by new incoming requests 797 */ 798 rq->cmd_flags |= REQ_STARTED; 799 trace_block_rq_issue(q, rq); 800 } 801 802 if (!q->boundary_rq || q->boundary_rq == rq) { 803 q->end_sector = rq_end_sector(rq); 804 q->boundary_rq = NULL; 805 } 806 807 if (rq->cmd_flags & REQ_DONTPREP) 808 break; 809 810 if (q->dma_drain_size && rq->data_len) { 811 /* 812 * make sure space for the drain appears we 813 * know we can do this because max_hw_segments 814 * has been adjusted to be one fewer than the 815 * device can handle 816 */ 817 rq->nr_phys_segments++; 818 } 819 820 if (!q->prep_rq_fn) 821 break; 822 823 ret = q->prep_rq_fn(q, rq); 824 if (ret == BLKPREP_OK) { 825 break; 826 } else if (ret == BLKPREP_DEFER) { 827 /* 828 * the request may have been (partially) prepped. 829 * we need to keep this request in the front to 830 * avoid resource deadlock. REQ_STARTED will 831 * prevent other fs requests from passing this one. 832 */ 833 if (q->dma_drain_size && rq->data_len && 834 !(rq->cmd_flags & REQ_DONTPREP)) { 835 /* 836 * remove the space for the drain we added 837 * so that we don't add it again 838 */ 839 --rq->nr_phys_segments; 840 } 841 842 rq = NULL; 843 break; 844 } else if (ret == BLKPREP_KILL) { 845 rq->cmd_flags |= REQ_QUIET; 846 __blk_end_request(rq, -EIO, blk_rq_bytes(rq)); 847 } else { 848 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 849 break; 850 } 851 } 852 853 return rq; 854 } 855 EXPORT_SYMBOL(elv_next_request); 856 857 void elv_dequeue_request(struct request_queue *q, struct request *rq) 858 { 859 BUG_ON(list_empty(&rq->queuelist)); 860 BUG_ON(ELV_ON_HASH(rq)); 861 862 list_del_init(&rq->queuelist); 863 864 /* 865 * the time frame between a request being removed from the lists 866 * and to it is freed is accounted as io that is in progress at 867 * the driver side. 868 */ 869 if (blk_account_rq(rq)) 870 q->in_flight++; 871 } 872 873 int elv_queue_empty(struct request_queue *q) 874 { 875 struct elevator_queue *e = q->elevator; 876 877 if (!list_empty(&q->queue_head)) 878 return 0; 879 880 if (e->ops->elevator_queue_empty_fn) 881 return e->ops->elevator_queue_empty_fn(q); 882 883 return 1; 884 } 885 EXPORT_SYMBOL(elv_queue_empty); 886 887 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 888 { 889 struct elevator_queue *e = q->elevator; 890 891 if (e->ops->elevator_latter_req_fn) 892 return e->ops->elevator_latter_req_fn(q, rq); 893 return NULL; 894 } 895 896 struct request *elv_former_request(struct request_queue *q, struct request *rq) 897 { 898 struct elevator_queue *e = q->elevator; 899 900 if (e->ops->elevator_former_req_fn) 901 return e->ops->elevator_former_req_fn(q, rq); 902 return NULL; 903 } 904 905 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 906 { 907 struct elevator_queue *e = q->elevator; 908 909 if (e->ops->elevator_set_req_fn) 910 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 911 912 rq->elevator_private = NULL; 913 return 0; 914 } 915 916 void elv_put_request(struct request_queue *q, struct request *rq) 917 { 918 struct elevator_queue *e = q->elevator; 919 920 if (e->ops->elevator_put_req_fn) 921 e->ops->elevator_put_req_fn(rq); 922 } 923 924 int elv_may_queue(struct request_queue *q, int rw) 925 { 926 struct elevator_queue *e = q->elevator; 927 928 if (e->ops->elevator_may_queue_fn) 929 return e->ops->elevator_may_queue_fn(q, rw); 930 931 return ELV_MQUEUE_MAY; 932 } 933 934 void elv_abort_queue(struct request_queue *q) 935 { 936 struct request *rq; 937 938 while (!list_empty(&q->queue_head)) { 939 rq = list_entry_rq(q->queue_head.next); 940 rq->cmd_flags |= REQ_QUIET; 941 trace_block_rq_abort(q, rq); 942 __blk_end_request(rq, -EIO, blk_rq_bytes(rq)); 943 } 944 } 945 EXPORT_SYMBOL(elv_abort_queue); 946 947 void elv_completed_request(struct request_queue *q, struct request *rq) 948 { 949 struct elevator_queue *e = q->elevator; 950 951 /* 952 * request is released from the driver, io must be done 953 */ 954 if (blk_account_rq(rq)) { 955 q->in_flight--; 956 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 957 e->ops->elevator_completed_req_fn(q, rq); 958 } 959 960 /* 961 * Check if the queue is waiting for fs requests to be 962 * drained for flush sequence. 963 */ 964 if (unlikely(q->ordseq)) { 965 struct request *next = NULL; 966 967 if (!list_empty(&q->queue_head)) 968 next = list_entry_rq(q->queue_head.next); 969 970 if (!q->in_flight && 971 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 972 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) { 973 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 974 blk_start_queueing(q); 975 } 976 } 977 } 978 979 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 980 981 static ssize_t 982 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 983 { 984 struct elv_fs_entry *entry = to_elv(attr); 985 struct elevator_queue *e; 986 ssize_t error; 987 988 if (!entry->show) 989 return -EIO; 990 991 e = container_of(kobj, struct elevator_queue, kobj); 992 mutex_lock(&e->sysfs_lock); 993 error = e->ops ? entry->show(e, page) : -ENOENT; 994 mutex_unlock(&e->sysfs_lock); 995 return error; 996 } 997 998 static ssize_t 999 elv_attr_store(struct kobject *kobj, struct attribute *attr, 1000 const char *page, size_t length) 1001 { 1002 struct elv_fs_entry *entry = to_elv(attr); 1003 struct elevator_queue *e; 1004 ssize_t error; 1005 1006 if (!entry->store) 1007 return -EIO; 1008 1009 e = container_of(kobj, struct elevator_queue, kobj); 1010 mutex_lock(&e->sysfs_lock); 1011 error = e->ops ? entry->store(e, page, length) : -ENOENT; 1012 mutex_unlock(&e->sysfs_lock); 1013 return error; 1014 } 1015 1016 static struct sysfs_ops elv_sysfs_ops = { 1017 .show = elv_attr_show, 1018 .store = elv_attr_store, 1019 }; 1020 1021 static struct kobj_type elv_ktype = { 1022 .sysfs_ops = &elv_sysfs_ops, 1023 .release = elevator_release, 1024 }; 1025 1026 int elv_register_queue(struct request_queue *q) 1027 { 1028 struct elevator_queue *e = q->elevator; 1029 int error; 1030 1031 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 1032 if (!error) { 1033 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 1034 if (attr) { 1035 while (attr->attr.name) { 1036 if (sysfs_create_file(&e->kobj, &attr->attr)) 1037 break; 1038 attr++; 1039 } 1040 } 1041 kobject_uevent(&e->kobj, KOBJ_ADD); 1042 } 1043 return error; 1044 } 1045 1046 static void __elv_unregister_queue(struct elevator_queue *e) 1047 { 1048 kobject_uevent(&e->kobj, KOBJ_REMOVE); 1049 kobject_del(&e->kobj); 1050 } 1051 1052 void elv_unregister_queue(struct request_queue *q) 1053 { 1054 if (q) 1055 __elv_unregister_queue(q->elevator); 1056 } 1057 1058 void elv_register(struct elevator_type *e) 1059 { 1060 char *def = ""; 1061 1062 spin_lock(&elv_list_lock); 1063 BUG_ON(elevator_find(e->elevator_name)); 1064 list_add_tail(&e->list, &elv_list); 1065 spin_unlock(&elv_list_lock); 1066 1067 if (!strcmp(e->elevator_name, chosen_elevator) || 1068 (!*chosen_elevator && 1069 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 1070 def = " (default)"; 1071 1072 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 1073 def); 1074 } 1075 EXPORT_SYMBOL_GPL(elv_register); 1076 1077 void elv_unregister(struct elevator_type *e) 1078 { 1079 struct task_struct *g, *p; 1080 1081 /* 1082 * Iterate every thread in the process to remove the io contexts. 1083 */ 1084 if (e->ops.trim) { 1085 read_lock(&tasklist_lock); 1086 do_each_thread(g, p) { 1087 task_lock(p); 1088 if (p->io_context) 1089 e->ops.trim(p->io_context); 1090 task_unlock(p); 1091 } while_each_thread(g, p); 1092 read_unlock(&tasklist_lock); 1093 } 1094 1095 spin_lock(&elv_list_lock); 1096 list_del_init(&e->list); 1097 spin_unlock(&elv_list_lock); 1098 } 1099 EXPORT_SYMBOL_GPL(elv_unregister); 1100 1101 /* 1102 * switch to new_e io scheduler. be careful not to introduce deadlocks - 1103 * we don't free the old io scheduler, before we have allocated what we 1104 * need for the new one. this way we have a chance of going back to the old 1105 * one, if the new one fails init for some reason. 1106 */ 1107 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 1108 { 1109 struct elevator_queue *old_elevator, *e; 1110 void *data; 1111 1112 /* 1113 * Allocate new elevator 1114 */ 1115 e = elevator_alloc(q, new_e); 1116 if (!e) 1117 return 0; 1118 1119 data = elevator_init_queue(q, e); 1120 if (!data) { 1121 kobject_put(&e->kobj); 1122 return 0; 1123 } 1124 1125 /* 1126 * Turn on BYPASS and drain all requests w/ elevator private data 1127 */ 1128 spin_lock_irq(q->queue_lock); 1129 elv_quiesce_start(q); 1130 1131 /* 1132 * Remember old elevator. 1133 */ 1134 old_elevator = q->elevator; 1135 1136 /* 1137 * attach and start new elevator 1138 */ 1139 elevator_attach(q, e, data); 1140 1141 spin_unlock_irq(q->queue_lock); 1142 1143 __elv_unregister_queue(old_elevator); 1144 1145 if (elv_register_queue(q)) 1146 goto fail_register; 1147 1148 /* 1149 * finally exit old elevator and turn off BYPASS. 1150 */ 1151 elevator_exit(old_elevator); 1152 spin_lock_irq(q->queue_lock); 1153 elv_quiesce_end(q); 1154 spin_unlock_irq(q->queue_lock); 1155 1156 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1157 1158 return 1; 1159 1160 fail_register: 1161 /* 1162 * switch failed, exit the new io scheduler and reattach the old 1163 * one again (along with re-adding the sysfs dir) 1164 */ 1165 elevator_exit(e); 1166 q->elevator = old_elevator; 1167 elv_register_queue(q); 1168 1169 spin_lock_irq(q->queue_lock); 1170 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1171 spin_unlock_irq(q->queue_lock); 1172 1173 return 0; 1174 } 1175 1176 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1177 size_t count) 1178 { 1179 char elevator_name[ELV_NAME_MAX]; 1180 struct elevator_type *e; 1181 1182 strlcpy(elevator_name, name, sizeof(elevator_name)); 1183 strstrip(elevator_name); 1184 1185 e = elevator_get(elevator_name); 1186 if (!e) { 1187 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1188 return -EINVAL; 1189 } 1190 1191 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1192 elevator_put(e); 1193 return count; 1194 } 1195 1196 if (!elevator_switch(q, e)) 1197 printk(KERN_ERR "elevator: switch to %s failed\n", 1198 elevator_name); 1199 return count; 1200 } 1201 1202 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1203 { 1204 struct elevator_queue *e = q->elevator; 1205 struct elevator_type *elv = e->elevator_type; 1206 struct elevator_type *__e; 1207 int len = 0; 1208 1209 spin_lock(&elv_list_lock); 1210 list_for_each_entry(__e, &elv_list, list) { 1211 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1212 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1213 else 1214 len += sprintf(name+len, "%s ", __e->elevator_name); 1215 } 1216 spin_unlock(&elv_list_lock); 1217 1218 len += sprintf(len+name, "\n"); 1219 return len; 1220 } 1221 1222 struct request *elv_rb_former_request(struct request_queue *q, 1223 struct request *rq) 1224 { 1225 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1226 1227 if (rbprev) 1228 return rb_entry_rq(rbprev); 1229 1230 return NULL; 1231 } 1232 EXPORT_SYMBOL(elv_rb_former_request); 1233 1234 struct request *elv_rb_latter_request(struct request_queue *q, 1235 struct request *rq) 1236 { 1237 struct rb_node *rbnext = rb_next(&rq->rb_node); 1238 1239 if (rbnext) 1240 return rb_entry_rq(rbnext); 1241 1242 return NULL; 1243 } 1244 EXPORT_SYMBOL(elv_rb_latter_request); 1245