xref: /openbmc/linux/block/elevator.c (revision 78c99ba1)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->ops->elevator_allow_merge_fn)
66 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!rq_mergeable(rq))
77 		return 0;
78 
79 	/*
80 	 * Don't merge file system requests and discard requests
81 	 */
82 	if (bio_discard(bio) != bio_discard(rq->bio))
83 		return 0;
84 
85 	/*
86 	 * different data direction or already started, don't merge
87 	 */
88 	if (bio_data_dir(bio) != rq_data_dir(rq))
89 		return 0;
90 
91 	/*
92 	 * must be same device and not a special request
93 	 */
94 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
95 		return 0;
96 
97 	/*
98 	 * only merge integrity protected bio into ditto rq
99 	 */
100 	if (bio_integrity(bio) != blk_integrity_rq(rq))
101 		return 0;
102 
103 	if (!elv_iosched_allow_merge(rq, bio))
104 		return 0;
105 
106 	return 1;
107 }
108 EXPORT_SYMBOL(elv_rq_merge_ok);
109 
110 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
111 {
112 	int ret = ELEVATOR_NO_MERGE;
113 
114 	/*
115 	 * we can merge and sequence is ok, check if it's possible
116 	 */
117 	if (elv_rq_merge_ok(__rq, bio)) {
118 		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
119 			ret = ELEVATOR_BACK_MERGE;
120 		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
121 			ret = ELEVATOR_FRONT_MERGE;
122 	}
123 
124 	return ret;
125 }
126 
127 static struct elevator_type *elevator_find(const char *name)
128 {
129 	struct elevator_type *e;
130 
131 	list_for_each_entry(e, &elv_list, list) {
132 		if (!strcmp(e->elevator_name, name))
133 			return e;
134 	}
135 
136 	return NULL;
137 }
138 
139 static void elevator_put(struct elevator_type *e)
140 {
141 	module_put(e->elevator_owner);
142 }
143 
144 static struct elevator_type *elevator_get(const char *name)
145 {
146 	struct elevator_type *e;
147 
148 	spin_lock(&elv_list_lock);
149 
150 	e = elevator_find(name);
151 	if (!e) {
152 		char elv[ELV_NAME_MAX + strlen("-iosched")];
153 
154 		spin_unlock(&elv_list_lock);
155 
156 		if (!strcmp(name, "anticipatory"))
157 			sprintf(elv, "as-iosched");
158 		else
159 			sprintf(elv, "%s-iosched", name);
160 
161 		request_module("%s", elv);
162 		spin_lock(&elv_list_lock);
163 		e = elevator_find(name);
164 	}
165 
166 	if (e && !try_module_get(e->elevator_owner))
167 		e = NULL;
168 
169 	spin_unlock(&elv_list_lock);
170 
171 	return e;
172 }
173 
174 static void *elevator_init_queue(struct request_queue *q,
175 				 struct elevator_queue *eq)
176 {
177 	return eq->ops->elevator_init_fn(q);
178 }
179 
180 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
181 			   void *data)
182 {
183 	q->elevator = eq;
184 	eq->elevator_data = data;
185 }
186 
187 static char chosen_elevator[16];
188 
189 static int __init elevator_setup(char *str)
190 {
191 	/*
192 	 * Be backwards-compatible with previous kernels, so users
193 	 * won't get the wrong elevator.
194 	 */
195 	if (!strcmp(str, "as"))
196 		strcpy(chosen_elevator, "anticipatory");
197 	else
198 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
199 	return 1;
200 }
201 
202 __setup("elevator=", elevator_setup);
203 
204 static struct kobj_type elv_ktype;
205 
206 static struct elevator_queue *elevator_alloc(struct request_queue *q,
207 				  struct elevator_type *e)
208 {
209 	struct elevator_queue *eq;
210 	int i;
211 
212 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
213 	if (unlikely(!eq))
214 		goto err;
215 
216 	eq->ops = &e->ops;
217 	eq->elevator_type = e;
218 	kobject_init(&eq->kobj, &elv_ktype);
219 	mutex_init(&eq->sysfs_lock);
220 
221 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
222 					GFP_KERNEL, q->node);
223 	if (!eq->hash)
224 		goto err;
225 
226 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
227 		INIT_HLIST_HEAD(&eq->hash[i]);
228 
229 	return eq;
230 err:
231 	kfree(eq);
232 	elevator_put(e);
233 	return NULL;
234 }
235 
236 static void elevator_release(struct kobject *kobj)
237 {
238 	struct elevator_queue *e;
239 
240 	e = container_of(kobj, struct elevator_queue, kobj);
241 	elevator_put(e->elevator_type);
242 	kfree(e->hash);
243 	kfree(e);
244 }
245 
246 int elevator_init(struct request_queue *q, char *name)
247 {
248 	struct elevator_type *e = NULL;
249 	struct elevator_queue *eq;
250 	int ret = 0;
251 	void *data;
252 
253 	INIT_LIST_HEAD(&q->queue_head);
254 	q->last_merge = NULL;
255 	q->end_sector = 0;
256 	q->boundary_rq = NULL;
257 
258 	if (name) {
259 		e = elevator_get(name);
260 		if (!e)
261 			return -EINVAL;
262 	}
263 
264 	if (!e && *chosen_elevator) {
265 		e = elevator_get(chosen_elevator);
266 		if (!e)
267 			printk(KERN_ERR "I/O scheduler %s not found\n",
268 							chosen_elevator);
269 	}
270 
271 	if (!e) {
272 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
273 		if (!e) {
274 			printk(KERN_ERR
275 				"Default I/O scheduler not found. " \
276 				"Using noop.\n");
277 			e = elevator_get("noop");
278 		}
279 	}
280 
281 	eq = elevator_alloc(q, e);
282 	if (!eq)
283 		return -ENOMEM;
284 
285 	data = elevator_init_queue(q, eq);
286 	if (!data) {
287 		kobject_put(&eq->kobj);
288 		return -ENOMEM;
289 	}
290 
291 	elevator_attach(q, eq, data);
292 	return ret;
293 }
294 EXPORT_SYMBOL(elevator_init);
295 
296 void elevator_exit(struct elevator_queue *e)
297 {
298 	mutex_lock(&e->sysfs_lock);
299 	if (e->ops->elevator_exit_fn)
300 		e->ops->elevator_exit_fn(e);
301 	e->ops = NULL;
302 	mutex_unlock(&e->sysfs_lock);
303 
304 	kobject_put(&e->kobj);
305 }
306 EXPORT_SYMBOL(elevator_exit);
307 
308 static inline void __elv_rqhash_del(struct request *rq)
309 {
310 	hlist_del_init(&rq->hash);
311 }
312 
313 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
314 {
315 	if (ELV_ON_HASH(rq))
316 		__elv_rqhash_del(rq);
317 }
318 
319 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
320 {
321 	struct elevator_queue *e = q->elevator;
322 
323 	BUG_ON(ELV_ON_HASH(rq));
324 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
325 }
326 
327 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
328 {
329 	__elv_rqhash_del(rq);
330 	elv_rqhash_add(q, rq);
331 }
332 
333 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
334 {
335 	struct elevator_queue *e = q->elevator;
336 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
337 	struct hlist_node *entry, *next;
338 	struct request *rq;
339 
340 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
341 		BUG_ON(!ELV_ON_HASH(rq));
342 
343 		if (unlikely(!rq_mergeable(rq))) {
344 			__elv_rqhash_del(rq);
345 			continue;
346 		}
347 
348 		if (rq_hash_key(rq) == offset)
349 			return rq;
350 	}
351 
352 	return NULL;
353 }
354 
355 /*
356  * RB-tree support functions for inserting/lookup/removal of requests
357  * in a sorted RB tree.
358  */
359 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
360 {
361 	struct rb_node **p = &root->rb_node;
362 	struct rb_node *parent = NULL;
363 	struct request *__rq;
364 
365 	while (*p) {
366 		parent = *p;
367 		__rq = rb_entry(parent, struct request, rb_node);
368 
369 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
370 			p = &(*p)->rb_left;
371 		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
372 			p = &(*p)->rb_right;
373 		else
374 			return __rq;
375 	}
376 
377 	rb_link_node(&rq->rb_node, parent, p);
378 	rb_insert_color(&rq->rb_node, root);
379 	return NULL;
380 }
381 EXPORT_SYMBOL(elv_rb_add);
382 
383 void elv_rb_del(struct rb_root *root, struct request *rq)
384 {
385 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
386 	rb_erase(&rq->rb_node, root);
387 	RB_CLEAR_NODE(&rq->rb_node);
388 }
389 EXPORT_SYMBOL(elv_rb_del);
390 
391 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
392 {
393 	struct rb_node *n = root->rb_node;
394 	struct request *rq;
395 
396 	while (n) {
397 		rq = rb_entry(n, struct request, rb_node);
398 
399 		if (sector < blk_rq_pos(rq))
400 			n = n->rb_left;
401 		else if (sector > blk_rq_pos(rq))
402 			n = n->rb_right;
403 		else
404 			return rq;
405 	}
406 
407 	return NULL;
408 }
409 EXPORT_SYMBOL(elv_rb_find);
410 
411 /*
412  * Insert rq into dispatch queue of q.  Queue lock must be held on
413  * entry.  rq is sort instead into the dispatch queue. To be used by
414  * specific elevators.
415  */
416 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
417 {
418 	sector_t boundary;
419 	struct list_head *entry;
420 	int stop_flags;
421 
422 	if (q->last_merge == rq)
423 		q->last_merge = NULL;
424 
425 	elv_rqhash_del(q, rq);
426 
427 	q->nr_sorted--;
428 
429 	boundary = q->end_sector;
430 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
431 	list_for_each_prev(entry, &q->queue_head) {
432 		struct request *pos = list_entry_rq(entry);
433 
434 		if (blk_discard_rq(rq) != blk_discard_rq(pos))
435 			break;
436 		if (rq_data_dir(rq) != rq_data_dir(pos))
437 			break;
438 		if (pos->cmd_flags & stop_flags)
439 			break;
440 		if (blk_rq_pos(rq) >= boundary) {
441 			if (blk_rq_pos(pos) < boundary)
442 				continue;
443 		} else {
444 			if (blk_rq_pos(pos) >= boundary)
445 				break;
446 		}
447 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
448 			break;
449 	}
450 
451 	list_add(&rq->queuelist, entry);
452 }
453 EXPORT_SYMBOL(elv_dispatch_sort);
454 
455 /*
456  * Insert rq into dispatch queue of q.  Queue lock must be held on
457  * entry.  rq is added to the back of the dispatch queue. To be used by
458  * specific elevators.
459  */
460 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
461 {
462 	if (q->last_merge == rq)
463 		q->last_merge = NULL;
464 
465 	elv_rqhash_del(q, rq);
466 
467 	q->nr_sorted--;
468 
469 	q->end_sector = rq_end_sector(rq);
470 	q->boundary_rq = rq;
471 	list_add_tail(&rq->queuelist, &q->queue_head);
472 }
473 EXPORT_SYMBOL(elv_dispatch_add_tail);
474 
475 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
476 {
477 	struct elevator_queue *e = q->elevator;
478 	struct request *__rq;
479 	int ret;
480 
481 	/*
482 	 * First try one-hit cache.
483 	 */
484 	if (q->last_merge) {
485 		ret = elv_try_merge(q->last_merge, bio);
486 		if (ret != ELEVATOR_NO_MERGE) {
487 			*req = q->last_merge;
488 			return ret;
489 		}
490 	}
491 
492 	if (blk_queue_nomerges(q))
493 		return ELEVATOR_NO_MERGE;
494 
495 	/*
496 	 * See if our hash lookup can find a potential backmerge.
497 	 */
498 	__rq = elv_rqhash_find(q, bio->bi_sector);
499 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
500 		*req = __rq;
501 		return ELEVATOR_BACK_MERGE;
502 	}
503 
504 	if (e->ops->elevator_merge_fn)
505 		return e->ops->elevator_merge_fn(q, req, bio);
506 
507 	return ELEVATOR_NO_MERGE;
508 }
509 
510 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
511 {
512 	struct elevator_queue *e = q->elevator;
513 
514 	if (e->ops->elevator_merged_fn)
515 		e->ops->elevator_merged_fn(q, rq, type);
516 
517 	if (type == ELEVATOR_BACK_MERGE)
518 		elv_rqhash_reposition(q, rq);
519 
520 	q->last_merge = rq;
521 }
522 
523 void elv_merge_requests(struct request_queue *q, struct request *rq,
524 			     struct request *next)
525 {
526 	struct elevator_queue *e = q->elevator;
527 
528 	if (e->ops->elevator_merge_req_fn)
529 		e->ops->elevator_merge_req_fn(q, rq, next);
530 
531 	elv_rqhash_reposition(q, rq);
532 	elv_rqhash_del(q, next);
533 
534 	q->nr_sorted--;
535 	q->last_merge = rq;
536 }
537 
538 void elv_requeue_request(struct request_queue *q, struct request *rq)
539 {
540 	/*
541 	 * it already went through dequeue, we need to decrement the
542 	 * in_flight count again
543 	 */
544 	if (blk_account_rq(rq)) {
545 		q->in_flight[rq_is_sync(rq)]--;
546 		if (blk_sorted_rq(rq))
547 			elv_deactivate_rq(q, rq);
548 	}
549 
550 	rq->cmd_flags &= ~REQ_STARTED;
551 
552 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
553 }
554 
555 void elv_drain_elevator(struct request_queue *q)
556 {
557 	static int printed;
558 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
559 		;
560 	if (q->nr_sorted == 0)
561 		return;
562 	if (printed++ < 10) {
563 		printk(KERN_ERR "%s: forced dispatching is broken "
564 		       "(nr_sorted=%u), please report this\n",
565 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
566 	}
567 }
568 
569 /*
570  * Call with queue lock held, interrupts disabled
571  */
572 void elv_quiesce_start(struct request_queue *q)
573 {
574 	if (!q->elevator)
575 		return;
576 
577 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
578 
579 	/*
580 	 * make sure we don't have any requests in flight
581 	 */
582 	elv_drain_elevator(q);
583 	while (q->rq.elvpriv) {
584 		__blk_run_queue(q);
585 		spin_unlock_irq(q->queue_lock);
586 		msleep(10);
587 		spin_lock_irq(q->queue_lock);
588 		elv_drain_elevator(q);
589 	}
590 }
591 
592 void elv_quiesce_end(struct request_queue *q)
593 {
594 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
595 }
596 
597 void elv_insert(struct request_queue *q, struct request *rq, int where)
598 {
599 	struct list_head *pos;
600 	unsigned ordseq;
601 	int unplug_it = 1;
602 
603 	trace_block_rq_insert(q, rq);
604 
605 	rq->q = q;
606 
607 	switch (where) {
608 	case ELEVATOR_INSERT_FRONT:
609 		rq->cmd_flags |= REQ_SOFTBARRIER;
610 
611 		list_add(&rq->queuelist, &q->queue_head);
612 		break;
613 
614 	case ELEVATOR_INSERT_BACK:
615 		rq->cmd_flags |= REQ_SOFTBARRIER;
616 		elv_drain_elevator(q);
617 		list_add_tail(&rq->queuelist, &q->queue_head);
618 		/*
619 		 * We kick the queue here for the following reasons.
620 		 * - The elevator might have returned NULL previously
621 		 *   to delay requests and returned them now.  As the
622 		 *   queue wasn't empty before this request, ll_rw_blk
623 		 *   won't run the queue on return, resulting in hang.
624 		 * - Usually, back inserted requests won't be merged
625 		 *   with anything.  There's no point in delaying queue
626 		 *   processing.
627 		 */
628 		__blk_run_queue(q);
629 		break;
630 
631 	case ELEVATOR_INSERT_SORT:
632 		BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
633 		rq->cmd_flags |= REQ_SORTED;
634 		q->nr_sorted++;
635 		if (rq_mergeable(rq)) {
636 			elv_rqhash_add(q, rq);
637 			if (!q->last_merge)
638 				q->last_merge = rq;
639 		}
640 
641 		/*
642 		 * Some ioscheds (cfq) run q->request_fn directly, so
643 		 * rq cannot be accessed after calling
644 		 * elevator_add_req_fn.
645 		 */
646 		q->elevator->ops->elevator_add_req_fn(q, rq);
647 		break;
648 
649 	case ELEVATOR_INSERT_REQUEUE:
650 		/*
651 		 * If ordered flush isn't in progress, we do front
652 		 * insertion; otherwise, requests should be requeued
653 		 * in ordseq order.
654 		 */
655 		rq->cmd_flags |= REQ_SOFTBARRIER;
656 
657 		/*
658 		 * Most requeues happen because of a busy condition,
659 		 * don't force unplug of the queue for that case.
660 		 */
661 		unplug_it = 0;
662 
663 		if (q->ordseq == 0) {
664 			list_add(&rq->queuelist, &q->queue_head);
665 			break;
666 		}
667 
668 		ordseq = blk_ordered_req_seq(rq);
669 
670 		list_for_each(pos, &q->queue_head) {
671 			struct request *pos_rq = list_entry_rq(pos);
672 			if (ordseq <= blk_ordered_req_seq(pos_rq))
673 				break;
674 		}
675 
676 		list_add_tail(&rq->queuelist, pos);
677 		break;
678 
679 	default:
680 		printk(KERN_ERR "%s: bad insertion point %d\n",
681 		       __func__, where);
682 		BUG();
683 	}
684 
685 	if (unplug_it && blk_queue_plugged(q)) {
686 		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
687 				- queue_in_flight(q);
688 
689 		if (nrq >= q->unplug_thresh)
690 			__generic_unplug_device(q);
691 	}
692 }
693 
694 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
695 		       int plug)
696 {
697 	if (q->ordcolor)
698 		rq->cmd_flags |= REQ_ORDERED_COLOR;
699 
700 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
701 		/*
702 		 * toggle ordered color
703 		 */
704 		if (blk_barrier_rq(rq))
705 			q->ordcolor ^= 1;
706 
707 		/*
708 		 * barriers implicitly indicate back insertion
709 		 */
710 		if (where == ELEVATOR_INSERT_SORT)
711 			where = ELEVATOR_INSERT_BACK;
712 
713 		/*
714 		 * this request is scheduling boundary, update
715 		 * end_sector
716 		 */
717 		if (blk_fs_request(rq) || blk_discard_rq(rq)) {
718 			q->end_sector = rq_end_sector(rq);
719 			q->boundary_rq = rq;
720 		}
721 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
722 		    where == ELEVATOR_INSERT_SORT)
723 		where = ELEVATOR_INSERT_BACK;
724 
725 	if (plug)
726 		blk_plug_device(q);
727 
728 	elv_insert(q, rq, where);
729 }
730 EXPORT_SYMBOL(__elv_add_request);
731 
732 void elv_add_request(struct request_queue *q, struct request *rq, int where,
733 		     int plug)
734 {
735 	unsigned long flags;
736 
737 	spin_lock_irqsave(q->queue_lock, flags);
738 	__elv_add_request(q, rq, where, plug);
739 	spin_unlock_irqrestore(q->queue_lock, flags);
740 }
741 EXPORT_SYMBOL(elv_add_request);
742 
743 int elv_queue_empty(struct request_queue *q)
744 {
745 	struct elevator_queue *e = q->elevator;
746 
747 	if (!list_empty(&q->queue_head))
748 		return 0;
749 
750 	if (e->ops->elevator_queue_empty_fn)
751 		return e->ops->elevator_queue_empty_fn(q);
752 
753 	return 1;
754 }
755 EXPORT_SYMBOL(elv_queue_empty);
756 
757 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
758 {
759 	struct elevator_queue *e = q->elevator;
760 
761 	if (e->ops->elevator_latter_req_fn)
762 		return e->ops->elevator_latter_req_fn(q, rq);
763 	return NULL;
764 }
765 
766 struct request *elv_former_request(struct request_queue *q, struct request *rq)
767 {
768 	struct elevator_queue *e = q->elevator;
769 
770 	if (e->ops->elevator_former_req_fn)
771 		return e->ops->elevator_former_req_fn(q, rq);
772 	return NULL;
773 }
774 
775 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
776 {
777 	struct elevator_queue *e = q->elevator;
778 
779 	if (e->ops->elevator_set_req_fn)
780 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
781 
782 	rq->elevator_private = NULL;
783 	return 0;
784 }
785 
786 void elv_put_request(struct request_queue *q, struct request *rq)
787 {
788 	struct elevator_queue *e = q->elevator;
789 
790 	if (e->ops->elevator_put_req_fn)
791 		e->ops->elevator_put_req_fn(rq);
792 }
793 
794 int elv_may_queue(struct request_queue *q, int rw)
795 {
796 	struct elevator_queue *e = q->elevator;
797 
798 	if (e->ops->elevator_may_queue_fn)
799 		return e->ops->elevator_may_queue_fn(q, rw);
800 
801 	return ELV_MQUEUE_MAY;
802 }
803 
804 void elv_abort_queue(struct request_queue *q)
805 {
806 	struct request *rq;
807 
808 	while (!list_empty(&q->queue_head)) {
809 		rq = list_entry_rq(q->queue_head.next);
810 		rq->cmd_flags |= REQ_QUIET;
811 		trace_block_rq_abort(q, rq);
812 		/*
813 		 * Mark this request as started so we don't trigger
814 		 * any debug logic in the end I/O path.
815 		 */
816 		blk_start_request(rq);
817 		__blk_end_request_all(rq, -EIO);
818 	}
819 }
820 EXPORT_SYMBOL(elv_abort_queue);
821 
822 void elv_completed_request(struct request_queue *q, struct request *rq)
823 {
824 	struct elevator_queue *e = q->elevator;
825 
826 	/*
827 	 * request is released from the driver, io must be done
828 	 */
829 	if (blk_account_rq(rq)) {
830 		q->in_flight[rq_is_sync(rq)]--;
831 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
832 			e->ops->elevator_completed_req_fn(q, rq);
833 	}
834 
835 	/*
836 	 * Check if the queue is waiting for fs requests to be
837 	 * drained for flush sequence.
838 	 */
839 	if (unlikely(q->ordseq)) {
840 		struct request *next = NULL;
841 
842 		if (!list_empty(&q->queue_head))
843 			next = list_entry_rq(q->queue_head.next);
844 
845 		if (!queue_in_flight(q) &&
846 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
847 		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
848 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
849 			__blk_run_queue(q);
850 		}
851 	}
852 }
853 
854 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
855 
856 static ssize_t
857 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
858 {
859 	struct elv_fs_entry *entry = to_elv(attr);
860 	struct elevator_queue *e;
861 	ssize_t error;
862 
863 	if (!entry->show)
864 		return -EIO;
865 
866 	e = container_of(kobj, struct elevator_queue, kobj);
867 	mutex_lock(&e->sysfs_lock);
868 	error = e->ops ? entry->show(e, page) : -ENOENT;
869 	mutex_unlock(&e->sysfs_lock);
870 	return error;
871 }
872 
873 static ssize_t
874 elv_attr_store(struct kobject *kobj, struct attribute *attr,
875 	       const char *page, size_t length)
876 {
877 	struct elv_fs_entry *entry = to_elv(attr);
878 	struct elevator_queue *e;
879 	ssize_t error;
880 
881 	if (!entry->store)
882 		return -EIO;
883 
884 	e = container_of(kobj, struct elevator_queue, kobj);
885 	mutex_lock(&e->sysfs_lock);
886 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
887 	mutex_unlock(&e->sysfs_lock);
888 	return error;
889 }
890 
891 static struct sysfs_ops elv_sysfs_ops = {
892 	.show	= elv_attr_show,
893 	.store	= elv_attr_store,
894 };
895 
896 static struct kobj_type elv_ktype = {
897 	.sysfs_ops	= &elv_sysfs_ops,
898 	.release	= elevator_release,
899 };
900 
901 int elv_register_queue(struct request_queue *q)
902 {
903 	struct elevator_queue *e = q->elevator;
904 	int error;
905 
906 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
907 	if (!error) {
908 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
909 		if (attr) {
910 			while (attr->attr.name) {
911 				if (sysfs_create_file(&e->kobj, &attr->attr))
912 					break;
913 				attr++;
914 			}
915 		}
916 		kobject_uevent(&e->kobj, KOBJ_ADD);
917 	}
918 	return error;
919 }
920 
921 static void __elv_unregister_queue(struct elevator_queue *e)
922 {
923 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
924 	kobject_del(&e->kobj);
925 }
926 
927 void elv_unregister_queue(struct request_queue *q)
928 {
929 	if (q)
930 		__elv_unregister_queue(q->elevator);
931 }
932 
933 void elv_register(struct elevator_type *e)
934 {
935 	char *def = "";
936 
937 	spin_lock(&elv_list_lock);
938 	BUG_ON(elevator_find(e->elevator_name));
939 	list_add_tail(&e->list, &elv_list);
940 	spin_unlock(&elv_list_lock);
941 
942 	if (!strcmp(e->elevator_name, chosen_elevator) ||
943 			(!*chosen_elevator &&
944 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
945 				def = " (default)";
946 
947 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
948 								def);
949 }
950 EXPORT_SYMBOL_GPL(elv_register);
951 
952 void elv_unregister(struct elevator_type *e)
953 {
954 	struct task_struct *g, *p;
955 
956 	/*
957 	 * Iterate every thread in the process to remove the io contexts.
958 	 */
959 	if (e->ops.trim) {
960 		read_lock(&tasklist_lock);
961 		do_each_thread(g, p) {
962 			task_lock(p);
963 			if (p->io_context)
964 				e->ops.trim(p->io_context);
965 			task_unlock(p);
966 		} while_each_thread(g, p);
967 		read_unlock(&tasklist_lock);
968 	}
969 
970 	spin_lock(&elv_list_lock);
971 	list_del_init(&e->list);
972 	spin_unlock(&elv_list_lock);
973 }
974 EXPORT_SYMBOL_GPL(elv_unregister);
975 
976 /*
977  * switch to new_e io scheduler. be careful not to introduce deadlocks -
978  * we don't free the old io scheduler, before we have allocated what we
979  * need for the new one. this way we have a chance of going back to the old
980  * one, if the new one fails init for some reason.
981  */
982 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
983 {
984 	struct elevator_queue *old_elevator, *e;
985 	void *data;
986 
987 	/*
988 	 * Allocate new elevator
989 	 */
990 	e = elevator_alloc(q, new_e);
991 	if (!e)
992 		return 0;
993 
994 	data = elevator_init_queue(q, e);
995 	if (!data) {
996 		kobject_put(&e->kobj);
997 		return 0;
998 	}
999 
1000 	/*
1001 	 * Turn on BYPASS and drain all requests w/ elevator private data
1002 	 */
1003 	spin_lock_irq(q->queue_lock);
1004 	elv_quiesce_start(q);
1005 
1006 	/*
1007 	 * Remember old elevator.
1008 	 */
1009 	old_elevator = q->elevator;
1010 
1011 	/*
1012 	 * attach and start new elevator
1013 	 */
1014 	elevator_attach(q, e, data);
1015 
1016 	spin_unlock_irq(q->queue_lock);
1017 
1018 	__elv_unregister_queue(old_elevator);
1019 
1020 	if (elv_register_queue(q))
1021 		goto fail_register;
1022 
1023 	/*
1024 	 * finally exit old elevator and turn off BYPASS.
1025 	 */
1026 	elevator_exit(old_elevator);
1027 	spin_lock_irq(q->queue_lock);
1028 	elv_quiesce_end(q);
1029 	spin_unlock_irq(q->queue_lock);
1030 
1031 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1032 
1033 	return 1;
1034 
1035 fail_register:
1036 	/*
1037 	 * switch failed, exit the new io scheduler and reattach the old
1038 	 * one again (along with re-adding the sysfs dir)
1039 	 */
1040 	elevator_exit(e);
1041 	q->elevator = old_elevator;
1042 	elv_register_queue(q);
1043 
1044 	spin_lock_irq(q->queue_lock);
1045 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1046 	spin_unlock_irq(q->queue_lock);
1047 
1048 	return 0;
1049 }
1050 
1051 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1052 			  size_t count)
1053 {
1054 	char elevator_name[ELV_NAME_MAX];
1055 	struct elevator_type *e;
1056 
1057 	if (!q->elevator)
1058 		return count;
1059 
1060 	strlcpy(elevator_name, name, sizeof(elevator_name));
1061 	strstrip(elevator_name);
1062 
1063 	e = elevator_get(elevator_name);
1064 	if (!e) {
1065 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1066 		return -EINVAL;
1067 	}
1068 
1069 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1070 		elevator_put(e);
1071 		return count;
1072 	}
1073 
1074 	if (!elevator_switch(q, e))
1075 		printk(KERN_ERR "elevator: switch to %s failed\n",
1076 							elevator_name);
1077 	return count;
1078 }
1079 
1080 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1081 {
1082 	struct elevator_queue *e = q->elevator;
1083 	struct elevator_type *elv;
1084 	struct elevator_type *__e;
1085 	int len = 0;
1086 
1087 	if (!q->elevator)
1088 		return sprintf(name, "none\n");
1089 
1090 	elv = e->elevator_type;
1091 
1092 	spin_lock(&elv_list_lock);
1093 	list_for_each_entry(__e, &elv_list, list) {
1094 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1095 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1096 		else
1097 			len += sprintf(name+len, "%s ", __e->elevator_name);
1098 	}
1099 	spin_unlock(&elv_list_lock);
1100 
1101 	len += sprintf(len+name, "\n");
1102 	return len;
1103 }
1104 
1105 struct request *elv_rb_former_request(struct request_queue *q,
1106 				      struct request *rq)
1107 {
1108 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1109 
1110 	if (rbprev)
1111 		return rb_entry_rq(rbprev);
1112 
1113 	return NULL;
1114 }
1115 EXPORT_SYMBOL(elv_rb_former_request);
1116 
1117 struct request *elv_rb_latter_request(struct request_queue *q,
1118 				      struct request *rq)
1119 {
1120 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1121 
1122 	if (rbnext)
1123 		return rb_entry_rq(rbnext);
1124 
1125 	return NULL;
1126 }
1127 EXPORT_SYMBOL(elv_rb_latter_request);
1128