1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 38 #include <asm/uaccess.h> 39 40 static DEFINE_SPINLOCK(elv_list_lock); 41 static LIST_HEAD(elv_list); 42 43 /* 44 * Merge hash stuff. 45 */ 46 static const int elv_hash_shift = 6; 47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 48 #define ELV_HASH_FN(sec) \ 49 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 50 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 51 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) 52 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash)) 53 54 /* 55 * Query io scheduler to see if the current process issuing bio may be 56 * merged with rq. 57 */ 58 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 59 { 60 struct request_queue *q = rq->q; 61 elevator_t *e = q->elevator; 62 63 if (e->ops->elevator_allow_merge_fn) 64 return e->ops->elevator_allow_merge_fn(q, rq, bio); 65 66 return 1; 67 } 68 69 /* 70 * can we safely merge with this request? 71 */ 72 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio) 73 { 74 if (!rq_mergeable(rq)) 75 return 0; 76 77 /* 78 * different data direction or already started, don't merge 79 */ 80 if (bio_data_dir(bio) != rq_data_dir(rq)) 81 return 0; 82 83 /* 84 * must be same device and not a special request 85 */ 86 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 87 return 0; 88 89 if (!elv_iosched_allow_merge(rq, bio)) 90 return 0; 91 92 return 1; 93 } 94 EXPORT_SYMBOL(elv_rq_merge_ok); 95 96 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 97 { 98 int ret = ELEVATOR_NO_MERGE; 99 100 /* 101 * we can merge and sequence is ok, check if it's possible 102 */ 103 if (elv_rq_merge_ok(__rq, bio)) { 104 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 105 ret = ELEVATOR_BACK_MERGE; 106 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 107 ret = ELEVATOR_FRONT_MERGE; 108 } 109 110 return ret; 111 } 112 113 static struct elevator_type *elevator_find(const char *name) 114 { 115 struct elevator_type *e; 116 117 list_for_each_entry(e, &elv_list, list) { 118 if (!strcmp(e->elevator_name, name)) 119 return e; 120 } 121 122 return NULL; 123 } 124 125 static void elevator_put(struct elevator_type *e) 126 { 127 module_put(e->elevator_owner); 128 } 129 130 static struct elevator_type *elevator_get(const char *name) 131 { 132 struct elevator_type *e; 133 134 spin_lock(&elv_list_lock); 135 136 e = elevator_find(name); 137 if (e && !try_module_get(e->elevator_owner)) 138 e = NULL; 139 140 spin_unlock(&elv_list_lock); 141 142 return e; 143 } 144 145 static void *elevator_init_queue(struct request_queue *q, 146 struct elevator_queue *eq) 147 { 148 return eq->ops->elevator_init_fn(q); 149 } 150 151 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 152 void *data) 153 { 154 q->elevator = eq; 155 eq->elevator_data = data; 156 } 157 158 static char chosen_elevator[16]; 159 160 static int __init elevator_setup(char *str) 161 { 162 /* 163 * Be backwards-compatible with previous kernels, so users 164 * won't get the wrong elevator. 165 */ 166 if (!strcmp(str, "as")) 167 strcpy(chosen_elevator, "anticipatory"); 168 else 169 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 170 return 1; 171 } 172 173 __setup("elevator=", elevator_setup); 174 175 static struct kobj_type elv_ktype; 176 177 static elevator_t *elevator_alloc(struct request_queue *q, 178 struct elevator_type *e) 179 { 180 elevator_t *eq; 181 int i; 182 183 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node); 184 if (unlikely(!eq)) 185 goto err; 186 187 eq->ops = &e->ops; 188 eq->elevator_type = e; 189 kobject_init(&eq->kobj, &elv_ktype); 190 mutex_init(&eq->sysfs_lock); 191 192 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 193 GFP_KERNEL, q->node); 194 if (!eq->hash) 195 goto err; 196 197 for (i = 0; i < ELV_HASH_ENTRIES; i++) 198 INIT_HLIST_HEAD(&eq->hash[i]); 199 200 return eq; 201 err: 202 kfree(eq); 203 elevator_put(e); 204 return NULL; 205 } 206 207 static void elevator_release(struct kobject *kobj) 208 { 209 elevator_t *e = container_of(kobj, elevator_t, kobj); 210 211 elevator_put(e->elevator_type); 212 kfree(e->hash); 213 kfree(e); 214 } 215 216 int elevator_init(struct request_queue *q, char *name) 217 { 218 struct elevator_type *e = NULL; 219 struct elevator_queue *eq; 220 int ret = 0; 221 void *data; 222 223 INIT_LIST_HEAD(&q->queue_head); 224 q->last_merge = NULL; 225 q->end_sector = 0; 226 q->boundary_rq = NULL; 227 228 if (name) { 229 e = elevator_get(name); 230 if (!e) 231 return -EINVAL; 232 } 233 234 if (!e && *chosen_elevator) { 235 e = elevator_get(chosen_elevator); 236 if (!e) 237 printk(KERN_ERR "I/O scheduler %s not found\n", 238 chosen_elevator); 239 } 240 241 if (!e) { 242 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 243 if (!e) { 244 printk(KERN_ERR 245 "Default I/O scheduler not found. " \ 246 "Using noop.\n"); 247 e = elevator_get("noop"); 248 } 249 } 250 251 eq = elevator_alloc(q, e); 252 if (!eq) 253 return -ENOMEM; 254 255 data = elevator_init_queue(q, eq); 256 if (!data) { 257 kobject_put(&eq->kobj); 258 return -ENOMEM; 259 } 260 261 elevator_attach(q, eq, data); 262 return ret; 263 } 264 EXPORT_SYMBOL(elevator_init); 265 266 void elevator_exit(elevator_t *e) 267 { 268 mutex_lock(&e->sysfs_lock); 269 if (e->ops->elevator_exit_fn) 270 e->ops->elevator_exit_fn(e); 271 e->ops = NULL; 272 mutex_unlock(&e->sysfs_lock); 273 274 kobject_put(&e->kobj); 275 } 276 EXPORT_SYMBOL(elevator_exit); 277 278 static void elv_activate_rq(struct request_queue *q, struct request *rq) 279 { 280 elevator_t *e = q->elevator; 281 282 if (e->ops->elevator_activate_req_fn) 283 e->ops->elevator_activate_req_fn(q, rq); 284 } 285 286 static void elv_deactivate_rq(struct request_queue *q, struct request *rq) 287 { 288 elevator_t *e = q->elevator; 289 290 if (e->ops->elevator_deactivate_req_fn) 291 e->ops->elevator_deactivate_req_fn(q, rq); 292 } 293 294 static inline void __elv_rqhash_del(struct request *rq) 295 { 296 hlist_del_init(&rq->hash); 297 } 298 299 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 300 { 301 if (ELV_ON_HASH(rq)) 302 __elv_rqhash_del(rq); 303 } 304 305 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 306 { 307 elevator_t *e = q->elevator; 308 309 BUG_ON(ELV_ON_HASH(rq)); 310 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 311 } 312 313 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 314 { 315 __elv_rqhash_del(rq); 316 elv_rqhash_add(q, rq); 317 } 318 319 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 320 { 321 elevator_t *e = q->elevator; 322 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 323 struct hlist_node *entry, *next; 324 struct request *rq; 325 326 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 327 BUG_ON(!ELV_ON_HASH(rq)); 328 329 if (unlikely(!rq_mergeable(rq))) { 330 __elv_rqhash_del(rq); 331 continue; 332 } 333 334 if (rq_hash_key(rq) == offset) 335 return rq; 336 } 337 338 return NULL; 339 } 340 341 /* 342 * RB-tree support functions for inserting/lookup/removal of requests 343 * in a sorted RB tree. 344 */ 345 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 346 { 347 struct rb_node **p = &root->rb_node; 348 struct rb_node *parent = NULL; 349 struct request *__rq; 350 351 while (*p) { 352 parent = *p; 353 __rq = rb_entry(parent, struct request, rb_node); 354 355 if (rq->sector < __rq->sector) 356 p = &(*p)->rb_left; 357 else if (rq->sector > __rq->sector) 358 p = &(*p)->rb_right; 359 else 360 return __rq; 361 } 362 363 rb_link_node(&rq->rb_node, parent, p); 364 rb_insert_color(&rq->rb_node, root); 365 return NULL; 366 } 367 EXPORT_SYMBOL(elv_rb_add); 368 369 void elv_rb_del(struct rb_root *root, struct request *rq) 370 { 371 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 372 rb_erase(&rq->rb_node, root); 373 RB_CLEAR_NODE(&rq->rb_node); 374 } 375 EXPORT_SYMBOL(elv_rb_del); 376 377 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 378 { 379 struct rb_node *n = root->rb_node; 380 struct request *rq; 381 382 while (n) { 383 rq = rb_entry(n, struct request, rb_node); 384 385 if (sector < rq->sector) 386 n = n->rb_left; 387 else if (sector > rq->sector) 388 n = n->rb_right; 389 else 390 return rq; 391 } 392 393 return NULL; 394 } 395 EXPORT_SYMBOL(elv_rb_find); 396 397 /* 398 * Insert rq into dispatch queue of q. Queue lock must be held on 399 * entry. rq is sort instead into the dispatch queue. To be used by 400 * specific elevators. 401 */ 402 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 403 { 404 sector_t boundary; 405 struct list_head *entry; 406 int stop_flags; 407 408 if (q->last_merge == rq) 409 q->last_merge = NULL; 410 411 elv_rqhash_del(q, rq); 412 413 q->nr_sorted--; 414 415 boundary = q->end_sector; 416 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 417 list_for_each_prev(entry, &q->queue_head) { 418 struct request *pos = list_entry_rq(entry); 419 420 if (rq_data_dir(rq) != rq_data_dir(pos)) 421 break; 422 if (pos->cmd_flags & stop_flags) 423 break; 424 if (rq->sector >= boundary) { 425 if (pos->sector < boundary) 426 continue; 427 } else { 428 if (pos->sector >= boundary) 429 break; 430 } 431 if (rq->sector >= pos->sector) 432 break; 433 } 434 435 list_add(&rq->queuelist, entry); 436 } 437 EXPORT_SYMBOL(elv_dispatch_sort); 438 439 /* 440 * Insert rq into dispatch queue of q. Queue lock must be held on 441 * entry. rq is added to the back of the dispatch queue. To be used by 442 * specific elevators. 443 */ 444 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 445 { 446 if (q->last_merge == rq) 447 q->last_merge = NULL; 448 449 elv_rqhash_del(q, rq); 450 451 q->nr_sorted--; 452 453 q->end_sector = rq_end_sector(rq); 454 q->boundary_rq = rq; 455 list_add_tail(&rq->queuelist, &q->queue_head); 456 } 457 EXPORT_SYMBOL(elv_dispatch_add_tail); 458 459 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 460 { 461 elevator_t *e = q->elevator; 462 struct request *__rq; 463 int ret; 464 465 /* 466 * First try one-hit cache. 467 */ 468 if (q->last_merge) { 469 ret = elv_try_merge(q->last_merge, bio); 470 if (ret != ELEVATOR_NO_MERGE) { 471 *req = q->last_merge; 472 return ret; 473 } 474 } 475 476 /* 477 * See if our hash lookup can find a potential backmerge. 478 */ 479 __rq = elv_rqhash_find(q, bio->bi_sector); 480 if (__rq && elv_rq_merge_ok(__rq, bio)) { 481 *req = __rq; 482 return ELEVATOR_BACK_MERGE; 483 } 484 485 if (e->ops->elevator_merge_fn) 486 return e->ops->elevator_merge_fn(q, req, bio); 487 488 return ELEVATOR_NO_MERGE; 489 } 490 491 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 492 { 493 elevator_t *e = q->elevator; 494 495 if (e->ops->elevator_merged_fn) 496 e->ops->elevator_merged_fn(q, rq, type); 497 498 if (type == ELEVATOR_BACK_MERGE) 499 elv_rqhash_reposition(q, rq); 500 501 q->last_merge = rq; 502 } 503 504 void elv_merge_requests(struct request_queue *q, struct request *rq, 505 struct request *next) 506 { 507 elevator_t *e = q->elevator; 508 509 if (e->ops->elevator_merge_req_fn) 510 e->ops->elevator_merge_req_fn(q, rq, next); 511 512 elv_rqhash_reposition(q, rq); 513 elv_rqhash_del(q, next); 514 515 q->nr_sorted--; 516 q->last_merge = rq; 517 } 518 519 void elv_requeue_request(struct request_queue *q, struct request *rq) 520 { 521 /* 522 * it already went through dequeue, we need to decrement the 523 * in_flight count again 524 */ 525 if (blk_account_rq(rq)) { 526 q->in_flight--; 527 if (blk_sorted_rq(rq)) 528 elv_deactivate_rq(q, rq); 529 } 530 531 rq->cmd_flags &= ~REQ_STARTED; 532 533 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 534 } 535 536 static void elv_drain_elevator(struct request_queue *q) 537 { 538 static int printed; 539 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 540 ; 541 if (q->nr_sorted == 0) 542 return; 543 if (printed++ < 10) { 544 printk(KERN_ERR "%s: forced dispatching is broken " 545 "(nr_sorted=%u), please report this\n", 546 q->elevator->elevator_type->elevator_name, q->nr_sorted); 547 } 548 } 549 550 void elv_insert(struct request_queue *q, struct request *rq, int where) 551 { 552 struct list_head *pos; 553 unsigned ordseq; 554 int unplug_it = 1; 555 556 blk_add_trace_rq(q, rq, BLK_TA_INSERT); 557 558 rq->q = q; 559 560 switch (where) { 561 case ELEVATOR_INSERT_FRONT: 562 rq->cmd_flags |= REQ_SOFTBARRIER; 563 564 list_add(&rq->queuelist, &q->queue_head); 565 break; 566 567 case ELEVATOR_INSERT_BACK: 568 rq->cmd_flags |= REQ_SOFTBARRIER; 569 elv_drain_elevator(q); 570 list_add_tail(&rq->queuelist, &q->queue_head); 571 /* 572 * We kick the queue here for the following reasons. 573 * - The elevator might have returned NULL previously 574 * to delay requests and returned them now. As the 575 * queue wasn't empty before this request, ll_rw_blk 576 * won't run the queue on return, resulting in hang. 577 * - Usually, back inserted requests won't be merged 578 * with anything. There's no point in delaying queue 579 * processing. 580 */ 581 blk_remove_plug(q); 582 q->request_fn(q); 583 break; 584 585 case ELEVATOR_INSERT_SORT: 586 BUG_ON(!blk_fs_request(rq)); 587 rq->cmd_flags |= REQ_SORTED; 588 q->nr_sorted++; 589 if (rq_mergeable(rq)) { 590 elv_rqhash_add(q, rq); 591 if (!q->last_merge) 592 q->last_merge = rq; 593 } 594 595 /* 596 * Some ioscheds (cfq) run q->request_fn directly, so 597 * rq cannot be accessed after calling 598 * elevator_add_req_fn. 599 */ 600 q->elevator->ops->elevator_add_req_fn(q, rq); 601 break; 602 603 case ELEVATOR_INSERT_REQUEUE: 604 /* 605 * If ordered flush isn't in progress, we do front 606 * insertion; otherwise, requests should be requeued 607 * in ordseq order. 608 */ 609 rq->cmd_flags |= REQ_SOFTBARRIER; 610 611 /* 612 * Most requeues happen because of a busy condition, 613 * don't force unplug of the queue for that case. 614 */ 615 unplug_it = 0; 616 617 if (q->ordseq == 0) { 618 list_add(&rq->queuelist, &q->queue_head); 619 break; 620 } 621 622 ordseq = blk_ordered_req_seq(rq); 623 624 list_for_each(pos, &q->queue_head) { 625 struct request *pos_rq = list_entry_rq(pos); 626 if (ordseq <= blk_ordered_req_seq(pos_rq)) 627 break; 628 } 629 630 list_add_tail(&rq->queuelist, pos); 631 break; 632 633 default: 634 printk(KERN_ERR "%s: bad insertion point %d\n", 635 __FUNCTION__, where); 636 BUG(); 637 } 638 639 if (unplug_it && blk_queue_plugged(q)) { 640 int nrq = q->rq.count[READ] + q->rq.count[WRITE] 641 - q->in_flight; 642 643 if (nrq >= q->unplug_thresh) 644 __generic_unplug_device(q); 645 } 646 } 647 648 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 649 int plug) 650 { 651 if (q->ordcolor) 652 rq->cmd_flags |= REQ_ORDERED_COLOR; 653 654 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 655 /* 656 * toggle ordered color 657 */ 658 if (blk_barrier_rq(rq)) 659 q->ordcolor ^= 1; 660 661 /* 662 * barriers implicitly indicate back insertion 663 */ 664 if (where == ELEVATOR_INSERT_SORT) 665 where = ELEVATOR_INSERT_BACK; 666 667 /* 668 * this request is scheduling boundary, update 669 * end_sector 670 */ 671 if (blk_fs_request(rq)) { 672 q->end_sector = rq_end_sector(rq); 673 q->boundary_rq = rq; 674 } 675 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 676 where == ELEVATOR_INSERT_SORT) 677 where = ELEVATOR_INSERT_BACK; 678 679 if (plug) 680 blk_plug_device(q); 681 682 elv_insert(q, rq, where); 683 } 684 EXPORT_SYMBOL(__elv_add_request); 685 686 void elv_add_request(struct request_queue *q, struct request *rq, int where, 687 int plug) 688 { 689 unsigned long flags; 690 691 spin_lock_irqsave(q->queue_lock, flags); 692 __elv_add_request(q, rq, where, plug); 693 spin_unlock_irqrestore(q->queue_lock, flags); 694 } 695 EXPORT_SYMBOL(elv_add_request); 696 697 static inline struct request *__elv_next_request(struct request_queue *q) 698 { 699 struct request *rq; 700 701 while (1) { 702 while (!list_empty(&q->queue_head)) { 703 rq = list_entry_rq(q->queue_head.next); 704 if (blk_do_ordered(q, &rq)) 705 return rq; 706 } 707 708 if (!q->elevator->ops->elevator_dispatch_fn(q, 0)) 709 return NULL; 710 } 711 } 712 713 struct request *elv_next_request(struct request_queue *q) 714 { 715 struct request *rq; 716 int ret; 717 718 while ((rq = __elv_next_request(q)) != NULL) { 719 /* 720 * Kill the empty barrier place holder, the driver must 721 * not ever see it. 722 */ 723 if (blk_empty_barrier(rq)) { 724 end_queued_request(rq, 1); 725 continue; 726 } 727 if (!(rq->cmd_flags & REQ_STARTED)) { 728 /* 729 * This is the first time the device driver 730 * sees this request (possibly after 731 * requeueing). Notify IO scheduler. 732 */ 733 if (blk_sorted_rq(rq)) 734 elv_activate_rq(q, rq); 735 736 /* 737 * just mark as started even if we don't start 738 * it, a request that has been delayed should 739 * not be passed by new incoming requests 740 */ 741 rq->cmd_flags |= REQ_STARTED; 742 blk_add_trace_rq(q, rq, BLK_TA_ISSUE); 743 } 744 745 if (!q->boundary_rq || q->boundary_rq == rq) { 746 q->end_sector = rq_end_sector(rq); 747 q->boundary_rq = NULL; 748 } 749 750 if (rq->cmd_flags & REQ_DONTPREP) 751 break; 752 753 if (q->dma_drain_size && rq->data_len) { 754 /* 755 * make sure space for the drain appears we 756 * know we can do this because max_hw_segments 757 * has been adjusted to be one fewer than the 758 * device can handle 759 */ 760 rq->nr_phys_segments++; 761 rq->nr_hw_segments++; 762 } 763 764 if (!q->prep_rq_fn) 765 break; 766 767 ret = q->prep_rq_fn(q, rq); 768 if (ret == BLKPREP_OK) { 769 break; 770 } else if (ret == BLKPREP_DEFER) { 771 /* 772 * the request may have been (partially) prepped. 773 * we need to keep this request in the front to 774 * avoid resource deadlock. REQ_STARTED will 775 * prevent other fs requests from passing this one. 776 */ 777 if (q->dma_drain_size && rq->data_len && 778 !(rq->cmd_flags & REQ_DONTPREP)) { 779 /* 780 * remove the space for the drain we added 781 * so that we don't add it again 782 */ 783 --rq->nr_phys_segments; 784 --rq->nr_hw_segments; 785 } 786 787 rq = NULL; 788 break; 789 } else if (ret == BLKPREP_KILL) { 790 rq->cmd_flags |= REQ_QUIET; 791 end_queued_request(rq, 0); 792 } else { 793 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__, 794 ret); 795 break; 796 } 797 } 798 799 return rq; 800 } 801 EXPORT_SYMBOL(elv_next_request); 802 803 void elv_dequeue_request(struct request_queue *q, struct request *rq) 804 { 805 BUG_ON(list_empty(&rq->queuelist)); 806 BUG_ON(ELV_ON_HASH(rq)); 807 808 list_del_init(&rq->queuelist); 809 810 /* 811 * the time frame between a request being removed from the lists 812 * and to it is freed is accounted as io that is in progress at 813 * the driver side. 814 */ 815 if (blk_account_rq(rq)) 816 q->in_flight++; 817 } 818 EXPORT_SYMBOL(elv_dequeue_request); 819 820 int elv_queue_empty(struct request_queue *q) 821 { 822 elevator_t *e = q->elevator; 823 824 if (!list_empty(&q->queue_head)) 825 return 0; 826 827 if (e->ops->elevator_queue_empty_fn) 828 return e->ops->elevator_queue_empty_fn(q); 829 830 return 1; 831 } 832 EXPORT_SYMBOL(elv_queue_empty); 833 834 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 835 { 836 elevator_t *e = q->elevator; 837 838 if (e->ops->elevator_latter_req_fn) 839 return e->ops->elevator_latter_req_fn(q, rq); 840 return NULL; 841 } 842 843 struct request *elv_former_request(struct request_queue *q, struct request *rq) 844 { 845 elevator_t *e = q->elevator; 846 847 if (e->ops->elevator_former_req_fn) 848 return e->ops->elevator_former_req_fn(q, rq); 849 return NULL; 850 } 851 852 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 853 { 854 elevator_t *e = q->elevator; 855 856 if (e->ops->elevator_set_req_fn) 857 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 858 859 rq->elevator_private = NULL; 860 return 0; 861 } 862 863 void elv_put_request(struct request_queue *q, struct request *rq) 864 { 865 elevator_t *e = q->elevator; 866 867 if (e->ops->elevator_put_req_fn) 868 e->ops->elevator_put_req_fn(rq); 869 } 870 871 int elv_may_queue(struct request_queue *q, int rw) 872 { 873 elevator_t *e = q->elevator; 874 875 if (e->ops->elevator_may_queue_fn) 876 return e->ops->elevator_may_queue_fn(q, rw); 877 878 return ELV_MQUEUE_MAY; 879 } 880 881 void elv_completed_request(struct request_queue *q, struct request *rq) 882 { 883 elevator_t *e = q->elevator; 884 885 /* 886 * request is released from the driver, io must be done 887 */ 888 if (blk_account_rq(rq)) { 889 q->in_flight--; 890 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 891 e->ops->elevator_completed_req_fn(q, rq); 892 } 893 894 /* 895 * Check if the queue is waiting for fs requests to be 896 * drained for flush sequence. 897 */ 898 if (unlikely(q->ordseq)) { 899 struct request *first_rq = list_entry_rq(q->queue_head.next); 900 if (q->in_flight == 0 && 901 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 902 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) { 903 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 904 q->request_fn(q); 905 } 906 } 907 } 908 909 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 910 911 static ssize_t 912 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 913 { 914 elevator_t *e = container_of(kobj, elevator_t, kobj); 915 struct elv_fs_entry *entry = to_elv(attr); 916 ssize_t error; 917 918 if (!entry->show) 919 return -EIO; 920 921 mutex_lock(&e->sysfs_lock); 922 error = e->ops ? entry->show(e, page) : -ENOENT; 923 mutex_unlock(&e->sysfs_lock); 924 return error; 925 } 926 927 static ssize_t 928 elv_attr_store(struct kobject *kobj, struct attribute *attr, 929 const char *page, size_t length) 930 { 931 elevator_t *e = container_of(kobj, elevator_t, kobj); 932 struct elv_fs_entry *entry = to_elv(attr); 933 ssize_t error; 934 935 if (!entry->store) 936 return -EIO; 937 938 mutex_lock(&e->sysfs_lock); 939 error = e->ops ? entry->store(e, page, length) : -ENOENT; 940 mutex_unlock(&e->sysfs_lock); 941 return error; 942 } 943 944 static struct sysfs_ops elv_sysfs_ops = { 945 .show = elv_attr_show, 946 .store = elv_attr_store, 947 }; 948 949 static struct kobj_type elv_ktype = { 950 .sysfs_ops = &elv_sysfs_ops, 951 .release = elevator_release, 952 }; 953 954 int elv_register_queue(struct request_queue *q) 955 { 956 elevator_t *e = q->elevator; 957 int error; 958 959 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 960 if (!error) { 961 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 962 if (attr) { 963 while (attr->attr.name) { 964 if (sysfs_create_file(&e->kobj, &attr->attr)) 965 break; 966 attr++; 967 } 968 } 969 kobject_uevent(&e->kobj, KOBJ_ADD); 970 } 971 return error; 972 } 973 974 static void __elv_unregister_queue(elevator_t *e) 975 { 976 kobject_uevent(&e->kobj, KOBJ_REMOVE); 977 kobject_del(&e->kobj); 978 } 979 980 void elv_unregister_queue(struct request_queue *q) 981 { 982 if (q) 983 __elv_unregister_queue(q->elevator); 984 } 985 986 void elv_register(struct elevator_type *e) 987 { 988 char *def = ""; 989 990 spin_lock(&elv_list_lock); 991 BUG_ON(elevator_find(e->elevator_name)); 992 list_add_tail(&e->list, &elv_list); 993 spin_unlock(&elv_list_lock); 994 995 if (!strcmp(e->elevator_name, chosen_elevator) || 996 (!*chosen_elevator && 997 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 998 def = " (default)"; 999 1000 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 1001 def); 1002 } 1003 EXPORT_SYMBOL_GPL(elv_register); 1004 1005 void elv_unregister(struct elevator_type *e) 1006 { 1007 struct task_struct *g, *p; 1008 1009 /* 1010 * Iterate every thread in the process to remove the io contexts. 1011 */ 1012 if (e->ops.trim) { 1013 read_lock(&tasklist_lock); 1014 do_each_thread(g, p) { 1015 task_lock(p); 1016 if (p->io_context) 1017 e->ops.trim(p->io_context); 1018 task_unlock(p); 1019 } while_each_thread(g, p); 1020 read_unlock(&tasklist_lock); 1021 } 1022 1023 spin_lock(&elv_list_lock); 1024 list_del_init(&e->list); 1025 spin_unlock(&elv_list_lock); 1026 } 1027 EXPORT_SYMBOL_GPL(elv_unregister); 1028 1029 /* 1030 * switch to new_e io scheduler. be careful not to introduce deadlocks - 1031 * we don't free the old io scheduler, before we have allocated what we 1032 * need for the new one. this way we have a chance of going back to the old 1033 * one, if the new one fails init for some reason. 1034 */ 1035 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 1036 { 1037 elevator_t *old_elevator, *e; 1038 void *data; 1039 1040 /* 1041 * Allocate new elevator 1042 */ 1043 e = elevator_alloc(q, new_e); 1044 if (!e) 1045 return 0; 1046 1047 data = elevator_init_queue(q, e); 1048 if (!data) { 1049 kobject_put(&e->kobj); 1050 return 0; 1051 } 1052 1053 /* 1054 * Turn on BYPASS and drain all requests w/ elevator private data 1055 */ 1056 spin_lock_irq(q->queue_lock); 1057 1058 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1059 1060 elv_drain_elevator(q); 1061 1062 while (q->rq.elvpriv) { 1063 blk_remove_plug(q); 1064 q->request_fn(q); 1065 spin_unlock_irq(q->queue_lock); 1066 msleep(10); 1067 spin_lock_irq(q->queue_lock); 1068 elv_drain_elevator(q); 1069 } 1070 1071 /* 1072 * Remember old elevator. 1073 */ 1074 old_elevator = q->elevator; 1075 1076 /* 1077 * attach and start new elevator 1078 */ 1079 elevator_attach(q, e, data); 1080 1081 spin_unlock_irq(q->queue_lock); 1082 1083 __elv_unregister_queue(old_elevator); 1084 1085 if (elv_register_queue(q)) 1086 goto fail_register; 1087 1088 /* 1089 * finally exit old elevator and turn off BYPASS. 1090 */ 1091 elevator_exit(old_elevator); 1092 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1093 return 1; 1094 1095 fail_register: 1096 /* 1097 * switch failed, exit the new io scheduler and reattach the old 1098 * one again (along with re-adding the sysfs dir) 1099 */ 1100 elevator_exit(e); 1101 q->elevator = old_elevator; 1102 elv_register_queue(q); 1103 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1104 return 0; 1105 } 1106 1107 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1108 size_t count) 1109 { 1110 char elevator_name[ELV_NAME_MAX]; 1111 size_t len; 1112 struct elevator_type *e; 1113 1114 elevator_name[sizeof(elevator_name) - 1] = '\0'; 1115 strncpy(elevator_name, name, sizeof(elevator_name) - 1); 1116 len = strlen(elevator_name); 1117 1118 if (len && elevator_name[len - 1] == '\n') 1119 elevator_name[len - 1] = '\0'; 1120 1121 e = elevator_get(elevator_name); 1122 if (!e) { 1123 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1124 return -EINVAL; 1125 } 1126 1127 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1128 elevator_put(e); 1129 return count; 1130 } 1131 1132 if (!elevator_switch(q, e)) 1133 printk(KERN_ERR "elevator: switch to %s failed\n", 1134 elevator_name); 1135 return count; 1136 } 1137 1138 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1139 { 1140 elevator_t *e = q->elevator; 1141 struct elevator_type *elv = e->elevator_type; 1142 struct elevator_type *__e; 1143 int len = 0; 1144 1145 spin_lock(&elv_list_lock); 1146 list_for_each_entry(__e, &elv_list, list) { 1147 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1148 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1149 else 1150 len += sprintf(name+len, "%s ", __e->elevator_name); 1151 } 1152 spin_unlock(&elv_list_lock); 1153 1154 len += sprintf(len+name, "\n"); 1155 return len; 1156 } 1157 1158 struct request *elv_rb_former_request(struct request_queue *q, 1159 struct request *rq) 1160 { 1161 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1162 1163 if (rbprev) 1164 return rb_entry_rq(rbprev); 1165 1166 return NULL; 1167 } 1168 EXPORT_SYMBOL(elv_rb_former_request); 1169 1170 struct request *elv_rb_latter_request(struct request_queue *q, 1171 struct request *rq) 1172 { 1173 struct rb_node *rbnext = rb_next(&rq->rb_node); 1174 1175 if (rbnext) 1176 return rb_entry_rq(rbnext); 1177 1178 return NULL; 1179 } 1180 EXPORT_SYMBOL(elv_rb_latter_request); 1181