xref: /openbmc/linux/block/elevator.c (revision 643d1f7f)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
48 #define ELV_HASH_FN(sec)	\
49 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
50 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
51 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
52 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
53 
54 /*
55  * Query io scheduler to see if the current process issuing bio may be
56  * merged with rq.
57  */
58 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
59 {
60 	struct request_queue *q = rq->q;
61 	elevator_t *e = q->elevator;
62 
63 	if (e->ops->elevator_allow_merge_fn)
64 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
65 
66 	return 1;
67 }
68 
69 /*
70  * can we safely merge with this request?
71  */
72 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
73 {
74 	if (!rq_mergeable(rq))
75 		return 0;
76 
77 	/*
78 	 * different data direction or already started, don't merge
79 	 */
80 	if (bio_data_dir(bio) != rq_data_dir(rq))
81 		return 0;
82 
83 	/*
84 	 * must be same device and not a special request
85 	 */
86 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
87 		return 0;
88 
89 	if (!elv_iosched_allow_merge(rq, bio))
90 		return 0;
91 
92 	return 1;
93 }
94 EXPORT_SYMBOL(elv_rq_merge_ok);
95 
96 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
97 {
98 	int ret = ELEVATOR_NO_MERGE;
99 
100 	/*
101 	 * we can merge and sequence is ok, check if it's possible
102 	 */
103 	if (elv_rq_merge_ok(__rq, bio)) {
104 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
105 			ret = ELEVATOR_BACK_MERGE;
106 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
107 			ret = ELEVATOR_FRONT_MERGE;
108 	}
109 
110 	return ret;
111 }
112 
113 static struct elevator_type *elevator_find(const char *name)
114 {
115 	struct elevator_type *e;
116 
117 	list_for_each_entry(e, &elv_list, list) {
118 		if (!strcmp(e->elevator_name, name))
119 			return e;
120 	}
121 
122 	return NULL;
123 }
124 
125 static void elevator_put(struct elevator_type *e)
126 {
127 	module_put(e->elevator_owner);
128 }
129 
130 static struct elevator_type *elevator_get(const char *name)
131 {
132 	struct elevator_type *e;
133 
134 	spin_lock(&elv_list_lock);
135 
136 	e = elevator_find(name);
137 	if (e && !try_module_get(e->elevator_owner))
138 		e = NULL;
139 
140 	spin_unlock(&elv_list_lock);
141 
142 	return e;
143 }
144 
145 static void *elevator_init_queue(struct request_queue *q,
146 				 struct elevator_queue *eq)
147 {
148 	return eq->ops->elevator_init_fn(q);
149 }
150 
151 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
152 			   void *data)
153 {
154 	q->elevator = eq;
155 	eq->elevator_data = data;
156 }
157 
158 static char chosen_elevator[16];
159 
160 static int __init elevator_setup(char *str)
161 {
162 	/*
163 	 * Be backwards-compatible with previous kernels, so users
164 	 * won't get the wrong elevator.
165 	 */
166 	if (!strcmp(str, "as"))
167 		strcpy(chosen_elevator, "anticipatory");
168 	else
169 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
170 	return 1;
171 }
172 
173 __setup("elevator=", elevator_setup);
174 
175 static struct kobj_type elv_ktype;
176 
177 static elevator_t *elevator_alloc(struct request_queue *q,
178 				  struct elevator_type *e)
179 {
180 	elevator_t *eq;
181 	int i;
182 
183 	eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
184 	if (unlikely(!eq))
185 		goto err;
186 
187 	eq->ops = &e->ops;
188 	eq->elevator_type = e;
189 	kobject_init(&eq->kobj, &elv_ktype);
190 	mutex_init(&eq->sysfs_lock);
191 
192 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
193 					GFP_KERNEL, q->node);
194 	if (!eq->hash)
195 		goto err;
196 
197 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
198 		INIT_HLIST_HEAD(&eq->hash[i]);
199 
200 	return eq;
201 err:
202 	kfree(eq);
203 	elevator_put(e);
204 	return NULL;
205 }
206 
207 static void elevator_release(struct kobject *kobj)
208 {
209 	elevator_t *e = container_of(kobj, elevator_t, kobj);
210 
211 	elevator_put(e->elevator_type);
212 	kfree(e->hash);
213 	kfree(e);
214 }
215 
216 int elevator_init(struct request_queue *q, char *name)
217 {
218 	struct elevator_type *e = NULL;
219 	struct elevator_queue *eq;
220 	int ret = 0;
221 	void *data;
222 
223 	INIT_LIST_HEAD(&q->queue_head);
224 	q->last_merge = NULL;
225 	q->end_sector = 0;
226 	q->boundary_rq = NULL;
227 
228 	if (name) {
229 		e = elevator_get(name);
230 		if (!e)
231 			return -EINVAL;
232 	}
233 
234 	if (!e && *chosen_elevator) {
235 		e = elevator_get(chosen_elevator);
236 		if (!e)
237 			printk(KERN_ERR "I/O scheduler %s not found\n",
238 							chosen_elevator);
239 	}
240 
241 	if (!e) {
242 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
243 		if (!e) {
244 			printk(KERN_ERR
245 				"Default I/O scheduler not found. " \
246 				"Using noop.\n");
247 			e = elevator_get("noop");
248 		}
249 	}
250 
251 	eq = elevator_alloc(q, e);
252 	if (!eq)
253 		return -ENOMEM;
254 
255 	data = elevator_init_queue(q, eq);
256 	if (!data) {
257 		kobject_put(&eq->kobj);
258 		return -ENOMEM;
259 	}
260 
261 	elevator_attach(q, eq, data);
262 	return ret;
263 }
264 EXPORT_SYMBOL(elevator_init);
265 
266 void elevator_exit(elevator_t *e)
267 {
268 	mutex_lock(&e->sysfs_lock);
269 	if (e->ops->elevator_exit_fn)
270 		e->ops->elevator_exit_fn(e);
271 	e->ops = NULL;
272 	mutex_unlock(&e->sysfs_lock);
273 
274 	kobject_put(&e->kobj);
275 }
276 EXPORT_SYMBOL(elevator_exit);
277 
278 static void elv_activate_rq(struct request_queue *q, struct request *rq)
279 {
280 	elevator_t *e = q->elevator;
281 
282 	if (e->ops->elevator_activate_req_fn)
283 		e->ops->elevator_activate_req_fn(q, rq);
284 }
285 
286 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
287 {
288 	elevator_t *e = q->elevator;
289 
290 	if (e->ops->elevator_deactivate_req_fn)
291 		e->ops->elevator_deactivate_req_fn(q, rq);
292 }
293 
294 static inline void __elv_rqhash_del(struct request *rq)
295 {
296 	hlist_del_init(&rq->hash);
297 }
298 
299 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
300 {
301 	if (ELV_ON_HASH(rq))
302 		__elv_rqhash_del(rq);
303 }
304 
305 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
306 {
307 	elevator_t *e = q->elevator;
308 
309 	BUG_ON(ELV_ON_HASH(rq));
310 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
311 }
312 
313 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
314 {
315 	__elv_rqhash_del(rq);
316 	elv_rqhash_add(q, rq);
317 }
318 
319 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
320 {
321 	elevator_t *e = q->elevator;
322 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
323 	struct hlist_node *entry, *next;
324 	struct request *rq;
325 
326 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
327 		BUG_ON(!ELV_ON_HASH(rq));
328 
329 		if (unlikely(!rq_mergeable(rq))) {
330 			__elv_rqhash_del(rq);
331 			continue;
332 		}
333 
334 		if (rq_hash_key(rq) == offset)
335 			return rq;
336 	}
337 
338 	return NULL;
339 }
340 
341 /*
342  * RB-tree support functions for inserting/lookup/removal of requests
343  * in a sorted RB tree.
344  */
345 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
346 {
347 	struct rb_node **p = &root->rb_node;
348 	struct rb_node *parent = NULL;
349 	struct request *__rq;
350 
351 	while (*p) {
352 		parent = *p;
353 		__rq = rb_entry(parent, struct request, rb_node);
354 
355 		if (rq->sector < __rq->sector)
356 			p = &(*p)->rb_left;
357 		else if (rq->sector > __rq->sector)
358 			p = &(*p)->rb_right;
359 		else
360 			return __rq;
361 	}
362 
363 	rb_link_node(&rq->rb_node, parent, p);
364 	rb_insert_color(&rq->rb_node, root);
365 	return NULL;
366 }
367 EXPORT_SYMBOL(elv_rb_add);
368 
369 void elv_rb_del(struct rb_root *root, struct request *rq)
370 {
371 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
372 	rb_erase(&rq->rb_node, root);
373 	RB_CLEAR_NODE(&rq->rb_node);
374 }
375 EXPORT_SYMBOL(elv_rb_del);
376 
377 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
378 {
379 	struct rb_node *n = root->rb_node;
380 	struct request *rq;
381 
382 	while (n) {
383 		rq = rb_entry(n, struct request, rb_node);
384 
385 		if (sector < rq->sector)
386 			n = n->rb_left;
387 		else if (sector > rq->sector)
388 			n = n->rb_right;
389 		else
390 			return rq;
391 	}
392 
393 	return NULL;
394 }
395 EXPORT_SYMBOL(elv_rb_find);
396 
397 /*
398  * Insert rq into dispatch queue of q.  Queue lock must be held on
399  * entry.  rq is sort instead into the dispatch queue. To be used by
400  * specific elevators.
401  */
402 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
403 {
404 	sector_t boundary;
405 	struct list_head *entry;
406 	int stop_flags;
407 
408 	if (q->last_merge == rq)
409 		q->last_merge = NULL;
410 
411 	elv_rqhash_del(q, rq);
412 
413 	q->nr_sorted--;
414 
415 	boundary = q->end_sector;
416 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
417 	list_for_each_prev(entry, &q->queue_head) {
418 		struct request *pos = list_entry_rq(entry);
419 
420 		if (rq_data_dir(rq) != rq_data_dir(pos))
421 			break;
422 		if (pos->cmd_flags & stop_flags)
423 			break;
424 		if (rq->sector >= boundary) {
425 			if (pos->sector < boundary)
426 				continue;
427 		} else {
428 			if (pos->sector >= boundary)
429 				break;
430 		}
431 		if (rq->sector >= pos->sector)
432 			break;
433 	}
434 
435 	list_add(&rq->queuelist, entry);
436 }
437 EXPORT_SYMBOL(elv_dispatch_sort);
438 
439 /*
440  * Insert rq into dispatch queue of q.  Queue lock must be held on
441  * entry.  rq is added to the back of the dispatch queue. To be used by
442  * specific elevators.
443  */
444 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
445 {
446 	if (q->last_merge == rq)
447 		q->last_merge = NULL;
448 
449 	elv_rqhash_del(q, rq);
450 
451 	q->nr_sorted--;
452 
453 	q->end_sector = rq_end_sector(rq);
454 	q->boundary_rq = rq;
455 	list_add_tail(&rq->queuelist, &q->queue_head);
456 }
457 EXPORT_SYMBOL(elv_dispatch_add_tail);
458 
459 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
460 {
461 	elevator_t *e = q->elevator;
462 	struct request *__rq;
463 	int ret;
464 
465 	/*
466 	 * First try one-hit cache.
467 	 */
468 	if (q->last_merge) {
469 		ret = elv_try_merge(q->last_merge, bio);
470 		if (ret != ELEVATOR_NO_MERGE) {
471 			*req = q->last_merge;
472 			return ret;
473 		}
474 	}
475 
476 	/*
477 	 * See if our hash lookup can find a potential backmerge.
478 	 */
479 	__rq = elv_rqhash_find(q, bio->bi_sector);
480 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
481 		*req = __rq;
482 		return ELEVATOR_BACK_MERGE;
483 	}
484 
485 	if (e->ops->elevator_merge_fn)
486 		return e->ops->elevator_merge_fn(q, req, bio);
487 
488 	return ELEVATOR_NO_MERGE;
489 }
490 
491 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
492 {
493 	elevator_t *e = q->elevator;
494 
495 	if (e->ops->elevator_merged_fn)
496 		e->ops->elevator_merged_fn(q, rq, type);
497 
498 	if (type == ELEVATOR_BACK_MERGE)
499 		elv_rqhash_reposition(q, rq);
500 
501 	q->last_merge = rq;
502 }
503 
504 void elv_merge_requests(struct request_queue *q, struct request *rq,
505 			     struct request *next)
506 {
507 	elevator_t *e = q->elevator;
508 
509 	if (e->ops->elevator_merge_req_fn)
510 		e->ops->elevator_merge_req_fn(q, rq, next);
511 
512 	elv_rqhash_reposition(q, rq);
513 	elv_rqhash_del(q, next);
514 
515 	q->nr_sorted--;
516 	q->last_merge = rq;
517 }
518 
519 void elv_requeue_request(struct request_queue *q, struct request *rq)
520 {
521 	/*
522 	 * it already went through dequeue, we need to decrement the
523 	 * in_flight count again
524 	 */
525 	if (blk_account_rq(rq)) {
526 		q->in_flight--;
527 		if (blk_sorted_rq(rq))
528 			elv_deactivate_rq(q, rq);
529 	}
530 
531 	rq->cmd_flags &= ~REQ_STARTED;
532 
533 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
534 }
535 
536 static void elv_drain_elevator(struct request_queue *q)
537 {
538 	static int printed;
539 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
540 		;
541 	if (q->nr_sorted == 0)
542 		return;
543 	if (printed++ < 10) {
544 		printk(KERN_ERR "%s: forced dispatching is broken "
545 		       "(nr_sorted=%u), please report this\n",
546 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
547 	}
548 }
549 
550 void elv_insert(struct request_queue *q, struct request *rq, int where)
551 {
552 	struct list_head *pos;
553 	unsigned ordseq;
554 	int unplug_it = 1;
555 
556 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
557 
558 	rq->q = q;
559 
560 	switch (where) {
561 	case ELEVATOR_INSERT_FRONT:
562 		rq->cmd_flags |= REQ_SOFTBARRIER;
563 
564 		list_add(&rq->queuelist, &q->queue_head);
565 		break;
566 
567 	case ELEVATOR_INSERT_BACK:
568 		rq->cmd_flags |= REQ_SOFTBARRIER;
569 		elv_drain_elevator(q);
570 		list_add_tail(&rq->queuelist, &q->queue_head);
571 		/*
572 		 * We kick the queue here for the following reasons.
573 		 * - The elevator might have returned NULL previously
574 		 *   to delay requests and returned them now.  As the
575 		 *   queue wasn't empty before this request, ll_rw_blk
576 		 *   won't run the queue on return, resulting in hang.
577 		 * - Usually, back inserted requests won't be merged
578 		 *   with anything.  There's no point in delaying queue
579 		 *   processing.
580 		 */
581 		blk_remove_plug(q);
582 		q->request_fn(q);
583 		break;
584 
585 	case ELEVATOR_INSERT_SORT:
586 		BUG_ON(!blk_fs_request(rq));
587 		rq->cmd_flags |= REQ_SORTED;
588 		q->nr_sorted++;
589 		if (rq_mergeable(rq)) {
590 			elv_rqhash_add(q, rq);
591 			if (!q->last_merge)
592 				q->last_merge = rq;
593 		}
594 
595 		/*
596 		 * Some ioscheds (cfq) run q->request_fn directly, so
597 		 * rq cannot be accessed after calling
598 		 * elevator_add_req_fn.
599 		 */
600 		q->elevator->ops->elevator_add_req_fn(q, rq);
601 		break;
602 
603 	case ELEVATOR_INSERT_REQUEUE:
604 		/*
605 		 * If ordered flush isn't in progress, we do front
606 		 * insertion; otherwise, requests should be requeued
607 		 * in ordseq order.
608 		 */
609 		rq->cmd_flags |= REQ_SOFTBARRIER;
610 
611 		/*
612 		 * Most requeues happen because of a busy condition,
613 		 * don't force unplug of the queue for that case.
614 		 */
615 		unplug_it = 0;
616 
617 		if (q->ordseq == 0) {
618 			list_add(&rq->queuelist, &q->queue_head);
619 			break;
620 		}
621 
622 		ordseq = blk_ordered_req_seq(rq);
623 
624 		list_for_each(pos, &q->queue_head) {
625 			struct request *pos_rq = list_entry_rq(pos);
626 			if (ordseq <= blk_ordered_req_seq(pos_rq))
627 				break;
628 		}
629 
630 		list_add_tail(&rq->queuelist, pos);
631 		break;
632 
633 	default:
634 		printk(KERN_ERR "%s: bad insertion point %d\n",
635 		       __FUNCTION__, where);
636 		BUG();
637 	}
638 
639 	if (unplug_it && blk_queue_plugged(q)) {
640 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
641 			- q->in_flight;
642 
643 		if (nrq >= q->unplug_thresh)
644 			__generic_unplug_device(q);
645 	}
646 }
647 
648 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
649 		       int plug)
650 {
651 	if (q->ordcolor)
652 		rq->cmd_flags |= REQ_ORDERED_COLOR;
653 
654 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
655 		/*
656 		 * toggle ordered color
657 		 */
658 		if (blk_barrier_rq(rq))
659 			q->ordcolor ^= 1;
660 
661 		/*
662 		 * barriers implicitly indicate back insertion
663 		 */
664 		if (where == ELEVATOR_INSERT_SORT)
665 			where = ELEVATOR_INSERT_BACK;
666 
667 		/*
668 		 * this request is scheduling boundary, update
669 		 * end_sector
670 		 */
671 		if (blk_fs_request(rq)) {
672 			q->end_sector = rq_end_sector(rq);
673 			q->boundary_rq = rq;
674 		}
675 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
676 		    where == ELEVATOR_INSERT_SORT)
677 		where = ELEVATOR_INSERT_BACK;
678 
679 	if (plug)
680 		blk_plug_device(q);
681 
682 	elv_insert(q, rq, where);
683 }
684 EXPORT_SYMBOL(__elv_add_request);
685 
686 void elv_add_request(struct request_queue *q, struct request *rq, int where,
687 		     int plug)
688 {
689 	unsigned long flags;
690 
691 	spin_lock_irqsave(q->queue_lock, flags);
692 	__elv_add_request(q, rq, where, plug);
693 	spin_unlock_irqrestore(q->queue_lock, flags);
694 }
695 EXPORT_SYMBOL(elv_add_request);
696 
697 static inline struct request *__elv_next_request(struct request_queue *q)
698 {
699 	struct request *rq;
700 
701 	while (1) {
702 		while (!list_empty(&q->queue_head)) {
703 			rq = list_entry_rq(q->queue_head.next);
704 			if (blk_do_ordered(q, &rq))
705 				return rq;
706 		}
707 
708 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
709 			return NULL;
710 	}
711 }
712 
713 struct request *elv_next_request(struct request_queue *q)
714 {
715 	struct request *rq;
716 	int ret;
717 
718 	while ((rq = __elv_next_request(q)) != NULL) {
719 		/*
720 		 * Kill the empty barrier place holder, the driver must
721 		 * not ever see it.
722 		 */
723 		if (blk_empty_barrier(rq)) {
724 			end_queued_request(rq, 1);
725 			continue;
726 		}
727 		if (!(rq->cmd_flags & REQ_STARTED)) {
728 			/*
729 			 * This is the first time the device driver
730 			 * sees this request (possibly after
731 			 * requeueing).  Notify IO scheduler.
732 			 */
733 			if (blk_sorted_rq(rq))
734 				elv_activate_rq(q, rq);
735 
736 			/*
737 			 * just mark as started even if we don't start
738 			 * it, a request that has been delayed should
739 			 * not be passed by new incoming requests
740 			 */
741 			rq->cmd_flags |= REQ_STARTED;
742 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
743 		}
744 
745 		if (!q->boundary_rq || q->boundary_rq == rq) {
746 			q->end_sector = rq_end_sector(rq);
747 			q->boundary_rq = NULL;
748 		}
749 
750 		if (rq->cmd_flags & REQ_DONTPREP)
751 			break;
752 
753 		if (q->dma_drain_size && rq->data_len) {
754 			/*
755 			 * make sure space for the drain appears we
756 			 * know we can do this because max_hw_segments
757 			 * has been adjusted to be one fewer than the
758 			 * device can handle
759 			 */
760 			rq->nr_phys_segments++;
761 			rq->nr_hw_segments++;
762 		}
763 
764 		if (!q->prep_rq_fn)
765 			break;
766 
767 		ret = q->prep_rq_fn(q, rq);
768 		if (ret == BLKPREP_OK) {
769 			break;
770 		} else if (ret == BLKPREP_DEFER) {
771 			/*
772 			 * the request may have been (partially) prepped.
773 			 * we need to keep this request in the front to
774 			 * avoid resource deadlock.  REQ_STARTED will
775 			 * prevent other fs requests from passing this one.
776 			 */
777 			if (q->dma_drain_size && rq->data_len &&
778 			    !(rq->cmd_flags & REQ_DONTPREP)) {
779 				/*
780 				 * remove the space for the drain we added
781 				 * so that we don't add it again
782 				 */
783 				--rq->nr_phys_segments;
784 				--rq->nr_hw_segments;
785 			}
786 
787 			rq = NULL;
788 			break;
789 		} else if (ret == BLKPREP_KILL) {
790 			rq->cmd_flags |= REQ_QUIET;
791 			end_queued_request(rq, 0);
792 		} else {
793 			printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
794 								ret);
795 			break;
796 		}
797 	}
798 
799 	return rq;
800 }
801 EXPORT_SYMBOL(elv_next_request);
802 
803 void elv_dequeue_request(struct request_queue *q, struct request *rq)
804 {
805 	BUG_ON(list_empty(&rq->queuelist));
806 	BUG_ON(ELV_ON_HASH(rq));
807 
808 	list_del_init(&rq->queuelist);
809 
810 	/*
811 	 * the time frame between a request being removed from the lists
812 	 * and to it is freed is accounted as io that is in progress at
813 	 * the driver side.
814 	 */
815 	if (blk_account_rq(rq))
816 		q->in_flight++;
817 }
818 EXPORT_SYMBOL(elv_dequeue_request);
819 
820 int elv_queue_empty(struct request_queue *q)
821 {
822 	elevator_t *e = q->elevator;
823 
824 	if (!list_empty(&q->queue_head))
825 		return 0;
826 
827 	if (e->ops->elevator_queue_empty_fn)
828 		return e->ops->elevator_queue_empty_fn(q);
829 
830 	return 1;
831 }
832 EXPORT_SYMBOL(elv_queue_empty);
833 
834 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
835 {
836 	elevator_t *e = q->elevator;
837 
838 	if (e->ops->elevator_latter_req_fn)
839 		return e->ops->elevator_latter_req_fn(q, rq);
840 	return NULL;
841 }
842 
843 struct request *elv_former_request(struct request_queue *q, struct request *rq)
844 {
845 	elevator_t *e = q->elevator;
846 
847 	if (e->ops->elevator_former_req_fn)
848 		return e->ops->elevator_former_req_fn(q, rq);
849 	return NULL;
850 }
851 
852 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
853 {
854 	elevator_t *e = q->elevator;
855 
856 	if (e->ops->elevator_set_req_fn)
857 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
858 
859 	rq->elevator_private = NULL;
860 	return 0;
861 }
862 
863 void elv_put_request(struct request_queue *q, struct request *rq)
864 {
865 	elevator_t *e = q->elevator;
866 
867 	if (e->ops->elevator_put_req_fn)
868 		e->ops->elevator_put_req_fn(rq);
869 }
870 
871 int elv_may_queue(struct request_queue *q, int rw)
872 {
873 	elevator_t *e = q->elevator;
874 
875 	if (e->ops->elevator_may_queue_fn)
876 		return e->ops->elevator_may_queue_fn(q, rw);
877 
878 	return ELV_MQUEUE_MAY;
879 }
880 
881 void elv_completed_request(struct request_queue *q, struct request *rq)
882 {
883 	elevator_t *e = q->elevator;
884 
885 	/*
886 	 * request is released from the driver, io must be done
887 	 */
888 	if (blk_account_rq(rq)) {
889 		q->in_flight--;
890 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
891 			e->ops->elevator_completed_req_fn(q, rq);
892 	}
893 
894 	/*
895 	 * Check if the queue is waiting for fs requests to be
896 	 * drained for flush sequence.
897 	 */
898 	if (unlikely(q->ordseq)) {
899 		struct request *first_rq = list_entry_rq(q->queue_head.next);
900 		if (q->in_flight == 0 &&
901 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
902 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
903 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
904 			q->request_fn(q);
905 		}
906 	}
907 }
908 
909 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
910 
911 static ssize_t
912 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
913 {
914 	elevator_t *e = container_of(kobj, elevator_t, kobj);
915 	struct elv_fs_entry *entry = to_elv(attr);
916 	ssize_t error;
917 
918 	if (!entry->show)
919 		return -EIO;
920 
921 	mutex_lock(&e->sysfs_lock);
922 	error = e->ops ? entry->show(e, page) : -ENOENT;
923 	mutex_unlock(&e->sysfs_lock);
924 	return error;
925 }
926 
927 static ssize_t
928 elv_attr_store(struct kobject *kobj, struct attribute *attr,
929 	       const char *page, size_t length)
930 {
931 	elevator_t *e = container_of(kobj, elevator_t, kobj);
932 	struct elv_fs_entry *entry = to_elv(attr);
933 	ssize_t error;
934 
935 	if (!entry->store)
936 		return -EIO;
937 
938 	mutex_lock(&e->sysfs_lock);
939 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
940 	mutex_unlock(&e->sysfs_lock);
941 	return error;
942 }
943 
944 static struct sysfs_ops elv_sysfs_ops = {
945 	.show	= elv_attr_show,
946 	.store	= elv_attr_store,
947 };
948 
949 static struct kobj_type elv_ktype = {
950 	.sysfs_ops	= &elv_sysfs_ops,
951 	.release	= elevator_release,
952 };
953 
954 int elv_register_queue(struct request_queue *q)
955 {
956 	elevator_t *e = q->elevator;
957 	int error;
958 
959 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
960 	if (!error) {
961 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
962 		if (attr) {
963 			while (attr->attr.name) {
964 				if (sysfs_create_file(&e->kobj, &attr->attr))
965 					break;
966 				attr++;
967 			}
968 		}
969 		kobject_uevent(&e->kobj, KOBJ_ADD);
970 	}
971 	return error;
972 }
973 
974 static void __elv_unregister_queue(elevator_t *e)
975 {
976 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
977 	kobject_del(&e->kobj);
978 }
979 
980 void elv_unregister_queue(struct request_queue *q)
981 {
982 	if (q)
983 		__elv_unregister_queue(q->elevator);
984 }
985 
986 void elv_register(struct elevator_type *e)
987 {
988 	char *def = "";
989 
990 	spin_lock(&elv_list_lock);
991 	BUG_ON(elevator_find(e->elevator_name));
992 	list_add_tail(&e->list, &elv_list);
993 	spin_unlock(&elv_list_lock);
994 
995 	if (!strcmp(e->elevator_name, chosen_elevator) ||
996 			(!*chosen_elevator &&
997 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
998 				def = " (default)";
999 
1000 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1001 								def);
1002 }
1003 EXPORT_SYMBOL_GPL(elv_register);
1004 
1005 void elv_unregister(struct elevator_type *e)
1006 {
1007 	struct task_struct *g, *p;
1008 
1009 	/*
1010 	 * Iterate every thread in the process to remove the io contexts.
1011 	 */
1012 	if (e->ops.trim) {
1013 		read_lock(&tasklist_lock);
1014 		do_each_thread(g, p) {
1015 			task_lock(p);
1016 			if (p->io_context)
1017 				e->ops.trim(p->io_context);
1018 			task_unlock(p);
1019 		} while_each_thread(g, p);
1020 		read_unlock(&tasklist_lock);
1021 	}
1022 
1023 	spin_lock(&elv_list_lock);
1024 	list_del_init(&e->list);
1025 	spin_unlock(&elv_list_lock);
1026 }
1027 EXPORT_SYMBOL_GPL(elv_unregister);
1028 
1029 /*
1030  * switch to new_e io scheduler. be careful not to introduce deadlocks -
1031  * we don't free the old io scheduler, before we have allocated what we
1032  * need for the new one. this way we have a chance of going back to the old
1033  * one, if the new one fails init for some reason.
1034  */
1035 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1036 {
1037 	elevator_t *old_elevator, *e;
1038 	void *data;
1039 
1040 	/*
1041 	 * Allocate new elevator
1042 	 */
1043 	e = elevator_alloc(q, new_e);
1044 	if (!e)
1045 		return 0;
1046 
1047 	data = elevator_init_queue(q, e);
1048 	if (!data) {
1049 		kobject_put(&e->kobj);
1050 		return 0;
1051 	}
1052 
1053 	/*
1054 	 * Turn on BYPASS and drain all requests w/ elevator private data
1055 	 */
1056 	spin_lock_irq(q->queue_lock);
1057 
1058 	set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1059 
1060 	elv_drain_elevator(q);
1061 
1062 	while (q->rq.elvpriv) {
1063 		blk_remove_plug(q);
1064 		q->request_fn(q);
1065 		spin_unlock_irq(q->queue_lock);
1066 		msleep(10);
1067 		spin_lock_irq(q->queue_lock);
1068 		elv_drain_elevator(q);
1069 	}
1070 
1071 	/*
1072 	 * Remember old elevator.
1073 	 */
1074 	old_elevator = q->elevator;
1075 
1076 	/*
1077 	 * attach and start new elevator
1078 	 */
1079 	elevator_attach(q, e, data);
1080 
1081 	spin_unlock_irq(q->queue_lock);
1082 
1083 	__elv_unregister_queue(old_elevator);
1084 
1085 	if (elv_register_queue(q))
1086 		goto fail_register;
1087 
1088 	/*
1089 	 * finally exit old elevator and turn off BYPASS.
1090 	 */
1091 	elevator_exit(old_elevator);
1092 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1093 	return 1;
1094 
1095 fail_register:
1096 	/*
1097 	 * switch failed, exit the new io scheduler and reattach the old
1098 	 * one again (along with re-adding the sysfs dir)
1099 	 */
1100 	elevator_exit(e);
1101 	q->elevator = old_elevator;
1102 	elv_register_queue(q);
1103 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1104 	return 0;
1105 }
1106 
1107 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1108 			  size_t count)
1109 {
1110 	char elevator_name[ELV_NAME_MAX];
1111 	size_t len;
1112 	struct elevator_type *e;
1113 
1114 	elevator_name[sizeof(elevator_name) - 1] = '\0';
1115 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1116 	len = strlen(elevator_name);
1117 
1118 	if (len && elevator_name[len - 1] == '\n')
1119 		elevator_name[len - 1] = '\0';
1120 
1121 	e = elevator_get(elevator_name);
1122 	if (!e) {
1123 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1124 		return -EINVAL;
1125 	}
1126 
1127 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1128 		elevator_put(e);
1129 		return count;
1130 	}
1131 
1132 	if (!elevator_switch(q, e))
1133 		printk(KERN_ERR "elevator: switch to %s failed\n",
1134 							elevator_name);
1135 	return count;
1136 }
1137 
1138 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1139 {
1140 	elevator_t *e = q->elevator;
1141 	struct elevator_type *elv = e->elevator_type;
1142 	struct elevator_type *__e;
1143 	int len = 0;
1144 
1145 	spin_lock(&elv_list_lock);
1146 	list_for_each_entry(__e, &elv_list, list) {
1147 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1148 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1149 		else
1150 			len += sprintf(name+len, "%s ", __e->elevator_name);
1151 	}
1152 	spin_unlock(&elv_list_lock);
1153 
1154 	len += sprintf(len+name, "\n");
1155 	return len;
1156 }
1157 
1158 struct request *elv_rb_former_request(struct request_queue *q,
1159 				      struct request *rq)
1160 {
1161 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1162 
1163 	if (rbprev)
1164 		return rb_entry_rq(rbprev);
1165 
1166 	return NULL;
1167 }
1168 EXPORT_SYMBOL(elv_rb_former_request);
1169 
1170 struct request *elv_rb_latter_request(struct request_queue *q,
1171 				      struct request *rq)
1172 {
1173 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1174 
1175 	if (rbnext)
1176 		return rb_entry_rq(rbnext);
1177 
1178 	return NULL;
1179 }
1180 EXPORT_SYMBOL(elv_rb_latter_request);
1181