xref: /openbmc/linux/block/elevator.c (revision 1fa6ac37)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->ops->elevator_allow_merge_fn)
66 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!rq_mergeable(rq))
77 		return 0;
78 
79 	/*
80 	 * Don't merge file system requests and discard requests
81 	 */
82 	if (bio_rw_flagged(bio, BIO_RW_DISCARD) !=
83 	    bio_rw_flagged(rq->bio, BIO_RW_DISCARD))
84 		return 0;
85 
86 	/*
87 	 * different data direction or already started, don't merge
88 	 */
89 	if (bio_data_dir(bio) != rq_data_dir(rq))
90 		return 0;
91 
92 	/*
93 	 * must be same device and not a special request
94 	 */
95 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
96 		return 0;
97 
98 	/*
99 	 * only merge integrity protected bio into ditto rq
100 	 */
101 	if (bio_integrity(bio) != blk_integrity_rq(rq))
102 		return 0;
103 
104 	if (!elv_iosched_allow_merge(rq, bio))
105 		return 0;
106 
107 	return 1;
108 }
109 EXPORT_SYMBOL(elv_rq_merge_ok);
110 
111 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
112 {
113 	int ret = ELEVATOR_NO_MERGE;
114 
115 	/*
116 	 * we can merge and sequence is ok, check if it's possible
117 	 */
118 	if (elv_rq_merge_ok(__rq, bio)) {
119 		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
120 			ret = ELEVATOR_BACK_MERGE;
121 		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
122 			ret = ELEVATOR_FRONT_MERGE;
123 	}
124 
125 	return ret;
126 }
127 
128 static struct elevator_type *elevator_find(const char *name)
129 {
130 	struct elevator_type *e;
131 
132 	list_for_each_entry(e, &elv_list, list) {
133 		if (!strcmp(e->elevator_name, name))
134 			return e;
135 	}
136 
137 	return NULL;
138 }
139 
140 static void elevator_put(struct elevator_type *e)
141 {
142 	module_put(e->elevator_owner);
143 }
144 
145 static struct elevator_type *elevator_get(const char *name)
146 {
147 	struct elevator_type *e;
148 
149 	spin_lock(&elv_list_lock);
150 
151 	e = elevator_find(name);
152 	if (!e) {
153 		char elv[ELV_NAME_MAX + strlen("-iosched")];
154 
155 		spin_unlock(&elv_list_lock);
156 
157 		snprintf(elv, sizeof(elv), "%s-iosched", name);
158 
159 		request_module("%s", elv);
160 		spin_lock(&elv_list_lock);
161 		e = elevator_find(name);
162 	}
163 
164 	if (e && !try_module_get(e->elevator_owner))
165 		e = NULL;
166 
167 	spin_unlock(&elv_list_lock);
168 
169 	return e;
170 }
171 
172 static void *elevator_init_queue(struct request_queue *q,
173 				 struct elevator_queue *eq)
174 {
175 	return eq->ops->elevator_init_fn(q);
176 }
177 
178 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
179 			   void *data)
180 {
181 	q->elevator = eq;
182 	eq->elevator_data = data;
183 }
184 
185 static char chosen_elevator[16];
186 
187 static int __init elevator_setup(char *str)
188 {
189 	/*
190 	 * Be backwards-compatible with previous kernels, so users
191 	 * won't get the wrong elevator.
192 	 */
193 	strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
194 	return 1;
195 }
196 
197 __setup("elevator=", elevator_setup);
198 
199 static struct kobj_type elv_ktype;
200 
201 static struct elevator_queue *elevator_alloc(struct request_queue *q,
202 				  struct elevator_type *e)
203 {
204 	struct elevator_queue *eq;
205 	int i;
206 
207 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
208 	if (unlikely(!eq))
209 		goto err;
210 
211 	eq->ops = &e->ops;
212 	eq->elevator_type = e;
213 	kobject_init(&eq->kobj, &elv_ktype);
214 	mutex_init(&eq->sysfs_lock);
215 
216 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
217 					GFP_KERNEL, q->node);
218 	if (!eq->hash)
219 		goto err;
220 
221 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
222 		INIT_HLIST_HEAD(&eq->hash[i]);
223 
224 	return eq;
225 err:
226 	kfree(eq);
227 	elevator_put(e);
228 	return NULL;
229 }
230 
231 static void elevator_release(struct kobject *kobj)
232 {
233 	struct elevator_queue *e;
234 
235 	e = container_of(kobj, struct elevator_queue, kobj);
236 	elevator_put(e->elevator_type);
237 	kfree(e->hash);
238 	kfree(e);
239 }
240 
241 int elevator_init(struct request_queue *q, char *name)
242 {
243 	struct elevator_type *e = NULL;
244 	struct elevator_queue *eq;
245 	void *data;
246 
247 	if (unlikely(q->elevator))
248 		return 0;
249 
250 	INIT_LIST_HEAD(&q->queue_head);
251 	q->last_merge = NULL;
252 	q->end_sector = 0;
253 	q->boundary_rq = NULL;
254 
255 	if (name) {
256 		e = elevator_get(name);
257 		if (!e)
258 			return -EINVAL;
259 	}
260 
261 	if (!e && *chosen_elevator) {
262 		e = elevator_get(chosen_elevator);
263 		if (!e)
264 			printk(KERN_ERR "I/O scheduler %s not found\n",
265 							chosen_elevator);
266 	}
267 
268 	if (!e) {
269 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
270 		if (!e) {
271 			printk(KERN_ERR
272 				"Default I/O scheduler not found. " \
273 				"Using noop.\n");
274 			e = elevator_get("noop");
275 		}
276 	}
277 
278 	eq = elevator_alloc(q, e);
279 	if (!eq)
280 		return -ENOMEM;
281 
282 	data = elevator_init_queue(q, eq);
283 	if (!data) {
284 		kobject_put(&eq->kobj);
285 		return -ENOMEM;
286 	}
287 
288 	elevator_attach(q, eq, data);
289 	return 0;
290 }
291 EXPORT_SYMBOL(elevator_init);
292 
293 void elevator_exit(struct elevator_queue *e)
294 {
295 	mutex_lock(&e->sysfs_lock);
296 	if (e->ops->elevator_exit_fn)
297 		e->ops->elevator_exit_fn(e);
298 	e->ops = NULL;
299 	mutex_unlock(&e->sysfs_lock);
300 
301 	kobject_put(&e->kobj);
302 }
303 EXPORT_SYMBOL(elevator_exit);
304 
305 static inline void __elv_rqhash_del(struct request *rq)
306 {
307 	hlist_del_init(&rq->hash);
308 }
309 
310 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
311 {
312 	if (ELV_ON_HASH(rq))
313 		__elv_rqhash_del(rq);
314 }
315 
316 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
317 {
318 	struct elevator_queue *e = q->elevator;
319 
320 	BUG_ON(ELV_ON_HASH(rq));
321 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
322 }
323 
324 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
325 {
326 	__elv_rqhash_del(rq);
327 	elv_rqhash_add(q, rq);
328 }
329 
330 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
331 {
332 	struct elevator_queue *e = q->elevator;
333 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
334 	struct hlist_node *entry, *next;
335 	struct request *rq;
336 
337 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
338 		BUG_ON(!ELV_ON_HASH(rq));
339 
340 		if (unlikely(!rq_mergeable(rq))) {
341 			__elv_rqhash_del(rq);
342 			continue;
343 		}
344 
345 		if (rq_hash_key(rq) == offset)
346 			return rq;
347 	}
348 
349 	return NULL;
350 }
351 
352 /*
353  * RB-tree support functions for inserting/lookup/removal of requests
354  * in a sorted RB tree.
355  */
356 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
357 {
358 	struct rb_node **p = &root->rb_node;
359 	struct rb_node *parent = NULL;
360 	struct request *__rq;
361 
362 	while (*p) {
363 		parent = *p;
364 		__rq = rb_entry(parent, struct request, rb_node);
365 
366 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
367 			p = &(*p)->rb_left;
368 		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
369 			p = &(*p)->rb_right;
370 		else
371 			return __rq;
372 	}
373 
374 	rb_link_node(&rq->rb_node, parent, p);
375 	rb_insert_color(&rq->rb_node, root);
376 	return NULL;
377 }
378 EXPORT_SYMBOL(elv_rb_add);
379 
380 void elv_rb_del(struct rb_root *root, struct request *rq)
381 {
382 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
383 	rb_erase(&rq->rb_node, root);
384 	RB_CLEAR_NODE(&rq->rb_node);
385 }
386 EXPORT_SYMBOL(elv_rb_del);
387 
388 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
389 {
390 	struct rb_node *n = root->rb_node;
391 	struct request *rq;
392 
393 	while (n) {
394 		rq = rb_entry(n, struct request, rb_node);
395 
396 		if (sector < blk_rq_pos(rq))
397 			n = n->rb_left;
398 		else if (sector > blk_rq_pos(rq))
399 			n = n->rb_right;
400 		else
401 			return rq;
402 	}
403 
404 	return NULL;
405 }
406 EXPORT_SYMBOL(elv_rb_find);
407 
408 /*
409  * Insert rq into dispatch queue of q.  Queue lock must be held on
410  * entry.  rq is sort instead into the dispatch queue. To be used by
411  * specific elevators.
412  */
413 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
414 {
415 	sector_t boundary;
416 	struct list_head *entry;
417 	int stop_flags;
418 
419 	if (q->last_merge == rq)
420 		q->last_merge = NULL;
421 
422 	elv_rqhash_del(q, rq);
423 
424 	q->nr_sorted--;
425 
426 	boundary = q->end_sector;
427 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
428 	list_for_each_prev(entry, &q->queue_head) {
429 		struct request *pos = list_entry_rq(entry);
430 
431 		if (blk_discard_rq(rq) != blk_discard_rq(pos))
432 			break;
433 		if (rq_data_dir(rq) != rq_data_dir(pos))
434 			break;
435 		if (pos->cmd_flags & stop_flags)
436 			break;
437 		if (blk_rq_pos(rq) >= boundary) {
438 			if (blk_rq_pos(pos) < boundary)
439 				continue;
440 		} else {
441 			if (blk_rq_pos(pos) >= boundary)
442 				break;
443 		}
444 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
445 			break;
446 	}
447 
448 	list_add(&rq->queuelist, entry);
449 }
450 EXPORT_SYMBOL(elv_dispatch_sort);
451 
452 /*
453  * Insert rq into dispatch queue of q.  Queue lock must be held on
454  * entry.  rq is added to the back of the dispatch queue. To be used by
455  * specific elevators.
456  */
457 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
458 {
459 	if (q->last_merge == rq)
460 		q->last_merge = NULL;
461 
462 	elv_rqhash_del(q, rq);
463 
464 	q->nr_sorted--;
465 
466 	q->end_sector = rq_end_sector(rq);
467 	q->boundary_rq = rq;
468 	list_add_tail(&rq->queuelist, &q->queue_head);
469 }
470 EXPORT_SYMBOL(elv_dispatch_add_tail);
471 
472 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
473 {
474 	struct elevator_queue *e = q->elevator;
475 	struct request *__rq;
476 	int ret;
477 
478 	/*
479 	 * Levels of merges:
480 	 * 	nomerges:  No merges at all attempted
481 	 * 	noxmerges: Only simple one-hit cache try
482 	 * 	merges:	   All merge tries attempted
483 	 */
484 	if (blk_queue_nomerges(q))
485 		return ELEVATOR_NO_MERGE;
486 
487 	/*
488 	 * First try one-hit cache.
489 	 */
490 	if (q->last_merge) {
491 		ret = elv_try_merge(q->last_merge, bio);
492 		if (ret != ELEVATOR_NO_MERGE) {
493 			*req = q->last_merge;
494 			return ret;
495 		}
496 	}
497 
498 	if (blk_queue_noxmerges(q))
499 		return ELEVATOR_NO_MERGE;
500 
501 	/*
502 	 * See if our hash lookup can find a potential backmerge.
503 	 */
504 	__rq = elv_rqhash_find(q, bio->bi_sector);
505 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
506 		*req = __rq;
507 		return ELEVATOR_BACK_MERGE;
508 	}
509 
510 	if (e->ops->elevator_merge_fn)
511 		return e->ops->elevator_merge_fn(q, req, bio);
512 
513 	return ELEVATOR_NO_MERGE;
514 }
515 
516 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
517 {
518 	struct elevator_queue *e = q->elevator;
519 
520 	if (e->ops->elevator_merged_fn)
521 		e->ops->elevator_merged_fn(q, rq, type);
522 
523 	if (type == ELEVATOR_BACK_MERGE)
524 		elv_rqhash_reposition(q, rq);
525 
526 	q->last_merge = rq;
527 }
528 
529 void elv_merge_requests(struct request_queue *q, struct request *rq,
530 			     struct request *next)
531 {
532 	struct elevator_queue *e = q->elevator;
533 
534 	if (e->ops->elevator_merge_req_fn)
535 		e->ops->elevator_merge_req_fn(q, rq, next);
536 
537 	elv_rqhash_reposition(q, rq);
538 	elv_rqhash_del(q, next);
539 
540 	q->nr_sorted--;
541 	q->last_merge = rq;
542 }
543 
544 void elv_bio_merged(struct request_queue *q, struct request *rq,
545 			struct bio *bio)
546 {
547 	struct elevator_queue *e = q->elevator;
548 
549 	if (e->ops->elevator_bio_merged_fn)
550 		e->ops->elevator_bio_merged_fn(q, rq, bio);
551 }
552 
553 void elv_requeue_request(struct request_queue *q, struct request *rq)
554 {
555 	/*
556 	 * it already went through dequeue, we need to decrement the
557 	 * in_flight count again
558 	 */
559 	if (blk_account_rq(rq)) {
560 		q->in_flight[rq_is_sync(rq)]--;
561 		if (blk_sorted_rq(rq))
562 			elv_deactivate_rq(q, rq);
563 	}
564 
565 	rq->cmd_flags &= ~REQ_STARTED;
566 
567 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
568 }
569 
570 void elv_drain_elevator(struct request_queue *q)
571 {
572 	static int printed;
573 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
574 		;
575 	if (q->nr_sorted == 0)
576 		return;
577 	if (printed++ < 10) {
578 		printk(KERN_ERR "%s: forced dispatching is broken "
579 		       "(nr_sorted=%u), please report this\n",
580 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
581 	}
582 }
583 
584 /*
585  * Call with queue lock held, interrupts disabled
586  */
587 void elv_quiesce_start(struct request_queue *q)
588 {
589 	if (!q->elevator)
590 		return;
591 
592 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
593 
594 	/*
595 	 * make sure we don't have any requests in flight
596 	 */
597 	elv_drain_elevator(q);
598 	while (q->rq.elvpriv) {
599 		__blk_run_queue(q);
600 		spin_unlock_irq(q->queue_lock);
601 		msleep(10);
602 		spin_lock_irq(q->queue_lock);
603 		elv_drain_elevator(q);
604 	}
605 }
606 
607 void elv_quiesce_end(struct request_queue *q)
608 {
609 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
610 }
611 
612 void elv_insert(struct request_queue *q, struct request *rq, int where)
613 {
614 	struct list_head *pos;
615 	unsigned ordseq;
616 	int unplug_it = 1;
617 
618 	trace_block_rq_insert(q, rq);
619 
620 	rq->q = q;
621 
622 	switch (where) {
623 	case ELEVATOR_INSERT_FRONT:
624 		rq->cmd_flags |= REQ_SOFTBARRIER;
625 
626 		list_add(&rq->queuelist, &q->queue_head);
627 		break;
628 
629 	case ELEVATOR_INSERT_BACK:
630 		rq->cmd_flags |= REQ_SOFTBARRIER;
631 		elv_drain_elevator(q);
632 		list_add_tail(&rq->queuelist, &q->queue_head);
633 		/*
634 		 * We kick the queue here for the following reasons.
635 		 * - The elevator might have returned NULL previously
636 		 *   to delay requests and returned them now.  As the
637 		 *   queue wasn't empty before this request, ll_rw_blk
638 		 *   won't run the queue on return, resulting in hang.
639 		 * - Usually, back inserted requests won't be merged
640 		 *   with anything.  There's no point in delaying queue
641 		 *   processing.
642 		 */
643 		__blk_run_queue(q);
644 		break;
645 
646 	case ELEVATOR_INSERT_SORT:
647 		BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
648 		rq->cmd_flags |= REQ_SORTED;
649 		q->nr_sorted++;
650 		if (rq_mergeable(rq)) {
651 			elv_rqhash_add(q, rq);
652 			if (!q->last_merge)
653 				q->last_merge = rq;
654 		}
655 
656 		/*
657 		 * Some ioscheds (cfq) run q->request_fn directly, so
658 		 * rq cannot be accessed after calling
659 		 * elevator_add_req_fn.
660 		 */
661 		q->elevator->ops->elevator_add_req_fn(q, rq);
662 		break;
663 
664 	case ELEVATOR_INSERT_REQUEUE:
665 		/*
666 		 * If ordered flush isn't in progress, we do front
667 		 * insertion; otherwise, requests should be requeued
668 		 * in ordseq order.
669 		 */
670 		rq->cmd_flags |= REQ_SOFTBARRIER;
671 
672 		/*
673 		 * Most requeues happen because of a busy condition,
674 		 * don't force unplug of the queue for that case.
675 		 */
676 		unplug_it = 0;
677 
678 		if (q->ordseq == 0) {
679 			list_add(&rq->queuelist, &q->queue_head);
680 			break;
681 		}
682 
683 		ordseq = blk_ordered_req_seq(rq);
684 
685 		list_for_each(pos, &q->queue_head) {
686 			struct request *pos_rq = list_entry_rq(pos);
687 			if (ordseq <= blk_ordered_req_seq(pos_rq))
688 				break;
689 		}
690 
691 		list_add_tail(&rq->queuelist, pos);
692 		break;
693 
694 	default:
695 		printk(KERN_ERR "%s: bad insertion point %d\n",
696 		       __func__, where);
697 		BUG();
698 	}
699 
700 	if (unplug_it && blk_queue_plugged(q)) {
701 		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
702 				- queue_in_flight(q);
703 
704 		if (nrq >= q->unplug_thresh)
705 			__generic_unplug_device(q);
706 	}
707 }
708 
709 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
710 		       int plug)
711 {
712 	if (q->ordcolor)
713 		rq->cmd_flags |= REQ_ORDERED_COLOR;
714 
715 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
716 		/*
717 		 * toggle ordered color
718 		 */
719 		if (blk_barrier_rq(rq))
720 			q->ordcolor ^= 1;
721 
722 		/*
723 		 * barriers implicitly indicate back insertion
724 		 */
725 		if (where == ELEVATOR_INSERT_SORT)
726 			where = ELEVATOR_INSERT_BACK;
727 
728 		/*
729 		 * this request is scheduling boundary, update
730 		 * end_sector
731 		 */
732 		if (blk_fs_request(rq) || blk_discard_rq(rq)) {
733 			q->end_sector = rq_end_sector(rq);
734 			q->boundary_rq = rq;
735 		}
736 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
737 		    where == ELEVATOR_INSERT_SORT)
738 		where = ELEVATOR_INSERT_BACK;
739 
740 	if (plug)
741 		blk_plug_device(q);
742 
743 	elv_insert(q, rq, where);
744 }
745 EXPORT_SYMBOL(__elv_add_request);
746 
747 void elv_add_request(struct request_queue *q, struct request *rq, int where,
748 		     int plug)
749 {
750 	unsigned long flags;
751 
752 	spin_lock_irqsave(q->queue_lock, flags);
753 	__elv_add_request(q, rq, where, plug);
754 	spin_unlock_irqrestore(q->queue_lock, flags);
755 }
756 EXPORT_SYMBOL(elv_add_request);
757 
758 int elv_queue_empty(struct request_queue *q)
759 {
760 	struct elevator_queue *e = q->elevator;
761 
762 	if (!list_empty(&q->queue_head))
763 		return 0;
764 
765 	if (e->ops->elevator_queue_empty_fn)
766 		return e->ops->elevator_queue_empty_fn(q);
767 
768 	return 1;
769 }
770 EXPORT_SYMBOL(elv_queue_empty);
771 
772 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
773 {
774 	struct elevator_queue *e = q->elevator;
775 
776 	if (e->ops->elevator_latter_req_fn)
777 		return e->ops->elevator_latter_req_fn(q, rq);
778 	return NULL;
779 }
780 
781 struct request *elv_former_request(struct request_queue *q, struct request *rq)
782 {
783 	struct elevator_queue *e = q->elevator;
784 
785 	if (e->ops->elevator_former_req_fn)
786 		return e->ops->elevator_former_req_fn(q, rq);
787 	return NULL;
788 }
789 
790 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
791 {
792 	struct elevator_queue *e = q->elevator;
793 
794 	if (e->ops->elevator_set_req_fn)
795 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
796 
797 	rq->elevator_private = NULL;
798 	return 0;
799 }
800 
801 void elv_put_request(struct request_queue *q, struct request *rq)
802 {
803 	struct elevator_queue *e = q->elevator;
804 
805 	if (e->ops->elevator_put_req_fn)
806 		e->ops->elevator_put_req_fn(rq);
807 }
808 
809 int elv_may_queue(struct request_queue *q, int rw)
810 {
811 	struct elevator_queue *e = q->elevator;
812 
813 	if (e->ops->elevator_may_queue_fn)
814 		return e->ops->elevator_may_queue_fn(q, rw);
815 
816 	return ELV_MQUEUE_MAY;
817 }
818 
819 void elv_abort_queue(struct request_queue *q)
820 {
821 	struct request *rq;
822 
823 	while (!list_empty(&q->queue_head)) {
824 		rq = list_entry_rq(q->queue_head.next);
825 		rq->cmd_flags |= REQ_QUIET;
826 		trace_block_rq_abort(q, rq);
827 		/*
828 		 * Mark this request as started so we don't trigger
829 		 * any debug logic in the end I/O path.
830 		 */
831 		blk_start_request(rq);
832 		__blk_end_request_all(rq, -EIO);
833 	}
834 }
835 EXPORT_SYMBOL(elv_abort_queue);
836 
837 void elv_completed_request(struct request_queue *q, struct request *rq)
838 {
839 	struct elevator_queue *e = q->elevator;
840 
841 	/*
842 	 * request is released from the driver, io must be done
843 	 */
844 	if (blk_account_rq(rq)) {
845 		q->in_flight[rq_is_sync(rq)]--;
846 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
847 			e->ops->elevator_completed_req_fn(q, rq);
848 	}
849 
850 	/*
851 	 * Check if the queue is waiting for fs requests to be
852 	 * drained for flush sequence.
853 	 */
854 	if (unlikely(q->ordseq)) {
855 		struct request *next = NULL;
856 
857 		if (!list_empty(&q->queue_head))
858 			next = list_entry_rq(q->queue_head.next);
859 
860 		if (!queue_in_flight(q) &&
861 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
862 		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
863 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
864 			__blk_run_queue(q);
865 		}
866 	}
867 }
868 
869 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
870 
871 static ssize_t
872 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
873 {
874 	struct elv_fs_entry *entry = to_elv(attr);
875 	struct elevator_queue *e;
876 	ssize_t error;
877 
878 	if (!entry->show)
879 		return -EIO;
880 
881 	e = container_of(kobj, struct elevator_queue, kobj);
882 	mutex_lock(&e->sysfs_lock);
883 	error = e->ops ? entry->show(e, page) : -ENOENT;
884 	mutex_unlock(&e->sysfs_lock);
885 	return error;
886 }
887 
888 static ssize_t
889 elv_attr_store(struct kobject *kobj, struct attribute *attr,
890 	       const char *page, size_t length)
891 {
892 	struct elv_fs_entry *entry = to_elv(attr);
893 	struct elevator_queue *e;
894 	ssize_t error;
895 
896 	if (!entry->store)
897 		return -EIO;
898 
899 	e = container_of(kobj, struct elevator_queue, kobj);
900 	mutex_lock(&e->sysfs_lock);
901 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
902 	mutex_unlock(&e->sysfs_lock);
903 	return error;
904 }
905 
906 static const struct sysfs_ops elv_sysfs_ops = {
907 	.show	= elv_attr_show,
908 	.store	= elv_attr_store,
909 };
910 
911 static struct kobj_type elv_ktype = {
912 	.sysfs_ops	= &elv_sysfs_ops,
913 	.release	= elevator_release,
914 };
915 
916 int elv_register_queue(struct request_queue *q)
917 {
918 	struct elevator_queue *e = q->elevator;
919 	int error;
920 
921 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
922 	if (!error) {
923 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
924 		if (attr) {
925 			while (attr->attr.name) {
926 				if (sysfs_create_file(&e->kobj, &attr->attr))
927 					break;
928 				attr++;
929 			}
930 		}
931 		kobject_uevent(&e->kobj, KOBJ_ADD);
932 	}
933 	return error;
934 }
935 EXPORT_SYMBOL(elv_register_queue);
936 
937 static void __elv_unregister_queue(struct elevator_queue *e)
938 {
939 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
940 	kobject_del(&e->kobj);
941 }
942 
943 void elv_unregister_queue(struct request_queue *q)
944 {
945 	if (q)
946 		__elv_unregister_queue(q->elevator);
947 }
948 EXPORT_SYMBOL(elv_unregister_queue);
949 
950 void elv_register(struct elevator_type *e)
951 {
952 	char *def = "";
953 
954 	spin_lock(&elv_list_lock);
955 	BUG_ON(elevator_find(e->elevator_name));
956 	list_add_tail(&e->list, &elv_list);
957 	spin_unlock(&elv_list_lock);
958 
959 	if (!strcmp(e->elevator_name, chosen_elevator) ||
960 			(!*chosen_elevator &&
961 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
962 				def = " (default)";
963 
964 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
965 								def);
966 }
967 EXPORT_SYMBOL_GPL(elv_register);
968 
969 void elv_unregister(struct elevator_type *e)
970 {
971 	struct task_struct *g, *p;
972 
973 	/*
974 	 * Iterate every thread in the process to remove the io contexts.
975 	 */
976 	if (e->ops.trim) {
977 		read_lock(&tasklist_lock);
978 		do_each_thread(g, p) {
979 			task_lock(p);
980 			if (p->io_context)
981 				e->ops.trim(p->io_context);
982 			task_unlock(p);
983 		} while_each_thread(g, p);
984 		read_unlock(&tasklist_lock);
985 	}
986 
987 	spin_lock(&elv_list_lock);
988 	list_del_init(&e->list);
989 	spin_unlock(&elv_list_lock);
990 }
991 EXPORT_SYMBOL_GPL(elv_unregister);
992 
993 /*
994  * switch to new_e io scheduler. be careful not to introduce deadlocks -
995  * we don't free the old io scheduler, before we have allocated what we
996  * need for the new one. this way we have a chance of going back to the old
997  * one, if the new one fails init for some reason.
998  */
999 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1000 {
1001 	struct elevator_queue *old_elevator, *e;
1002 	void *data;
1003 
1004 	/*
1005 	 * Allocate new elevator
1006 	 */
1007 	e = elevator_alloc(q, new_e);
1008 	if (!e)
1009 		return 0;
1010 
1011 	data = elevator_init_queue(q, e);
1012 	if (!data) {
1013 		kobject_put(&e->kobj);
1014 		return 0;
1015 	}
1016 
1017 	/*
1018 	 * Turn on BYPASS and drain all requests w/ elevator private data
1019 	 */
1020 	spin_lock_irq(q->queue_lock);
1021 	elv_quiesce_start(q);
1022 
1023 	/*
1024 	 * Remember old elevator.
1025 	 */
1026 	old_elevator = q->elevator;
1027 
1028 	/*
1029 	 * attach and start new elevator
1030 	 */
1031 	elevator_attach(q, e, data);
1032 
1033 	spin_unlock_irq(q->queue_lock);
1034 
1035 	__elv_unregister_queue(old_elevator);
1036 
1037 	if (elv_register_queue(q))
1038 		goto fail_register;
1039 
1040 	/*
1041 	 * finally exit old elevator and turn off BYPASS.
1042 	 */
1043 	elevator_exit(old_elevator);
1044 	spin_lock_irq(q->queue_lock);
1045 	elv_quiesce_end(q);
1046 	spin_unlock_irq(q->queue_lock);
1047 
1048 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1049 
1050 	return 1;
1051 
1052 fail_register:
1053 	/*
1054 	 * switch failed, exit the new io scheduler and reattach the old
1055 	 * one again (along with re-adding the sysfs dir)
1056 	 */
1057 	elevator_exit(e);
1058 	q->elevator = old_elevator;
1059 	elv_register_queue(q);
1060 
1061 	spin_lock_irq(q->queue_lock);
1062 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1063 	spin_unlock_irq(q->queue_lock);
1064 
1065 	return 0;
1066 }
1067 
1068 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1069 			  size_t count)
1070 {
1071 	char elevator_name[ELV_NAME_MAX];
1072 	struct elevator_type *e;
1073 
1074 	if (!q->elevator)
1075 		return count;
1076 
1077 	strlcpy(elevator_name, name, sizeof(elevator_name));
1078 	e = elevator_get(strstrip(elevator_name));
1079 	if (!e) {
1080 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1081 		return -EINVAL;
1082 	}
1083 
1084 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1085 		elevator_put(e);
1086 		return count;
1087 	}
1088 
1089 	if (!elevator_switch(q, e))
1090 		printk(KERN_ERR "elevator: switch to %s failed\n",
1091 							elevator_name);
1092 	return count;
1093 }
1094 
1095 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1096 {
1097 	struct elevator_queue *e = q->elevator;
1098 	struct elevator_type *elv;
1099 	struct elevator_type *__e;
1100 	int len = 0;
1101 
1102 	if (!q->elevator || !blk_queue_stackable(q))
1103 		return sprintf(name, "none\n");
1104 
1105 	elv = e->elevator_type;
1106 
1107 	spin_lock(&elv_list_lock);
1108 	list_for_each_entry(__e, &elv_list, list) {
1109 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1110 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1111 		else
1112 			len += sprintf(name+len, "%s ", __e->elevator_name);
1113 	}
1114 	spin_unlock(&elv_list_lock);
1115 
1116 	len += sprintf(len+name, "\n");
1117 	return len;
1118 }
1119 
1120 struct request *elv_rb_former_request(struct request_queue *q,
1121 				      struct request *rq)
1122 {
1123 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1124 
1125 	if (rbprev)
1126 		return rb_entry_rq(rbprev);
1127 
1128 	return NULL;
1129 }
1130 EXPORT_SYMBOL(elv_rb_former_request);
1131 
1132 struct request *elv_rb_latter_request(struct request_queue *q,
1133 				      struct request *rq)
1134 {
1135 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1136 
1137 	if (rbnext)
1138 		return rb_entry_rq(rbnext);
1139 
1140 	return NULL;
1141 }
1142 EXPORT_SYMBOL(elv_rb_latter_request);
1143