xref: /openbmc/linux/block/elevator.c (revision 19add7e1)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->ops->elevator_allow_merge_fn)
66 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!rq_mergeable(rq))
77 		return 0;
78 
79 	/*
80 	 * Don't merge file system requests and discard requests
81 	 */
82 	if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD))
83 		return 0;
84 
85 	/*
86 	 * Don't merge discard requests and secure discard requests
87 	 */
88 	if ((bio->bi_rw & REQ_SECURE) != (rq->bio->bi_rw & REQ_SECURE))
89 		return 0;
90 
91 	/*
92 	 * different data direction or already started, don't merge
93 	 */
94 	if (bio_data_dir(bio) != rq_data_dir(rq))
95 		return 0;
96 
97 	/*
98 	 * must be same device and not a special request
99 	 */
100 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
101 		return 0;
102 
103 	/*
104 	 * only merge integrity protected bio into ditto rq
105 	 */
106 	if (bio_integrity(bio) != blk_integrity_rq(rq))
107 		return 0;
108 
109 	if (!elv_iosched_allow_merge(rq, bio))
110 		return 0;
111 
112 	return 1;
113 }
114 EXPORT_SYMBOL(elv_rq_merge_ok);
115 
116 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
117 {
118 	int ret = ELEVATOR_NO_MERGE;
119 
120 	/*
121 	 * we can merge and sequence is ok, check if it's possible
122 	 */
123 	if (elv_rq_merge_ok(__rq, bio)) {
124 		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
125 			ret = ELEVATOR_BACK_MERGE;
126 		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
127 			ret = ELEVATOR_FRONT_MERGE;
128 	}
129 
130 	return ret;
131 }
132 
133 static struct elevator_type *elevator_find(const char *name)
134 {
135 	struct elevator_type *e;
136 
137 	list_for_each_entry(e, &elv_list, list) {
138 		if (!strcmp(e->elevator_name, name))
139 			return e;
140 	}
141 
142 	return NULL;
143 }
144 
145 static void elevator_put(struct elevator_type *e)
146 {
147 	module_put(e->elevator_owner);
148 }
149 
150 static struct elevator_type *elevator_get(const char *name)
151 {
152 	struct elevator_type *e;
153 
154 	spin_lock(&elv_list_lock);
155 
156 	e = elevator_find(name);
157 	if (!e) {
158 		char elv[ELV_NAME_MAX + strlen("-iosched")];
159 
160 		spin_unlock(&elv_list_lock);
161 
162 		snprintf(elv, sizeof(elv), "%s-iosched", name);
163 
164 		request_module("%s", elv);
165 		spin_lock(&elv_list_lock);
166 		e = elevator_find(name);
167 	}
168 
169 	if (e && !try_module_get(e->elevator_owner))
170 		e = NULL;
171 
172 	spin_unlock(&elv_list_lock);
173 
174 	return e;
175 }
176 
177 static void *elevator_init_queue(struct request_queue *q,
178 				 struct elevator_queue *eq)
179 {
180 	return eq->ops->elevator_init_fn(q);
181 }
182 
183 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
184 			   void *data)
185 {
186 	q->elevator = eq;
187 	eq->elevator_data = data;
188 }
189 
190 static char chosen_elevator[16];
191 
192 static int __init elevator_setup(char *str)
193 {
194 	/*
195 	 * Be backwards-compatible with previous kernels, so users
196 	 * won't get the wrong elevator.
197 	 */
198 	strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
199 	return 1;
200 }
201 
202 __setup("elevator=", elevator_setup);
203 
204 static struct kobj_type elv_ktype;
205 
206 static struct elevator_queue *elevator_alloc(struct request_queue *q,
207 				  struct elevator_type *e)
208 {
209 	struct elevator_queue *eq;
210 	int i;
211 
212 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
213 	if (unlikely(!eq))
214 		goto err;
215 
216 	eq->ops = &e->ops;
217 	eq->elevator_type = e;
218 	kobject_init(&eq->kobj, &elv_ktype);
219 	mutex_init(&eq->sysfs_lock);
220 
221 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
222 					GFP_KERNEL, q->node);
223 	if (!eq->hash)
224 		goto err;
225 
226 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
227 		INIT_HLIST_HEAD(&eq->hash[i]);
228 
229 	return eq;
230 err:
231 	kfree(eq);
232 	elevator_put(e);
233 	return NULL;
234 }
235 
236 static void elevator_release(struct kobject *kobj)
237 {
238 	struct elevator_queue *e;
239 
240 	e = container_of(kobj, struct elevator_queue, kobj);
241 	elevator_put(e->elevator_type);
242 	kfree(e->hash);
243 	kfree(e);
244 }
245 
246 int elevator_init(struct request_queue *q, char *name)
247 {
248 	struct elevator_type *e = NULL;
249 	struct elevator_queue *eq;
250 	void *data;
251 
252 	if (unlikely(q->elevator))
253 		return 0;
254 
255 	INIT_LIST_HEAD(&q->queue_head);
256 	q->last_merge = NULL;
257 	q->end_sector = 0;
258 	q->boundary_rq = NULL;
259 
260 	if (name) {
261 		e = elevator_get(name);
262 		if (!e)
263 			return -EINVAL;
264 	}
265 
266 	if (!e && *chosen_elevator) {
267 		e = elevator_get(chosen_elevator);
268 		if (!e)
269 			printk(KERN_ERR "I/O scheduler %s not found\n",
270 							chosen_elevator);
271 	}
272 
273 	if (!e) {
274 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
275 		if (!e) {
276 			printk(KERN_ERR
277 				"Default I/O scheduler not found. " \
278 				"Using noop.\n");
279 			e = elevator_get("noop");
280 		}
281 	}
282 
283 	eq = elevator_alloc(q, e);
284 	if (!eq)
285 		return -ENOMEM;
286 
287 	data = elevator_init_queue(q, eq);
288 	if (!data) {
289 		kobject_put(&eq->kobj);
290 		return -ENOMEM;
291 	}
292 
293 	elevator_attach(q, eq, data);
294 	return 0;
295 }
296 EXPORT_SYMBOL(elevator_init);
297 
298 void elevator_exit(struct elevator_queue *e)
299 {
300 	mutex_lock(&e->sysfs_lock);
301 	if (e->ops->elevator_exit_fn)
302 		e->ops->elevator_exit_fn(e);
303 	e->ops = NULL;
304 	mutex_unlock(&e->sysfs_lock);
305 
306 	kobject_put(&e->kobj);
307 }
308 EXPORT_SYMBOL(elevator_exit);
309 
310 static inline void __elv_rqhash_del(struct request *rq)
311 {
312 	hlist_del_init(&rq->hash);
313 }
314 
315 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
316 {
317 	if (ELV_ON_HASH(rq))
318 		__elv_rqhash_del(rq);
319 }
320 
321 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
322 {
323 	struct elevator_queue *e = q->elevator;
324 
325 	BUG_ON(ELV_ON_HASH(rq));
326 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
327 }
328 
329 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
330 {
331 	__elv_rqhash_del(rq);
332 	elv_rqhash_add(q, rq);
333 }
334 
335 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
336 {
337 	struct elevator_queue *e = q->elevator;
338 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
339 	struct hlist_node *entry, *next;
340 	struct request *rq;
341 
342 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
343 		BUG_ON(!ELV_ON_HASH(rq));
344 
345 		if (unlikely(!rq_mergeable(rq))) {
346 			__elv_rqhash_del(rq);
347 			continue;
348 		}
349 
350 		if (rq_hash_key(rq) == offset)
351 			return rq;
352 	}
353 
354 	return NULL;
355 }
356 
357 /*
358  * RB-tree support functions for inserting/lookup/removal of requests
359  * in a sorted RB tree.
360  */
361 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
362 {
363 	struct rb_node **p = &root->rb_node;
364 	struct rb_node *parent = NULL;
365 	struct request *__rq;
366 
367 	while (*p) {
368 		parent = *p;
369 		__rq = rb_entry(parent, struct request, rb_node);
370 
371 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
372 			p = &(*p)->rb_left;
373 		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
374 			p = &(*p)->rb_right;
375 		else
376 			return __rq;
377 	}
378 
379 	rb_link_node(&rq->rb_node, parent, p);
380 	rb_insert_color(&rq->rb_node, root);
381 	return NULL;
382 }
383 EXPORT_SYMBOL(elv_rb_add);
384 
385 void elv_rb_del(struct rb_root *root, struct request *rq)
386 {
387 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
388 	rb_erase(&rq->rb_node, root);
389 	RB_CLEAR_NODE(&rq->rb_node);
390 }
391 EXPORT_SYMBOL(elv_rb_del);
392 
393 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
394 {
395 	struct rb_node *n = root->rb_node;
396 	struct request *rq;
397 
398 	while (n) {
399 		rq = rb_entry(n, struct request, rb_node);
400 
401 		if (sector < blk_rq_pos(rq))
402 			n = n->rb_left;
403 		else if (sector > blk_rq_pos(rq))
404 			n = n->rb_right;
405 		else
406 			return rq;
407 	}
408 
409 	return NULL;
410 }
411 EXPORT_SYMBOL(elv_rb_find);
412 
413 /*
414  * Insert rq into dispatch queue of q.  Queue lock must be held on
415  * entry.  rq is sort instead into the dispatch queue. To be used by
416  * specific elevators.
417  */
418 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
419 {
420 	sector_t boundary;
421 	struct list_head *entry;
422 	int stop_flags;
423 
424 	if (q->last_merge == rq)
425 		q->last_merge = NULL;
426 
427 	elv_rqhash_del(q, rq);
428 
429 	q->nr_sorted--;
430 
431 	boundary = q->end_sector;
432 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
433 	list_for_each_prev(entry, &q->queue_head) {
434 		struct request *pos = list_entry_rq(entry);
435 
436 		if ((rq->cmd_flags & REQ_DISCARD) !=
437 		    (pos->cmd_flags & REQ_DISCARD))
438 			break;
439 		if (rq_data_dir(rq) != rq_data_dir(pos))
440 			break;
441 		if (pos->cmd_flags & stop_flags)
442 			break;
443 		if (blk_rq_pos(rq) >= boundary) {
444 			if (blk_rq_pos(pos) < boundary)
445 				continue;
446 		} else {
447 			if (blk_rq_pos(pos) >= boundary)
448 				break;
449 		}
450 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
451 			break;
452 	}
453 
454 	list_add(&rq->queuelist, entry);
455 }
456 EXPORT_SYMBOL(elv_dispatch_sort);
457 
458 /*
459  * Insert rq into dispatch queue of q.  Queue lock must be held on
460  * entry.  rq is added to the back of the dispatch queue. To be used by
461  * specific elevators.
462  */
463 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
464 {
465 	if (q->last_merge == rq)
466 		q->last_merge = NULL;
467 
468 	elv_rqhash_del(q, rq);
469 
470 	q->nr_sorted--;
471 
472 	q->end_sector = rq_end_sector(rq);
473 	q->boundary_rq = rq;
474 	list_add_tail(&rq->queuelist, &q->queue_head);
475 }
476 EXPORT_SYMBOL(elv_dispatch_add_tail);
477 
478 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
479 {
480 	struct elevator_queue *e = q->elevator;
481 	struct request *__rq;
482 	int ret;
483 
484 	/*
485 	 * Levels of merges:
486 	 * 	nomerges:  No merges at all attempted
487 	 * 	noxmerges: Only simple one-hit cache try
488 	 * 	merges:	   All merge tries attempted
489 	 */
490 	if (blk_queue_nomerges(q))
491 		return ELEVATOR_NO_MERGE;
492 
493 	/*
494 	 * First try one-hit cache.
495 	 */
496 	if (q->last_merge) {
497 		ret = elv_try_merge(q->last_merge, bio);
498 		if (ret != ELEVATOR_NO_MERGE) {
499 			*req = q->last_merge;
500 			return ret;
501 		}
502 	}
503 
504 	if (blk_queue_noxmerges(q))
505 		return ELEVATOR_NO_MERGE;
506 
507 	/*
508 	 * See if our hash lookup can find a potential backmerge.
509 	 */
510 	__rq = elv_rqhash_find(q, bio->bi_sector);
511 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
512 		*req = __rq;
513 		return ELEVATOR_BACK_MERGE;
514 	}
515 
516 	if (e->ops->elevator_merge_fn)
517 		return e->ops->elevator_merge_fn(q, req, bio);
518 
519 	return ELEVATOR_NO_MERGE;
520 }
521 
522 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
523 {
524 	struct elevator_queue *e = q->elevator;
525 
526 	if (e->ops->elevator_merged_fn)
527 		e->ops->elevator_merged_fn(q, rq, type);
528 
529 	if (type == ELEVATOR_BACK_MERGE)
530 		elv_rqhash_reposition(q, rq);
531 
532 	q->last_merge = rq;
533 }
534 
535 void elv_merge_requests(struct request_queue *q, struct request *rq,
536 			     struct request *next)
537 {
538 	struct elevator_queue *e = q->elevator;
539 
540 	if (e->ops->elevator_merge_req_fn)
541 		e->ops->elevator_merge_req_fn(q, rq, next);
542 
543 	elv_rqhash_reposition(q, rq);
544 	elv_rqhash_del(q, next);
545 
546 	q->nr_sorted--;
547 	q->last_merge = rq;
548 }
549 
550 void elv_bio_merged(struct request_queue *q, struct request *rq,
551 			struct bio *bio)
552 {
553 	struct elevator_queue *e = q->elevator;
554 
555 	if (e->ops->elevator_bio_merged_fn)
556 		e->ops->elevator_bio_merged_fn(q, rq, bio);
557 }
558 
559 void elv_requeue_request(struct request_queue *q, struct request *rq)
560 {
561 	/*
562 	 * it already went through dequeue, we need to decrement the
563 	 * in_flight count again
564 	 */
565 	if (blk_account_rq(rq)) {
566 		q->in_flight[rq_is_sync(rq)]--;
567 		if (rq->cmd_flags & REQ_SORTED)
568 			elv_deactivate_rq(q, rq);
569 	}
570 
571 	rq->cmd_flags &= ~REQ_STARTED;
572 
573 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
574 }
575 
576 void elv_drain_elevator(struct request_queue *q)
577 {
578 	static int printed;
579 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
580 		;
581 	if (q->nr_sorted == 0)
582 		return;
583 	if (printed++ < 10) {
584 		printk(KERN_ERR "%s: forced dispatching is broken "
585 		       "(nr_sorted=%u), please report this\n",
586 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
587 	}
588 }
589 
590 /*
591  * Call with queue lock held, interrupts disabled
592  */
593 void elv_quiesce_start(struct request_queue *q)
594 {
595 	if (!q->elevator)
596 		return;
597 
598 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
599 
600 	/*
601 	 * make sure we don't have any requests in flight
602 	 */
603 	elv_drain_elevator(q);
604 	while (q->rq.elvpriv) {
605 		__blk_run_queue(q);
606 		spin_unlock_irq(q->queue_lock);
607 		msleep(10);
608 		spin_lock_irq(q->queue_lock);
609 		elv_drain_elevator(q);
610 	}
611 }
612 
613 void elv_quiesce_end(struct request_queue *q)
614 {
615 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
616 }
617 
618 void elv_insert(struct request_queue *q, struct request *rq, int where)
619 {
620 	int unplug_it = 1;
621 
622 	trace_block_rq_insert(q, rq);
623 
624 	rq->q = q;
625 
626 	switch (where) {
627 	case ELEVATOR_INSERT_REQUEUE:
628 		/*
629 		 * Most requeues happen because of a busy condition,
630 		 * don't force unplug of the queue for that case.
631 		 * Clear unplug_it and fall through.
632 		 */
633 		unplug_it = 0;
634 
635 	case ELEVATOR_INSERT_FRONT:
636 		rq->cmd_flags |= REQ_SOFTBARRIER;
637 		list_add(&rq->queuelist, &q->queue_head);
638 		break;
639 
640 	case ELEVATOR_INSERT_BACK:
641 		rq->cmd_flags |= REQ_SOFTBARRIER;
642 		elv_drain_elevator(q);
643 		list_add_tail(&rq->queuelist, &q->queue_head);
644 		/*
645 		 * We kick the queue here for the following reasons.
646 		 * - The elevator might have returned NULL previously
647 		 *   to delay requests and returned them now.  As the
648 		 *   queue wasn't empty before this request, ll_rw_blk
649 		 *   won't run the queue on return, resulting in hang.
650 		 * - Usually, back inserted requests won't be merged
651 		 *   with anything.  There's no point in delaying queue
652 		 *   processing.
653 		 */
654 		__blk_run_queue(q);
655 		break;
656 
657 	case ELEVATOR_INSERT_SORT:
658 		BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
659 		       !(rq->cmd_flags & REQ_DISCARD));
660 		rq->cmd_flags |= REQ_SORTED;
661 		q->nr_sorted++;
662 		if (rq_mergeable(rq)) {
663 			elv_rqhash_add(q, rq);
664 			if (!q->last_merge)
665 				q->last_merge = rq;
666 		}
667 
668 		/*
669 		 * Some ioscheds (cfq) run q->request_fn directly, so
670 		 * rq cannot be accessed after calling
671 		 * elevator_add_req_fn.
672 		 */
673 		q->elevator->ops->elevator_add_req_fn(q, rq);
674 		break;
675 
676 	default:
677 		printk(KERN_ERR "%s: bad insertion point %d\n",
678 		       __func__, where);
679 		BUG();
680 	}
681 
682 	if (unplug_it && blk_queue_plugged(q)) {
683 		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
684 				- queue_in_flight(q);
685 
686 		if (nrq >= q->unplug_thresh)
687 			__generic_unplug_device(q);
688 	}
689 }
690 
691 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
692 		       int plug)
693 {
694 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
695 		/* barriers are scheduling boundary, update end_sector */
696 		if (rq->cmd_type == REQ_TYPE_FS ||
697 		    (rq->cmd_flags & REQ_DISCARD)) {
698 			q->end_sector = rq_end_sector(rq);
699 			q->boundary_rq = rq;
700 		}
701 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
702 		    where == ELEVATOR_INSERT_SORT)
703 		where = ELEVATOR_INSERT_BACK;
704 
705 	if (plug)
706 		blk_plug_device(q);
707 
708 	elv_insert(q, rq, where);
709 }
710 EXPORT_SYMBOL(__elv_add_request);
711 
712 void elv_add_request(struct request_queue *q, struct request *rq, int where,
713 		     int plug)
714 {
715 	unsigned long flags;
716 
717 	spin_lock_irqsave(q->queue_lock, flags);
718 	__elv_add_request(q, rq, where, plug);
719 	spin_unlock_irqrestore(q->queue_lock, flags);
720 }
721 EXPORT_SYMBOL(elv_add_request);
722 
723 int elv_queue_empty(struct request_queue *q)
724 {
725 	struct elevator_queue *e = q->elevator;
726 
727 	if (!list_empty(&q->queue_head))
728 		return 0;
729 
730 	if (e->ops->elevator_queue_empty_fn)
731 		return e->ops->elevator_queue_empty_fn(q);
732 
733 	return 1;
734 }
735 EXPORT_SYMBOL(elv_queue_empty);
736 
737 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
738 {
739 	struct elevator_queue *e = q->elevator;
740 
741 	if (e->ops->elevator_latter_req_fn)
742 		return e->ops->elevator_latter_req_fn(q, rq);
743 	return NULL;
744 }
745 
746 struct request *elv_former_request(struct request_queue *q, struct request *rq)
747 {
748 	struct elevator_queue *e = q->elevator;
749 
750 	if (e->ops->elevator_former_req_fn)
751 		return e->ops->elevator_former_req_fn(q, rq);
752 	return NULL;
753 }
754 
755 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
756 {
757 	struct elevator_queue *e = q->elevator;
758 
759 	if (e->ops->elevator_set_req_fn)
760 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
761 
762 	rq->elevator_private = NULL;
763 	return 0;
764 }
765 
766 void elv_put_request(struct request_queue *q, struct request *rq)
767 {
768 	struct elevator_queue *e = q->elevator;
769 
770 	if (e->ops->elevator_put_req_fn)
771 		e->ops->elevator_put_req_fn(rq);
772 }
773 
774 int elv_may_queue(struct request_queue *q, int rw)
775 {
776 	struct elevator_queue *e = q->elevator;
777 
778 	if (e->ops->elevator_may_queue_fn)
779 		return e->ops->elevator_may_queue_fn(q, rw);
780 
781 	return ELV_MQUEUE_MAY;
782 }
783 
784 void elv_abort_queue(struct request_queue *q)
785 {
786 	struct request *rq;
787 
788 	while (!list_empty(&q->queue_head)) {
789 		rq = list_entry_rq(q->queue_head.next);
790 		rq->cmd_flags |= REQ_QUIET;
791 		trace_block_rq_abort(q, rq);
792 		/*
793 		 * Mark this request as started so we don't trigger
794 		 * any debug logic in the end I/O path.
795 		 */
796 		blk_start_request(rq);
797 		__blk_end_request_all(rq, -EIO);
798 	}
799 }
800 EXPORT_SYMBOL(elv_abort_queue);
801 
802 void elv_completed_request(struct request_queue *q, struct request *rq)
803 {
804 	struct elevator_queue *e = q->elevator;
805 
806 	/*
807 	 * request is released from the driver, io must be done
808 	 */
809 	if (blk_account_rq(rq)) {
810 		q->in_flight[rq_is_sync(rq)]--;
811 		if ((rq->cmd_flags & REQ_SORTED) &&
812 		    e->ops->elevator_completed_req_fn)
813 			e->ops->elevator_completed_req_fn(q, rq);
814 	}
815 }
816 
817 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
818 
819 static ssize_t
820 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
821 {
822 	struct elv_fs_entry *entry = to_elv(attr);
823 	struct elevator_queue *e;
824 	ssize_t error;
825 
826 	if (!entry->show)
827 		return -EIO;
828 
829 	e = container_of(kobj, struct elevator_queue, kobj);
830 	mutex_lock(&e->sysfs_lock);
831 	error = e->ops ? entry->show(e, page) : -ENOENT;
832 	mutex_unlock(&e->sysfs_lock);
833 	return error;
834 }
835 
836 static ssize_t
837 elv_attr_store(struct kobject *kobj, struct attribute *attr,
838 	       const char *page, size_t length)
839 {
840 	struct elv_fs_entry *entry = to_elv(attr);
841 	struct elevator_queue *e;
842 	ssize_t error;
843 
844 	if (!entry->store)
845 		return -EIO;
846 
847 	e = container_of(kobj, struct elevator_queue, kobj);
848 	mutex_lock(&e->sysfs_lock);
849 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
850 	mutex_unlock(&e->sysfs_lock);
851 	return error;
852 }
853 
854 static const struct sysfs_ops elv_sysfs_ops = {
855 	.show	= elv_attr_show,
856 	.store	= elv_attr_store,
857 };
858 
859 static struct kobj_type elv_ktype = {
860 	.sysfs_ops	= &elv_sysfs_ops,
861 	.release	= elevator_release,
862 };
863 
864 int elv_register_queue(struct request_queue *q)
865 {
866 	struct elevator_queue *e = q->elevator;
867 	int error;
868 
869 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
870 	if (!error) {
871 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
872 		if (attr) {
873 			while (attr->attr.name) {
874 				if (sysfs_create_file(&e->kobj, &attr->attr))
875 					break;
876 				attr++;
877 			}
878 		}
879 		kobject_uevent(&e->kobj, KOBJ_ADD);
880 		e->registered = 1;
881 	}
882 	return error;
883 }
884 EXPORT_SYMBOL(elv_register_queue);
885 
886 static void __elv_unregister_queue(struct elevator_queue *e)
887 {
888 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
889 	kobject_del(&e->kobj);
890 	e->registered = 0;
891 }
892 
893 void elv_unregister_queue(struct request_queue *q)
894 {
895 	if (q)
896 		__elv_unregister_queue(q->elevator);
897 }
898 EXPORT_SYMBOL(elv_unregister_queue);
899 
900 void elv_register(struct elevator_type *e)
901 {
902 	char *def = "";
903 
904 	spin_lock(&elv_list_lock);
905 	BUG_ON(elevator_find(e->elevator_name));
906 	list_add_tail(&e->list, &elv_list);
907 	spin_unlock(&elv_list_lock);
908 
909 	if (!strcmp(e->elevator_name, chosen_elevator) ||
910 			(!*chosen_elevator &&
911 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
912 				def = " (default)";
913 
914 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
915 								def);
916 }
917 EXPORT_SYMBOL_GPL(elv_register);
918 
919 void elv_unregister(struct elevator_type *e)
920 {
921 	struct task_struct *g, *p;
922 
923 	/*
924 	 * Iterate every thread in the process to remove the io contexts.
925 	 */
926 	if (e->ops.trim) {
927 		read_lock(&tasklist_lock);
928 		do_each_thread(g, p) {
929 			task_lock(p);
930 			if (p->io_context)
931 				e->ops.trim(p->io_context);
932 			task_unlock(p);
933 		} while_each_thread(g, p);
934 		read_unlock(&tasklist_lock);
935 	}
936 
937 	spin_lock(&elv_list_lock);
938 	list_del_init(&e->list);
939 	spin_unlock(&elv_list_lock);
940 }
941 EXPORT_SYMBOL_GPL(elv_unregister);
942 
943 /*
944  * switch to new_e io scheduler. be careful not to introduce deadlocks -
945  * we don't free the old io scheduler, before we have allocated what we
946  * need for the new one. this way we have a chance of going back to the old
947  * one, if the new one fails init for some reason.
948  */
949 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
950 {
951 	struct elevator_queue *old_elevator, *e;
952 	void *data;
953 	int err;
954 
955 	/*
956 	 * Allocate new elevator
957 	 */
958 	e = elevator_alloc(q, new_e);
959 	if (!e)
960 		return -ENOMEM;
961 
962 	data = elevator_init_queue(q, e);
963 	if (!data) {
964 		kobject_put(&e->kobj);
965 		return -ENOMEM;
966 	}
967 
968 	/*
969 	 * Turn on BYPASS and drain all requests w/ elevator private data
970 	 */
971 	spin_lock_irq(q->queue_lock);
972 	elv_quiesce_start(q);
973 
974 	/*
975 	 * Remember old elevator.
976 	 */
977 	old_elevator = q->elevator;
978 
979 	/*
980 	 * attach and start new elevator
981 	 */
982 	elevator_attach(q, e, data);
983 
984 	spin_unlock_irq(q->queue_lock);
985 
986 	if (old_elevator->registered) {
987 		__elv_unregister_queue(old_elevator);
988 
989 		err = elv_register_queue(q);
990 		if (err)
991 			goto fail_register;
992 	}
993 
994 	/*
995 	 * finally exit old elevator and turn off BYPASS.
996 	 */
997 	elevator_exit(old_elevator);
998 	spin_lock_irq(q->queue_lock);
999 	elv_quiesce_end(q);
1000 	spin_unlock_irq(q->queue_lock);
1001 
1002 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1003 
1004 	return 0;
1005 
1006 fail_register:
1007 	/*
1008 	 * switch failed, exit the new io scheduler and reattach the old
1009 	 * one again (along with re-adding the sysfs dir)
1010 	 */
1011 	elevator_exit(e);
1012 	q->elevator = old_elevator;
1013 	elv_register_queue(q);
1014 
1015 	spin_lock_irq(q->queue_lock);
1016 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1017 	spin_unlock_irq(q->queue_lock);
1018 
1019 	return err;
1020 }
1021 
1022 /*
1023  * Switch this queue to the given IO scheduler.
1024  */
1025 int elevator_change(struct request_queue *q, const char *name)
1026 {
1027 	char elevator_name[ELV_NAME_MAX];
1028 	struct elevator_type *e;
1029 
1030 	if (!q->elevator)
1031 		return -ENXIO;
1032 
1033 	strlcpy(elevator_name, name, sizeof(elevator_name));
1034 	e = elevator_get(strstrip(elevator_name));
1035 	if (!e) {
1036 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1037 		return -EINVAL;
1038 	}
1039 
1040 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1041 		elevator_put(e);
1042 		return 0;
1043 	}
1044 
1045 	return elevator_switch(q, e);
1046 }
1047 EXPORT_SYMBOL(elevator_change);
1048 
1049 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1050 			  size_t count)
1051 {
1052 	int ret;
1053 
1054 	if (!q->elevator)
1055 		return count;
1056 
1057 	ret = elevator_change(q, name);
1058 	if (!ret)
1059 		return count;
1060 
1061 	printk(KERN_ERR "elevator: switch to %s failed\n", name);
1062 	return ret;
1063 }
1064 
1065 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1066 {
1067 	struct elevator_queue *e = q->elevator;
1068 	struct elevator_type *elv;
1069 	struct elevator_type *__e;
1070 	int len = 0;
1071 
1072 	if (!q->elevator || !blk_queue_stackable(q))
1073 		return sprintf(name, "none\n");
1074 
1075 	elv = e->elevator_type;
1076 
1077 	spin_lock(&elv_list_lock);
1078 	list_for_each_entry(__e, &elv_list, list) {
1079 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1080 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1081 		else
1082 			len += sprintf(name+len, "%s ", __e->elevator_name);
1083 	}
1084 	spin_unlock(&elv_list_lock);
1085 
1086 	len += sprintf(len+name, "\n");
1087 	return len;
1088 }
1089 
1090 struct request *elv_rb_former_request(struct request_queue *q,
1091 				      struct request *rq)
1092 {
1093 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1094 
1095 	if (rbprev)
1096 		return rb_entry_rq(rbprev);
1097 
1098 	return NULL;
1099 }
1100 EXPORT_SYMBOL(elv_rb_former_request);
1101 
1102 struct request *elv_rb_latter_request(struct request_queue *q,
1103 				      struct request *rq)
1104 {
1105 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1106 
1107 	if (rbnext)
1108 		return rb_entry_rq(rbnext);
1109 
1110 	return NULL;
1111 }
1112 EXPORT_SYMBOL(elv_rb_latter_request);
1113