1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/blk-crypto.h> 6 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7 #include <xen/xen.h> 8 #include "blk-crypto-internal.h" 9 10 struct elevator_type; 11 12 /* Max future timer expiry for timeouts */ 13 #define BLK_MAX_TIMEOUT (5 * HZ) 14 15 extern struct dentry *blk_debugfs_root; 16 17 struct blk_flush_queue { 18 unsigned int flush_pending_idx:1; 19 unsigned int flush_running_idx:1; 20 blk_status_t rq_status; 21 unsigned long flush_pending_since; 22 struct list_head flush_queue[2]; 23 struct list_head flush_data_in_flight; 24 struct request *flush_rq; 25 26 spinlock_t mq_flush_lock; 27 }; 28 29 bool is_flush_rq(struct request *req); 30 31 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 32 gfp_t flags); 33 void blk_free_flush_queue(struct blk_flush_queue *q); 34 35 void blk_freeze_queue(struct request_queue *q); 36 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 37 void blk_queue_start_drain(struct request_queue *q); 38 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 39 void submit_bio_noacct_nocheck(struct bio *bio); 40 41 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 42 { 43 rcu_read_lock(); 44 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 45 goto fail; 46 47 /* 48 * The code that increments the pm_only counter must ensure that the 49 * counter is globally visible before the queue is unfrozen. 50 */ 51 if (blk_queue_pm_only(q) && 52 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 53 goto fail_put; 54 55 rcu_read_unlock(); 56 return true; 57 58 fail_put: 59 blk_queue_exit(q); 60 fail: 61 rcu_read_unlock(); 62 return false; 63 } 64 65 static inline int bio_queue_enter(struct bio *bio) 66 { 67 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 68 69 if (blk_try_enter_queue(q, false)) 70 return 0; 71 return __bio_queue_enter(q, bio); 72 } 73 74 #define BIO_INLINE_VECS 4 75 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 76 gfp_t gfp_mask); 77 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 78 79 static inline bool biovec_phys_mergeable(struct request_queue *q, 80 struct bio_vec *vec1, struct bio_vec *vec2) 81 { 82 unsigned long mask = queue_segment_boundary(q); 83 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 84 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 85 86 /* 87 * Merging adjacent physical pages may not work correctly under KMSAN 88 * if their metadata pages aren't adjacent. Just disable merging. 89 */ 90 if (IS_ENABLED(CONFIG_KMSAN)) 91 return false; 92 93 if (addr1 + vec1->bv_len != addr2) 94 return false; 95 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 96 return false; 97 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 98 return false; 99 return true; 100 } 101 102 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 103 struct bio_vec *bprv, unsigned int offset) 104 { 105 return (offset & lim->virt_boundary_mask) || 106 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 107 } 108 109 /* 110 * Check if adding a bio_vec after bprv with offset would create a gap in 111 * the SG list. Most drivers don't care about this, but some do. 112 */ 113 static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 114 struct bio_vec *bprv, unsigned int offset) 115 { 116 if (!lim->virt_boundary_mask) 117 return false; 118 return __bvec_gap_to_prev(lim, bprv, offset); 119 } 120 121 static inline bool rq_mergeable(struct request *rq) 122 { 123 if (blk_rq_is_passthrough(rq)) 124 return false; 125 126 if (req_op(rq) == REQ_OP_FLUSH) 127 return false; 128 129 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 130 return false; 131 132 if (req_op(rq) == REQ_OP_ZONE_APPEND) 133 return false; 134 135 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 136 return false; 137 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 138 return false; 139 140 return true; 141 } 142 143 /* 144 * There are two different ways to handle DISCARD merges: 145 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 146 * send the bios to controller together. The ranges don't need to be 147 * contiguous. 148 * 2) Otherwise, the request will be normal read/write requests. The ranges 149 * need to be contiguous. 150 */ 151 static inline bool blk_discard_mergable(struct request *req) 152 { 153 if (req_op(req) == REQ_OP_DISCARD && 154 queue_max_discard_segments(req->q) > 1) 155 return true; 156 return false; 157 } 158 159 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 160 { 161 if (req_op(rq) == REQ_OP_DISCARD) 162 return queue_max_discard_segments(rq->q); 163 return queue_max_segments(rq->q); 164 } 165 166 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 167 enum req_op op) 168 { 169 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 170 return min(q->limits.max_discard_sectors, 171 UINT_MAX >> SECTOR_SHIFT); 172 173 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 174 return q->limits.max_write_zeroes_sectors; 175 176 return q->limits.max_sectors; 177 } 178 179 #ifdef CONFIG_BLK_DEV_INTEGRITY 180 void blk_flush_integrity(void); 181 bool __bio_integrity_endio(struct bio *); 182 void bio_integrity_free(struct bio *bio); 183 static inline bool bio_integrity_endio(struct bio *bio) 184 { 185 if (bio_integrity(bio)) 186 return __bio_integrity_endio(bio); 187 return true; 188 } 189 190 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 191 struct request *); 192 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 193 struct bio *); 194 195 static inline bool integrity_req_gap_back_merge(struct request *req, 196 struct bio *next) 197 { 198 struct bio_integrity_payload *bip = bio_integrity(req->bio); 199 struct bio_integrity_payload *bip_next = bio_integrity(next); 200 201 return bvec_gap_to_prev(&req->q->limits, 202 &bip->bip_vec[bip->bip_vcnt - 1], 203 bip_next->bip_vec[0].bv_offset); 204 } 205 206 static inline bool integrity_req_gap_front_merge(struct request *req, 207 struct bio *bio) 208 { 209 struct bio_integrity_payload *bip = bio_integrity(bio); 210 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 211 212 return bvec_gap_to_prev(&req->q->limits, 213 &bip->bip_vec[bip->bip_vcnt - 1], 214 bip_next->bip_vec[0].bv_offset); 215 } 216 217 int blk_integrity_add(struct gendisk *disk); 218 void blk_integrity_del(struct gendisk *); 219 #else /* CONFIG_BLK_DEV_INTEGRITY */ 220 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 221 struct request *r1, struct request *r2) 222 { 223 return true; 224 } 225 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 226 struct request *r, struct bio *b) 227 { 228 return true; 229 } 230 static inline bool integrity_req_gap_back_merge(struct request *req, 231 struct bio *next) 232 { 233 return false; 234 } 235 static inline bool integrity_req_gap_front_merge(struct request *req, 236 struct bio *bio) 237 { 238 return false; 239 } 240 241 static inline void blk_flush_integrity(void) 242 { 243 } 244 static inline bool bio_integrity_endio(struct bio *bio) 245 { 246 return true; 247 } 248 static inline void bio_integrity_free(struct bio *bio) 249 { 250 } 251 static inline int blk_integrity_add(struct gendisk *disk) 252 { 253 return 0; 254 } 255 static inline void blk_integrity_del(struct gendisk *disk) 256 { 257 } 258 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 259 260 unsigned long blk_rq_timeout(unsigned long timeout); 261 void blk_add_timer(struct request *req); 262 const char *blk_status_to_str(blk_status_t status); 263 264 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 265 unsigned int nr_segs); 266 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 267 struct bio *bio, unsigned int nr_segs); 268 269 /* 270 * Plug flush limits 271 */ 272 #define BLK_MAX_REQUEST_COUNT 32 273 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 274 275 /* 276 * Internal elevator interface 277 */ 278 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 279 280 void blk_insert_flush(struct request *rq); 281 282 int elevator_switch(struct request_queue *q, struct elevator_type *new_e); 283 void elevator_disable(struct request_queue *q); 284 void elevator_exit(struct request_queue *q); 285 int elv_register_queue(struct request_queue *q, bool uevent); 286 void elv_unregister_queue(struct request_queue *q); 287 288 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 289 char *buf); 290 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 291 char *buf); 292 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 293 char *buf); 294 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 295 char *buf); 296 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 297 const char *buf, size_t count); 298 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 299 ssize_t part_timeout_store(struct device *, struct device_attribute *, 300 const char *, size_t); 301 302 static inline bool bio_may_exceed_limits(struct bio *bio, 303 const struct queue_limits *lim) 304 { 305 switch (bio_op(bio)) { 306 case REQ_OP_DISCARD: 307 case REQ_OP_SECURE_ERASE: 308 case REQ_OP_WRITE_ZEROES: 309 return true; /* non-trivial splitting decisions */ 310 default: 311 break; 312 } 313 314 /* 315 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 316 * This is a quick and dirty check that relies on the fact that 317 * bi_io_vec[0] is always valid if a bio has data. The check might 318 * lead to occasional false negatives when bios are cloned, but compared 319 * to the performance impact of cloned bios themselves the loop below 320 * doesn't matter anyway. 321 */ 322 return lim->chunk_sectors || bio->bi_vcnt != 1 || 323 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 324 } 325 326 struct bio *__bio_split_to_limits(struct bio *bio, 327 const struct queue_limits *lim, 328 unsigned int *nr_segs); 329 int ll_back_merge_fn(struct request *req, struct bio *bio, 330 unsigned int nr_segs); 331 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 332 struct request *next); 333 unsigned int blk_recalc_rq_segments(struct request *rq); 334 void blk_rq_set_mixed_merge(struct request *rq); 335 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 336 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 337 338 void blk_set_default_limits(struct queue_limits *lim); 339 int blk_dev_init(void); 340 341 /* 342 * Contribute to IO statistics IFF: 343 * 344 * a) it's attached to a gendisk, and 345 * b) the queue had IO stats enabled when this request was started 346 */ 347 static inline bool blk_do_io_stat(struct request *rq) 348 { 349 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 350 } 351 352 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 353 354 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 355 { 356 req->cmd_flags |= REQ_NOMERGE; 357 if (req == q->last_merge) 358 q->last_merge = NULL; 359 } 360 361 /* 362 * Internal io_context interface 363 */ 364 struct io_cq *ioc_find_get_icq(struct request_queue *q); 365 struct io_cq *ioc_lookup_icq(struct request_queue *q); 366 #ifdef CONFIG_BLK_ICQ 367 void ioc_clear_queue(struct request_queue *q); 368 #else 369 static inline void ioc_clear_queue(struct request_queue *q) 370 { 371 } 372 #endif /* CONFIG_BLK_ICQ */ 373 374 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 375 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 376 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 377 const char *page, size_t count); 378 extern void blk_throtl_bio_endio(struct bio *bio); 379 extern void blk_throtl_stat_add(struct request *rq, u64 time); 380 #else 381 static inline void blk_throtl_bio_endio(struct bio *bio) { } 382 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 383 #endif 384 385 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 386 387 static inline bool blk_queue_may_bounce(struct request_queue *q) 388 { 389 return IS_ENABLED(CONFIG_BOUNCE) && 390 q->limits.bounce == BLK_BOUNCE_HIGH && 391 max_low_pfn >= max_pfn; 392 } 393 394 static inline struct bio *blk_queue_bounce(struct bio *bio, 395 struct request_queue *q) 396 { 397 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 398 return __blk_queue_bounce(bio, q); 399 return bio; 400 } 401 402 #ifdef CONFIG_BLK_DEV_ZONED 403 void disk_free_zone_bitmaps(struct gendisk *disk); 404 void disk_clear_zone_settings(struct gendisk *disk); 405 #else 406 static inline void disk_free_zone_bitmaps(struct gendisk *disk) {} 407 static inline void disk_clear_zone_settings(struct gendisk *disk) {} 408 #endif 409 410 int blk_alloc_ext_minor(void); 411 void blk_free_ext_minor(unsigned int minor); 412 #define ADDPART_FLAG_NONE 0 413 #define ADDPART_FLAG_RAID 1 414 #define ADDPART_FLAG_WHOLEDISK 2 415 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 416 sector_t length); 417 int bdev_del_partition(struct gendisk *disk, int partno); 418 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 419 sector_t length); 420 void blk_drop_partitions(struct gendisk *disk); 421 422 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 423 struct lock_class_key *lkclass); 424 425 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 426 struct page *page, unsigned int len, unsigned int offset, 427 unsigned int max_sectors, bool *same_page); 428 429 struct request_queue *blk_alloc_queue(int node_id); 430 431 int disk_scan_partitions(struct gendisk *disk, fmode_t mode); 432 433 int disk_alloc_events(struct gendisk *disk); 434 void disk_add_events(struct gendisk *disk); 435 void disk_del_events(struct gendisk *disk); 436 void disk_release_events(struct gendisk *disk); 437 void disk_block_events(struct gendisk *disk); 438 void disk_unblock_events(struct gendisk *disk); 439 void disk_flush_events(struct gendisk *disk, unsigned int mask); 440 extern struct device_attribute dev_attr_events; 441 extern struct device_attribute dev_attr_events_async; 442 extern struct device_attribute dev_attr_events_poll_msecs; 443 444 extern struct attribute_group blk_trace_attr_group; 445 446 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 447 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 448 449 extern const struct address_space_operations def_blk_aops; 450 451 int disk_register_independent_access_ranges(struct gendisk *disk); 452 void disk_unregister_independent_access_ranges(struct gendisk *disk); 453 454 #ifdef CONFIG_FAIL_MAKE_REQUEST 455 bool should_fail_request(struct block_device *part, unsigned int bytes); 456 #else /* CONFIG_FAIL_MAKE_REQUEST */ 457 static inline bool should_fail_request(struct block_device *part, 458 unsigned int bytes) 459 { 460 return false; 461 } 462 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 463 464 /* 465 * Optimized request reference counting. Ideally we'd make timeouts be more 466 * clever, as that's the only reason we need references at all... But until 467 * this happens, this is faster than using refcount_t. Also see: 468 * 469 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 470 */ 471 #define req_ref_zero_or_close_to_overflow(req) \ 472 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 473 474 static inline bool req_ref_inc_not_zero(struct request *req) 475 { 476 return atomic_inc_not_zero(&req->ref); 477 } 478 479 static inline bool req_ref_put_and_test(struct request *req) 480 { 481 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 482 return atomic_dec_and_test(&req->ref); 483 } 484 485 static inline void req_ref_set(struct request *req, int value) 486 { 487 atomic_set(&req->ref, value); 488 } 489 490 static inline int req_ref_read(struct request *req) 491 { 492 return atomic_read(&req->ref); 493 } 494 495 #endif /* BLK_INTERNAL_H */ 496