1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/idr.h> 6 #include <linux/blk-mq.h> 7 #include <linux/part_stat.h> 8 #include <linux/blk-crypto.h> 9 #include <xen/xen.h> 10 #include "blk-crypto-internal.h" 11 #include "blk-mq.h" 12 #include "blk-mq-sched.h" 13 14 /* Max future timer expiry for timeouts */ 15 #define BLK_MAX_TIMEOUT (5 * HZ) 16 17 extern struct dentry *blk_debugfs_root; 18 19 struct blk_flush_queue { 20 unsigned int flush_pending_idx:1; 21 unsigned int flush_running_idx:1; 22 blk_status_t rq_status; 23 unsigned long flush_pending_since; 24 struct list_head flush_queue[2]; 25 struct list_head flush_data_in_flight; 26 struct request *flush_rq; 27 28 struct lock_class_key key; 29 spinlock_t mq_flush_lock; 30 }; 31 32 extern struct kmem_cache *blk_requestq_cachep; 33 extern struct kobj_type blk_queue_ktype; 34 extern struct ida blk_queue_ida; 35 36 static inline struct blk_flush_queue * 37 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 38 { 39 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 40 } 41 42 static inline void __blk_get_queue(struct request_queue *q) 43 { 44 kobject_get(&q->kobj); 45 } 46 47 static inline bool 48 is_flush_rq(struct request *req, struct blk_mq_hw_ctx *hctx) 49 { 50 return hctx->fq->flush_rq == req; 51 } 52 53 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 54 gfp_t flags); 55 void blk_free_flush_queue(struct blk_flush_queue *q); 56 57 void blk_freeze_queue(struct request_queue *q); 58 59 static inline bool biovec_phys_mergeable(struct request_queue *q, 60 struct bio_vec *vec1, struct bio_vec *vec2) 61 { 62 unsigned long mask = queue_segment_boundary(q); 63 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 64 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 65 66 if (addr1 + vec1->bv_len != addr2) 67 return false; 68 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 69 return false; 70 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 71 return false; 72 return true; 73 } 74 75 static inline bool __bvec_gap_to_prev(struct request_queue *q, 76 struct bio_vec *bprv, unsigned int offset) 77 { 78 return (offset & queue_virt_boundary(q)) || 79 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 80 } 81 82 /* 83 * Check if adding a bio_vec after bprv with offset would create a gap in 84 * the SG list. Most drivers don't care about this, but some do. 85 */ 86 static inline bool bvec_gap_to_prev(struct request_queue *q, 87 struct bio_vec *bprv, unsigned int offset) 88 { 89 if (!queue_virt_boundary(q)) 90 return false; 91 return __bvec_gap_to_prev(q, bprv, offset); 92 } 93 94 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, 95 unsigned int nr_segs) 96 { 97 rq->nr_phys_segments = nr_segs; 98 rq->__data_len = bio->bi_iter.bi_size; 99 rq->bio = rq->biotail = bio; 100 rq->ioprio = bio_prio(bio); 101 102 if (bio->bi_disk) 103 rq->rq_disk = bio->bi_disk; 104 } 105 106 #ifdef CONFIG_BLK_DEV_INTEGRITY 107 void blk_flush_integrity(void); 108 bool __bio_integrity_endio(struct bio *); 109 void bio_integrity_free(struct bio *bio); 110 static inline bool bio_integrity_endio(struct bio *bio) 111 { 112 if (bio_integrity(bio)) 113 return __bio_integrity_endio(bio); 114 return true; 115 } 116 117 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 118 struct request *); 119 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 120 struct bio *); 121 122 static inline bool integrity_req_gap_back_merge(struct request *req, 123 struct bio *next) 124 { 125 struct bio_integrity_payload *bip = bio_integrity(req->bio); 126 struct bio_integrity_payload *bip_next = bio_integrity(next); 127 128 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 129 bip_next->bip_vec[0].bv_offset); 130 } 131 132 static inline bool integrity_req_gap_front_merge(struct request *req, 133 struct bio *bio) 134 { 135 struct bio_integrity_payload *bip = bio_integrity(bio); 136 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 137 138 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 139 bip_next->bip_vec[0].bv_offset); 140 } 141 142 void blk_integrity_add(struct gendisk *); 143 void blk_integrity_del(struct gendisk *); 144 #else /* CONFIG_BLK_DEV_INTEGRITY */ 145 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 146 struct request *r1, struct request *r2) 147 { 148 return true; 149 } 150 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 151 struct request *r, struct bio *b) 152 { 153 return true; 154 } 155 static inline bool integrity_req_gap_back_merge(struct request *req, 156 struct bio *next) 157 { 158 return false; 159 } 160 static inline bool integrity_req_gap_front_merge(struct request *req, 161 struct bio *bio) 162 { 163 return false; 164 } 165 166 static inline void blk_flush_integrity(void) 167 { 168 } 169 static inline bool bio_integrity_endio(struct bio *bio) 170 { 171 return true; 172 } 173 static inline void bio_integrity_free(struct bio *bio) 174 { 175 } 176 static inline void blk_integrity_add(struct gendisk *disk) 177 { 178 } 179 static inline void blk_integrity_del(struct gendisk *disk) 180 { 181 } 182 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 183 184 unsigned long blk_rq_timeout(unsigned long timeout); 185 void blk_add_timer(struct request *req); 186 187 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 188 unsigned int nr_segs, struct request **same_queue_rq); 189 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 190 struct bio *bio, unsigned int nr_segs); 191 192 void blk_account_io_start(struct request *req); 193 void blk_account_io_done(struct request *req, u64 now); 194 195 /* 196 * Internal elevator interface 197 */ 198 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 199 200 void blk_insert_flush(struct request *rq); 201 202 void elevator_init_mq(struct request_queue *q); 203 int elevator_switch_mq(struct request_queue *q, 204 struct elevator_type *new_e); 205 void __elevator_exit(struct request_queue *, struct elevator_queue *); 206 int elv_register_queue(struct request_queue *q, bool uevent); 207 void elv_unregister_queue(struct request_queue *q); 208 209 static inline void elevator_exit(struct request_queue *q, 210 struct elevator_queue *e) 211 { 212 lockdep_assert_held(&q->sysfs_lock); 213 214 blk_mq_sched_free_requests(q); 215 __elevator_exit(q, e); 216 } 217 218 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); 219 220 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 221 char *buf); 222 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 223 char *buf); 224 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 225 char *buf); 226 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 227 char *buf); 228 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 229 const char *buf, size_t count); 230 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 231 ssize_t part_timeout_store(struct device *, struct device_attribute *, 232 const char *, size_t); 233 234 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs); 235 int ll_back_merge_fn(struct request *req, struct bio *bio, 236 unsigned int nr_segs); 237 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 238 struct request *next); 239 unsigned int blk_recalc_rq_segments(struct request *rq); 240 void blk_rq_set_mixed_merge(struct request *rq); 241 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 242 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 243 244 int blk_dev_init(void); 245 246 /* 247 * Contribute to IO statistics IFF: 248 * 249 * a) it's attached to a gendisk, and 250 * b) the queue had IO stats enabled when this request was started 251 */ 252 static inline bool blk_do_io_stat(struct request *rq) 253 { 254 return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT); 255 } 256 257 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 258 { 259 req->cmd_flags |= REQ_NOMERGE; 260 if (req == q->last_merge) 261 q->last_merge = NULL; 262 } 263 264 /* 265 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 266 * is defined as 'unsigned int', meantime it has to aligned to with logical 267 * block size which is the minimum accepted unit by hardware. 268 */ 269 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) 270 { 271 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; 272 } 273 274 /* 275 * The max bio size which is aligned to q->limits.discard_granularity. This 276 * is a hint to split large discard bio in generic block layer, then if device 277 * driver needs to split the discard bio into smaller ones, their bi_size can 278 * be very probably and easily aligned to discard_granularity of the device's 279 * queue. 280 */ 281 static inline unsigned int bio_aligned_discard_max_sectors( 282 struct request_queue *q) 283 { 284 return round_down(UINT_MAX, q->limits.discard_granularity) >> 285 SECTOR_SHIFT; 286 } 287 288 /* 289 * Internal io_context interface 290 */ 291 void get_io_context(struct io_context *ioc); 292 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); 293 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, 294 gfp_t gfp_mask); 295 void ioc_clear_queue(struct request_queue *q); 296 297 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); 298 299 /* 300 * Internal throttling interface 301 */ 302 #ifdef CONFIG_BLK_DEV_THROTTLING 303 extern int blk_throtl_init(struct request_queue *q); 304 extern void blk_throtl_exit(struct request_queue *q); 305 extern void blk_throtl_register_queue(struct request_queue *q); 306 bool blk_throtl_bio(struct bio *bio); 307 #else /* CONFIG_BLK_DEV_THROTTLING */ 308 static inline int blk_throtl_init(struct request_queue *q) { return 0; } 309 static inline void blk_throtl_exit(struct request_queue *q) { } 310 static inline void blk_throtl_register_queue(struct request_queue *q) { } 311 static inline bool blk_throtl_bio(struct bio *bio) { return false; } 312 #endif /* CONFIG_BLK_DEV_THROTTLING */ 313 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 314 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 315 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 316 const char *page, size_t count); 317 extern void blk_throtl_bio_endio(struct bio *bio); 318 extern void blk_throtl_stat_add(struct request *rq, u64 time); 319 #else 320 static inline void blk_throtl_bio_endio(struct bio *bio) { } 321 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 322 #endif 323 324 #ifdef CONFIG_BOUNCE 325 extern int init_emergency_isa_pool(void); 326 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); 327 #else 328 static inline int init_emergency_isa_pool(void) 329 { 330 return 0; 331 } 332 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 333 { 334 } 335 #endif /* CONFIG_BOUNCE */ 336 337 #ifdef CONFIG_BLK_CGROUP_IOLATENCY 338 extern int blk_iolatency_init(struct request_queue *q); 339 #else 340 static inline int blk_iolatency_init(struct request_queue *q) { return 0; } 341 #endif 342 343 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp); 344 345 #ifdef CONFIG_BLK_DEV_ZONED 346 void blk_queue_free_zone_bitmaps(struct request_queue *q); 347 #else 348 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} 349 #endif 350 351 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector); 352 353 int blk_alloc_devt(struct hd_struct *part, dev_t *devt); 354 void blk_free_devt(dev_t devt); 355 void blk_invalidate_devt(dev_t devt); 356 char *disk_name(struct gendisk *hd, int partno, char *buf); 357 #define ADDPART_FLAG_NONE 0 358 #define ADDPART_FLAG_RAID 1 359 #define ADDPART_FLAG_WHOLEDISK 2 360 void delete_partition(struct hd_struct *part); 361 int bdev_add_partition(struct block_device *bdev, int partno, 362 sector_t start, sector_t length); 363 int bdev_del_partition(struct block_device *bdev, int partno); 364 int bdev_resize_partition(struct block_device *bdev, int partno, 365 sector_t start, sector_t length); 366 int disk_expand_part_tbl(struct gendisk *disk, int target); 367 int hd_ref_init(struct hd_struct *part); 368 369 /* no need to get/put refcount of part0 */ 370 static inline int hd_struct_try_get(struct hd_struct *part) 371 { 372 if (part->partno) 373 return percpu_ref_tryget_live(&part->ref); 374 return 1; 375 } 376 377 static inline void hd_struct_put(struct hd_struct *part) 378 { 379 if (part->partno) 380 percpu_ref_put(&part->ref); 381 } 382 383 static inline void hd_free_part(struct hd_struct *part) 384 { 385 free_percpu(part->dkstats); 386 kfree(part->info); 387 percpu_ref_exit(&part->ref); 388 } 389 390 /* 391 * Any access of part->nr_sects which is not protected by partition 392 * bd_mutex or gendisk bdev bd_mutex, should be done using this 393 * accessor function. 394 * 395 * Code written along the lines of i_size_read() and i_size_write(). 396 * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption 397 * on. 398 */ 399 static inline sector_t part_nr_sects_read(struct hd_struct *part) 400 { 401 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 402 sector_t nr_sects; 403 unsigned seq; 404 do { 405 seq = read_seqcount_begin(&part->nr_sects_seq); 406 nr_sects = part->nr_sects; 407 } while (read_seqcount_retry(&part->nr_sects_seq, seq)); 408 return nr_sects; 409 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 410 sector_t nr_sects; 411 412 preempt_disable(); 413 nr_sects = part->nr_sects; 414 preempt_enable(); 415 return nr_sects; 416 #else 417 return part->nr_sects; 418 #endif 419 } 420 421 /* 422 * Should be called with mutex lock held (typically bd_mutex) of partition 423 * to provide mutual exlusion among writers otherwise seqcount might be 424 * left in wrong state leaving the readers spinning infinitely. 425 */ 426 static inline void part_nr_sects_write(struct hd_struct *part, sector_t size) 427 { 428 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 429 preempt_disable(); 430 write_seqcount_begin(&part->nr_sects_seq); 431 part->nr_sects = size; 432 write_seqcount_end(&part->nr_sects_seq); 433 preempt_enable(); 434 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 435 preempt_disable(); 436 part->nr_sects = size; 437 preempt_enable(); 438 #else 439 part->nr_sects = size; 440 #endif 441 } 442 443 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 444 struct page *page, unsigned int len, unsigned int offset, 445 unsigned int max_sectors, bool *same_page); 446 447 #endif /* BLK_INTERNAL_H */ 448