xref: /openbmc/linux/block/blk.h (revision ac8b6f14)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4 
5 #include <linux/idr.h>
6 #include <linux/blk-mq.h>
7 #include <xen/xen.h>
8 #include "blk-mq.h"
9 
10 /* Amount of time in which a process may batch requests */
11 #define BLK_BATCH_TIME	(HZ/50UL)
12 
13 /* Number of requests a "batching" process may submit */
14 #define BLK_BATCH_REQ	32
15 
16 /* Max future timer expiry for timeouts */
17 #define BLK_MAX_TIMEOUT		(5 * HZ)
18 
19 #ifdef CONFIG_DEBUG_FS
20 extern struct dentry *blk_debugfs_root;
21 #endif
22 
23 struct blk_flush_queue {
24 	unsigned int		flush_queue_delayed:1;
25 	unsigned int		flush_pending_idx:1;
26 	unsigned int		flush_running_idx:1;
27 	unsigned long		flush_pending_since;
28 	struct list_head	flush_queue[2];
29 	struct list_head	flush_data_in_flight;
30 	struct request		*flush_rq;
31 
32 	/*
33 	 * flush_rq shares tag with this rq, both can't be active
34 	 * at the same time
35 	 */
36 	struct request		*orig_rq;
37 	spinlock_t		mq_flush_lock;
38 };
39 
40 extern struct kmem_cache *blk_requestq_cachep;
41 extern struct kmem_cache *request_cachep;
42 extern struct kobj_type blk_queue_ktype;
43 extern struct ida blk_queue_ida;
44 
45 /*
46  * @q->queue_lock is set while a queue is being initialized. Since we know
47  * that no other threads access the queue object before @q->queue_lock has
48  * been set, it is safe to manipulate queue flags without holding the
49  * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
50  * blk_init_allocated_queue().
51  */
52 static inline void queue_lockdep_assert_held(struct request_queue *q)
53 {
54 	if (q->queue_lock)
55 		lockdep_assert_held(q->queue_lock);
56 }
57 
58 static inline void queue_flag_set_unlocked(unsigned int flag,
59 					   struct request_queue *q)
60 {
61 	if (test_bit(QUEUE_FLAG_INIT_DONE, &q->queue_flags) &&
62 	    kref_read(&q->kobj.kref))
63 		lockdep_assert_held(q->queue_lock);
64 	__set_bit(flag, &q->queue_flags);
65 }
66 
67 static inline void queue_flag_clear_unlocked(unsigned int flag,
68 					     struct request_queue *q)
69 {
70 	if (test_bit(QUEUE_FLAG_INIT_DONE, &q->queue_flags) &&
71 	    kref_read(&q->kobj.kref))
72 		lockdep_assert_held(q->queue_lock);
73 	__clear_bit(flag, &q->queue_flags);
74 }
75 
76 static inline int queue_flag_test_and_clear(unsigned int flag,
77 					    struct request_queue *q)
78 {
79 	queue_lockdep_assert_held(q);
80 
81 	if (test_bit(flag, &q->queue_flags)) {
82 		__clear_bit(flag, &q->queue_flags);
83 		return 1;
84 	}
85 
86 	return 0;
87 }
88 
89 static inline int queue_flag_test_and_set(unsigned int flag,
90 					  struct request_queue *q)
91 {
92 	queue_lockdep_assert_held(q);
93 
94 	if (!test_bit(flag, &q->queue_flags)) {
95 		__set_bit(flag, &q->queue_flags);
96 		return 0;
97 	}
98 
99 	return 1;
100 }
101 
102 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
103 {
104 	queue_lockdep_assert_held(q);
105 	__set_bit(flag, &q->queue_flags);
106 }
107 
108 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
109 {
110 	queue_lockdep_assert_held(q);
111 	__clear_bit(flag, &q->queue_flags);
112 }
113 
114 static inline struct blk_flush_queue *blk_get_flush_queue(
115 		struct request_queue *q, struct blk_mq_ctx *ctx)
116 {
117 	if (q->mq_ops)
118 		return blk_mq_map_queue(q, ctx->cpu)->fq;
119 	return q->fq;
120 }
121 
122 static inline void __blk_get_queue(struct request_queue *q)
123 {
124 	kobject_get(&q->kobj);
125 }
126 
127 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
128 		int node, int cmd_size, gfp_t flags);
129 void blk_free_flush_queue(struct blk_flush_queue *q);
130 
131 int blk_init_rl(struct request_list *rl, struct request_queue *q,
132 		gfp_t gfp_mask);
133 void blk_exit_rl(struct request_queue *q, struct request_list *rl);
134 void blk_exit_queue(struct request_queue *q);
135 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
136 			struct bio *bio);
137 void blk_queue_bypass_start(struct request_queue *q);
138 void blk_queue_bypass_end(struct request_queue *q);
139 void __blk_queue_free_tags(struct request_queue *q);
140 void blk_freeze_queue(struct request_queue *q);
141 
142 static inline void blk_queue_enter_live(struct request_queue *q)
143 {
144 	/*
145 	 * Given that running in generic_make_request() context
146 	 * guarantees that a live reference against q_usage_counter has
147 	 * been established, further references under that same context
148 	 * need not check that the queue has been frozen (marked dead).
149 	 */
150 	percpu_ref_get(&q->q_usage_counter);
151 }
152 
153 static inline bool biovec_phys_mergeable(struct request_queue *q,
154 		struct bio_vec *vec1, struct bio_vec *vec2)
155 {
156 	unsigned long mask = queue_segment_boundary(q);
157 	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
158 	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
159 
160 	if (addr1 + vec1->bv_len != addr2)
161 		return false;
162 	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2))
163 		return false;
164 	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
165 		return false;
166 	return true;
167 }
168 
169 static inline bool __bvec_gap_to_prev(struct request_queue *q,
170 		struct bio_vec *bprv, unsigned int offset)
171 {
172 	return (offset & queue_virt_boundary(q)) ||
173 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
174 }
175 
176 /*
177  * Check if adding a bio_vec after bprv with offset would create a gap in
178  * the SG list. Most drivers don't care about this, but some do.
179  */
180 static inline bool bvec_gap_to_prev(struct request_queue *q,
181 		struct bio_vec *bprv, unsigned int offset)
182 {
183 	if (!queue_virt_boundary(q))
184 		return false;
185 	return __bvec_gap_to_prev(q, bprv, offset);
186 }
187 
188 #ifdef CONFIG_BLK_DEV_INTEGRITY
189 void blk_flush_integrity(void);
190 bool __bio_integrity_endio(struct bio *);
191 static inline bool bio_integrity_endio(struct bio *bio)
192 {
193 	if (bio_integrity(bio))
194 		return __bio_integrity_endio(bio);
195 	return true;
196 }
197 
198 static inline bool integrity_req_gap_back_merge(struct request *req,
199 		struct bio *next)
200 {
201 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
202 	struct bio_integrity_payload *bip_next = bio_integrity(next);
203 
204 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
205 				bip_next->bip_vec[0].bv_offset);
206 }
207 
208 static inline bool integrity_req_gap_front_merge(struct request *req,
209 		struct bio *bio)
210 {
211 	struct bio_integrity_payload *bip = bio_integrity(bio);
212 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
213 
214 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
215 				bip_next->bip_vec[0].bv_offset);
216 }
217 #else /* CONFIG_BLK_DEV_INTEGRITY */
218 static inline bool integrity_req_gap_back_merge(struct request *req,
219 		struct bio *next)
220 {
221 	return false;
222 }
223 static inline bool integrity_req_gap_front_merge(struct request *req,
224 		struct bio *bio)
225 {
226 	return false;
227 }
228 
229 static inline void blk_flush_integrity(void)
230 {
231 }
232 static inline bool bio_integrity_endio(struct bio *bio)
233 {
234 	return true;
235 }
236 #endif /* CONFIG_BLK_DEV_INTEGRITY */
237 
238 void blk_timeout_work(struct work_struct *work);
239 unsigned long blk_rq_timeout(unsigned long timeout);
240 void blk_add_timer(struct request *req);
241 void blk_delete_timer(struct request *);
242 
243 
244 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
245 			     struct bio *bio);
246 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
247 			    struct bio *bio);
248 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
249 		struct bio *bio);
250 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
251 			    unsigned int *request_count,
252 			    struct request **same_queue_rq);
253 unsigned int blk_plug_queued_count(struct request_queue *q);
254 
255 void blk_account_io_start(struct request *req, bool new_io);
256 void blk_account_io_completion(struct request *req, unsigned int bytes);
257 void blk_account_io_done(struct request *req, u64 now);
258 
259 /*
260  * EH timer and IO completion will both attempt to 'grab' the request, make
261  * sure that only one of them succeeds. Steal the bottom bit of the
262  * __deadline field for this.
263  */
264 static inline int blk_mark_rq_complete(struct request *rq)
265 {
266 	return test_and_set_bit(0, &rq->__deadline);
267 }
268 
269 static inline void blk_clear_rq_complete(struct request *rq)
270 {
271 	clear_bit(0, &rq->__deadline);
272 }
273 
274 static inline bool blk_rq_is_complete(struct request *rq)
275 {
276 	return test_bit(0, &rq->__deadline);
277 }
278 
279 /*
280  * Internal elevator interface
281  */
282 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
283 
284 void blk_insert_flush(struct request *rq);
285 
286 static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
287 {
288 	struct elevator_queue *e = q->elevator;
289 
290 	if (e->type->ops.sq.elevator_activate_req_fn)
291 		e->type->ops.sq.elevator_activate_req_fn(q, rq);
292 }
293 
294 static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
295 {
296 	struct elevator_queue *e = q->elevator;
297 
298 	if (e->type->ops.sq.elevator_deactivate_req_fn)
299 		e->type->ops.sq.elevator_deactivate_req_fn(q, rq);
300 }
301 
302 int elevator_init(struct request_queue *);
303 int elevator_init_mq(struct request_queue *q);
304 int elevator_switch_mq(struct request_queue *q,
305 			      struct elevator_type *new_e);
306 void elevator_exit(struct request_queue *, struct elevator_queue *);
307 int elv_register_queue(struct request_queue *q);
308 void elv_unregister_queue(struct request_queue *q);
309 
310 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno);
311 
312 #ifdef CONFIG_FAIL_IO_TIMEOUT
313 int blk_should_fake_timeout(struct request_queue *);
314 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
315 ssize_t part_timeout_store(struct device *, struct device_attribute *,
316 				const char *, size_t);
317 #else
318 static inline int blk_should_fake_timeout(struct request_queue *q)
319 {
320 	return 0;
321 }
322 #endif
323 
324 int ll_back_merge_fn(struct request_queue *q, struct request *req,
325 		     struct bio *bio);
326 int ll_front_merge_fn(struct request_queue *q, struct request *req,
327 		      struct bio *bio);
328 struct request *attempt_back_merge(struct request_queue *q, struct request *rq);
329 struct request *attempt_front_merge(struct request_queue *q, struct request *rq);
330 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
331 				struct request *next);
332 void blk_recalc_rq_segments(struct request *rq);
333 void blk_rq_set_mixed_merge(struct request *rq);
334 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
335 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
336 
337 void blk_queue_congestion_threshold(struct request_queue *q);
338 
339 int blk_dev_init(void);
340 
341 
342 /*
343  * Return the threshold (number of used requests) at which the queue is
344  * considered to be congested.  It include a little hysteresis to keep the
345  * context switch rate down.
346  */
347 static inline int queue_congestion_on_threshold(struct request_queue *q)
348 {
349 	return q->nr_congestion_on;
350 }
351 
352 /*
353  * The threshold at which a queue is considered to be uncongested
354  */
355 static inline int queue_congestion_off_threshold(struct request_queue *q)
356 {
357 	return q->nr_congestion_off;
358 }
359 
360 extern int blk_update_nr_requests(struct request_queue *, unsigned int);
361 
362 /*
363  * Contribute to IO statistics IFF:
364  *
365  *	a) it's attached to a gendisk, and
366  *	b) the queue had IO stats enabled when this request was started, and
367  *	c) it's a file system request
368  */
369 static inline bool blk_do_io_stat(struct request *rq)
370 {
371 	return rq->rq_disk &&
372 	       (rq->rq_flags & RQF_IO_STAT) &&
373 		!blk_rq_is_passthrough(rq);
374 }
375 
376 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
377 {
378 	req->cmd_flags |= REQ_NOMERGE;
379 	if (req == q->last_merge)
380 		q->last_merge = NULL;
381 }
382 
383 /*
384  * Steal a bit from this field for legacy IO path atomic IO marking. Note that
385  * setting the deadline clears the bottom bit, potentially clearing the
386  * completed bit. The user has to be OK with this (current ones are fine).
387  */
388 static inline void blk_rq_set_deadline(struct request *rq, unsigned long time)
389 {
390 	rq->__deadline = time & ~0x1UL;
391 }
392 
393 static inline unsigned long blk_rq_deadline(struct request *rq)
394 {
395 	return rq->__deadline & ~0x1UL;
396 }
397 
398 /*
399  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
400  * is defined as 'unsigned int', meantime it has to aligned to with logical
401  * block size which is the minimum accepted unit by hardware.
402  */
403 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
404 {
405 	return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
406 }
407 
408 /*
409  * Internal io_context interface
410  */
411 void get_io_context(struct io_context *ioc);
412 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
413 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
414 			     gfp_t gfp_mask);
415 void ioc_clear_queue(struct request_queue *q);
416 
417 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
418 
419 /**
420  * rq_ioc - determine io_context for request allocation
421  * @bio: request being allocated is for this bio (can be %NULL)
422  *
423  * Determine io_context to use for request allocation for @bio.  May return
424  * %NULL if %current->io_context doesn't exist.
425  */
426 static inline struct io_context *rq_ioc(struct bio *bio)
427 {
428 #ifdef CONFIG_BLK_CGROUP
429 	if (bio && bio->bi_ioc)
430 		return bio->bi_ioc;
431 #endif
432 	return current->io_context;
433 }
434 
435 /**
436  * create_io_context - try to create task->io_context
437  * @gfp_mask: allocation mask
438  * @node: allocation node
439  *
440  * If %current->io_context is %NULL, allocate a new io_context and install
441  * it.  Returns the current %current->io_context which may be %NULL if
442  * allocation failed.
443  *
444  * Note that this function can't be called with IRQ disabled because
445  * task_lock which protects %current->io_context is IRQ-unsafe.
446  */
447 static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
448 {
449 	WARN_ON_ONCE(irqs_disabled());
450 	if (unlikely(!current->io_context))
451 		create_task_io_context(current, gfp_mask, node);
452 	return current->io_context;
453 }
454 
455 /*
456  * Internal throttling interface
457  */
458 #ifdef CONFIG_BLK_DEV_THROTTLING
459 extern void blk_throtl_drain(struct request_queue *q);
460 extern int blk_throtl_init(struct request_queue *q);
461 extern void blk_throtl_exit(struct request_queue *q);
462 extern void blk_throtl_register_queue(struct request_queue *q);
463 #else /* CONFIG_BLK_DEV_THROTTLING */
464 static inline void blk_throtl_drain(struct request_queue *q) { }
465 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
466 static inline void blk_throtl_exit(struct request_queue *q) { }
467 static inline void blk_throtl_register_queue(struct request_queue *q) { }
468 #endif /* CONFIG_BLK_DEV_THROTTLING */
469 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
470 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
471 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
472 	const char *page, size_t count);
473 extern void blk_throtl_bio_endio(struct bio *bio);
474 extern void blk_throtl_stat_add(struct request *rq, u64 time);
475 #else
476 static inline void blk_throtl_bio_endio(struct bio *bio) { }
477 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
478 #endif
479 
480 #ifdef CONFIG_BOUNCE
481 extern int init_emergency_isa_pool(void);
482 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
483 #else
484 static inline int init_emergency_isa_pool(void)
485 {
486 	return 0;
487 }
488 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
489 {
490 }
491 #endif /* CONFIG_BOUNCE */
492 
493 extern void blk_drain_queue(struct request_queue *q);
494 
495 #ifdef CONFIG_BLK_CGROUP_IOLATENCY
496 extern int blk_iolatency_init(struct request_queue *q);
497 #else
498 static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
499 #endif
500 
501 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
502 
503 #ifdef CONFIG_BLK_DEV_ZONED
504 void blk_queue_free_zone_bitmaps(struct request_queue *q);
505 #else
506 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
507 #endif
508 
509 #endif /* BLK_INTERNAL_H */
510