1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/idr.h> 6 #include <linux/blk-mq.h> 7 #include <linux/part_stat.h> 8 #include <linux/blk-crypto.h> 9 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 10 #include <xen/xen.h> 11 #include "blk-crypto-internal.h" 12 #include "blk-mq.h" 13 #include "blk-mq-sched.h" 14 15 struct elevator_type; 16 17 /* Max future timer expiry for timeouts */ 18 #define BLK_MAX_TIMEOUT (5 * HZ) 19 20 extern struct dentry *blk_debugfs_root; 21 22 struct blk_flush_queue { 23 unsigned int flush_pending_idx:1; 24 unsigned int flush_running_idx:1; 25 blk_status_t rq_status; 26 unsigned long flush_pending_since; 27 struct list_head flush_queue[2]; 28 struct list_head flush_data_in_flight; 29 struct request *flush_rq; 30 31 spinlock_t mq_flush_lock; 32 }; 33 34 extern struct kmem_cache *blk_requestq_cachep; 35 extern struct kobj_type blk_queue_ktype; 36 extern struct ida blk_queue_ida; 37 38 static inline struct blk_flush_queue * 39 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 40 { 41 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 42 } 43 44 static inline void __blk_get_queue(struct request_queue *q) 45 { 46 kobject_get(&q->kobj); 47 } 48 49 bool is_flush_rq(struct request *req); 50 51 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 52 gfp_t flags); 53 void blk_free_flush_queue(struct blk_flush_queue *q); 54 55 void blk_freeze_queue(struct request_queue *q); 56 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 57 void blk_queue_start_drain(struct request_queue *q); 58 59 #define BIO_INLINE_VECS 4 60 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 61 gfp_t gfp_mask); 62 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 63 64 static inline bool biovec_phys_mergeable(struct request_queue *q, 65 struct bio_vec *vec1, struct bio_vec *vec2) 66 { 67 unsigned long mask = queue_segment_boundary(q); 68 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 69 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 70 71 if (addr1 + vec1->bv_len != addr2) 72 return false; 73 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 74 return false; 75 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 76 return false; 77 return true; 78 } 79 80 static inline bool __bvec_gap_to_prev(struct request_queue *q, 81 struct bio_vec *bprv, unsigned int offset) 82 { 83 return (offset & queue_virt_boundary(q)) || 84 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 85 } 86 87 /* 88 * Check if adding a bio_vec after bprv with offset would create a gap in 89 * the SG list. Most drivers don't care about this, but some do. 90 */ 91 static inline bool bvec_gap_to_prev(struct request_queue *q, 92 struct bio_vec *bprv, unsigned int offset) 93 { 94 if (!queue_virt_boundary(q)) 95 return false; 96 return __bvec_gap_to_prev(q, bprv, offset); 97 } 98 99 static inline bool rq_mergeable(struct request *rq) 100 { 101 if (blk_rq_is_passthrough(rq)) 102 return false; 103 104 if (req_op(rq) == REQ_OP_FLUSH) 105 return false; 106 107 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 108 return false; 109 110 if (req_op(rq) == REQ_OP_ZONE_APPEND) 111 return false; 112 113 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 114 return false; 115 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 116 return false; 117 118 return true; 119 } 120 121 /* 122 * There are two different ways to handle DISCARD merges: 123 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 124 * send the bios to controller together. The ranges don't need to be 125 * contiguous. 126 * 2) Otherwise, the request will be normal read/write requests. The ranges 127 * need to be contiguous. 128 */ 129 static inline bool blk_discard_mergable(struct request *req) 130 { 131 if (req_op(req) == REQ_OP_DISCARD && 132 queue_max_discard_segments(req->q) > 1) 133 return true; 134 return false; 135 } 136 137 #ifdef CONFIG_BLK_DEV_INTEGRITY 138 void blk_flush_integrity(void); 139 bool __bio_integrity_endio(struct bio *); 140 void bio_integrity_free(struct bio *bio); 141 static inline bool bio_integrity_endio(struct bio *bio) 142 { 143 if (bio_integrity(bio)) 144 return __bio_integrity_endio(bio); 145 return true; 146 } 147 148 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 149 struct request *); 150 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 151 struct bio *); 152 153 static inline bool integrity_req_gap_back_merge(struct request *req, 154 struct bio *next) 155 { 156 struct bio_integrity_payload *bip = bio_integrity(req->bio); 157 struct bio_integrity_payload *bip_next = bio_integrity(next); 158 159 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 160 bip_next->bip_vec[0].bv_offset); 161 } 162 163 static inline bool integrity_req_gap_front_merge(struct request *req, 164 struct bio *bio) 165 { 166 struct bio_integrity_payload *bip = bio_integrity(bio); 167 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 168 169 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 170 bip_next->bip_vec[0].bv_offset); 171 } 172 173 int blk_integrity_add(struct gendisk *disk); 174 void blk_integrity_del(struct gendisk *); 175 #else /* CONFIG_BLK_DEV_INTEGRITY */ 176 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 177 struct request *r1, struct request *r2) 178 { 179 return true; 180 } 181 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 182 struct request *r, struct bio *b) 183 { 184 return true; 185 } 186 static inline bool integrity_req_gap_back_merge(struct request *req, 187 struct bio *next) 188 { 189 return false; 190 } 191 static inline bool integrity_req_gap_front_merge(struct request *req, 192 struct bio *bio) 193 { 194 return false; 195 } 196 197 static inline void blk_flush_integrity(void) 198 { 199 } 200 static inline bool bio_integrity_endio(struct bio *bio) 201 { 202 return true; 203 } 204 static inline void bio_integrity_free(struct bio *bio) 205 { 206 } 207 static inline int blk_integrity_add(struct gendisk *disk) 208 { 209 return 0; 210 } 211 static inline void blk_integrity_del(struct gendisk *disk) 212 { 213 } 214 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 215 216 unsigned long blk_rq_timeout(unsigned long timeout); 217 void blk_add_timer(struct request *req); 218 void blk_print_req_error(struct request *req, blk_status_t status); 219 220 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 221 unsigned int nr_segs, bool *same_queue_rq); 222 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 223 struct bio *bio, unsigned int nr_segs); 224 225 void __blk_account_io_start(struct request *req); 226 void __blk_account_io_done(struct request *req, u64 now); 227 228 /* 229 * Plug flush limits 230 */ 231 #define BLK_MAX_REQUEST_COUNT 32 232 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 233 234 /* 235 * Internal elevator interface 236 */ 237 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 238 239 bool blk_insert_flush(struct request *rq); 240 241 int elevator_switch_mq(struct request_queue *q, 242 struct elevator_type *new_e); 243 void __elevator_exit(struct request_queue *, struct elevator_queue *); 244 int elv_register_queue(struct request_queue *q, bool uevent); 245 void elv_unregister_queue(struct request_queue *q); 246 247 static inline void elevator_exit(struct request_queue *q, 248 struct elevator_queue *e) 249 { 250 lockdep_assert_held(&q->sysfs_lock); 251 252 blk_mq_sched_free_rqs(q); 253 __elevator_exit(q, e); 254 } 255 256 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 257 char *buf); 258 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 259 char *buf); 260 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 261 char *buf); 262 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 263 char *buf); 264 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 265 const char *buf, size_t count); 266 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 267 ssize_t part_timeout_store(struct device *, struct device_attribute *, 268 const char *, size_t); 269 270 static inline bool blk_may_split(struct request_queue *q, struct bio *bio) 271 { 272 switch (bio_op(bio)) { 273 case REQ_OP_DISCARD: 274 case REQ_OP_SECURE_ERASE: 275 case REQ_OP_WRITE_ZEROES: 276 case REQ_OP_WRITE_SAME: 277 return true; /* non-trivial splitting decisions */ 278 default: 279 break; 280 } 281 282 /* 283 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 284 * This is a quick and dirty check that relies on the fact that 285 * bi_io_vec[0] is always valid if a bio has data. The check might 286 * lead to occasional false negatives when bios are cloned, but compared 287 * to the performance impact of cloned bios themselves the loop below 288 * doesn't matter anyway. 289 */ 290 return q->limits.chunk_sectors || bio->bi_vcnt != 1 || 291 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 292 } 293 294 void __blk_queue_split(struct request_queue *q, struct bio **bio, 295 unsigned int *nr_segs); 296 int ll_back_merge_fn(struct request *req, struct bio *bio, 297 unsigned int nr_segs); 298 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 299 struct request *next); 300 unsigned int blk_recalc_rq_segments(struct request *rq); 301 void blk_rq_set_mixed_merge(struct request *rq); 302 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 303 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 304 305 int blk_dev_init(void); 306 307 /* 308 * Contribute to IO statistics IFF: 309 * 310 * a) it's attached to a gendisk, and 311 * b) the queue had IO stats enabled when this request was started 312 */ 313 static inline bool blk_do_io_stat(struct request *rq) 314 { 315 return (rq->rq_flags & RQF_IO_STAT) && rq->rq_disk; 316 } 317 318 static inline void blk_account_io_done(struct request *req, u64 now) 319 { 320 /* 321 * Account IO completion. flush_rq isn't accounted as a 322 * normal IO on queueing nor completion. Accounting the 323 * containing request is enough. 324 */ 325 if (blk_do_io_stat(req) && req->part && 326 !(req->rq_flags & RQF_FLUSH_SEQ)) 327 __blk_account_io_done(req, now); 328 } 329 330 static inline void blk_account_io_start(struct request *req) 331 { 332 if (blk_do_io_stat(req)) 333 __blk_account_io_start(req); 334 } 335 336 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 337 { 338 req->cmd_flags |= REQ_NOMERGE; 339 if (req == q->last_merge) 340 q->last_merge = NULL; 341 } 342 343 /* 344 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 345 * is defined as 'unsigned int', meantime it has to aligned to with logical 346 * block size which is the minimum accepted unit by hardware. 347 */ 348 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) 349 { 350 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; 351 } 352 353 /* 354 * The max bio size which is aligned to q->limits.discard_granularity. This 355 * is a hint to split large discard bio in generic block layer, then if device 356 * driver needs to split the discard bio into smaller ones, their bi_size can 357 * be very probably and easily aligned to discard_granularity of the device's 358 * queue. 359 */ 360 static inline unsigned int bio_aligned_discard_max_sectors( 361 struct request_queue *q) 362 { 363 return round_down(UINT_MAX, q->limits.discard_granularity) >> 364 SECTOR_SHIFT; 365 } 366 367 /* 368 * Internal io_context interface 369 */ 370 void get_io_context(struct io_context *ioc); 371 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); 372 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, 373 gfp_t gfp_mask); 374 void ioc_clear_queue(struct request_queue *q); 375 376 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); 377 378 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 379 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 380 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 381 const char *page, size_t count); 382 extern void blk_throtl_bio_endio(struct bio *bio); 383 extern void blk_throtl_stat_add(struct request *rq, u64 time); 384 #else 385 static inline void blk_throtl_bio_endio(struct bio *bio) { } 386 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 387 #endif 388 389 void __blk_queue_bounce(struct request_queue *q, struct bio **bio); 390 391 static inline bool blk_queue_may_bounce(struct request_queue *q) 392 { 393 return IS_ENABLED(CONFIG_BOUNCE) && 394 q->limits.bounce == BLK_BOUNCE_HIGH && 395 max_low_pfn >= max_pfn; 396 } 397 398 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 399 { 400 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio))) 401 __blk_queue_bounce(q, bio); 402 } 403 404 #ifdef CONFIG_BLK_CGROUP_IOLATENCY 405 extern int blk_iolatency_init(struct request_queue *q); 406 #else 407 static inline int blk_iolatency_init(struct request_queue *q) { return 0; } 408 #endif 409 410 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp); 411 412 #ifdef CONFIG_BLK_DEV_ZONED 413 void blk_queue_free_zone_bitmaps(struct request_queue *q); 414 void blk_queue_clear_zone_settings(struct request_queue *q); 415 #else 416 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} 417 static inline void blk_queue_clear_zone_settings(struct request_queue *q) {} 418 #endif 419 420 int blk_alloc_ext_minor(void); 421 void blk_free_ext_minor(unsigned int minor); 422 #define ADDPART_FLAG_NONE 0 423 #define ADDPART_FLAG_RAID 1 424 #define ADDPART_FLAG_WHOLEDISK 2 425 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 426 sector_t length); 427 int bdev_del_partition(struct gendisk *disk, int partno); 428 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 429 sector_t length); 430 431 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 432 struct page *page, unsigned int len, unsigned int offset, 433 unsigned int max_sectors, bool *same_page); 434 435 struct request_queue *blk_alloc_queue(int node_id); 436 437 int disk_alloc_events(struct gendisk *disk); 438 void disk_add_events(struct gendisk *disk); 439 void disk_del_events(struct gendisk *disk); 440 void disk_release_events(struct gendisk *disk); 441 extern struct device_attribute dev_attr_events; 442 extern struct device_attribute dev_attr_events_async; 443 extern struct device_attribute dev_attr_events_poll_msecs; 444 445 static inline void bio_clear_polled(struct bio *bio) 446 { 447 /* can't support alloc cache if we turn off polling */ 448 bio_clear_flag(bio, BIO_PERCPU_CACHE); 449 bio->bi_opf &= ~REQ_POLLED; 450 } 451 452 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 453 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 454 455 extern const struct address_space_operations def_blk_aops; 456 457 int disk_register_independent_access_ranges(struct gendisk *disk, 458 struct blk_independent_access_ranges *new_iars); 459 void disk_unregister_independent_access_ranges(struct gendisk *disk); 460 461 #endif /* BLK_INTERNAL_H */ 462