1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/blk-crypto.h> 6 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7 #include <xen/xen.h> 8 #include "blk-crypto-internal.h" 9 10 struct elevator_type; 11 12 /* Max future timer expiry for timeouts */ 13 #define BLK_MAX_TIMEOUT (5 * HZ) 14 15 extern struct dentry *blk_debugfs_root; 16 17 struct blk_flush_queue { 18 unsigned int flush_pending_idx:1; 19 unsigned int flush_running_idx:1; 20 blk_status_t rq_status; 21 unsigned long flush_pending_since; 22 struct list_head flush_queue[2]; 23 struct list_head flush_data_in_flight; 24 struct request *flush_rq; 25 26 spinlock_t mq_flush_lock; 27 }; 28 29 extern struct kmem_cache *blk_requestq_cachep; 30 extern struct kmem_cache *blk_requestq_srcu_cachep; 31 extern struct kobj_type blk_queue_ktype; 32 extern struct ida blk_queue_ida; 33 34 bool is_flush_rq(struct request *req); 35 36 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 37 gfp_t flags); 38 void blk_free_flush_queue(struct blk_flush_queue *q); 39 40 void blk_freeze_queue(struct request_queue *q); 41 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 42 void blk_queue_start_drain(struct request_queue *q); 43 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 44 void submit_bio_noacct_nocheck(struct bio *bio); 45 46 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 47 { 48 rcu_read_lock(); 49 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 50 goto fail; 51 52 /* 53 * The code that increments the pm_only counter must ensure that the 54 * counter is globally visible before the queue is unfrozen. 55 */ 56 if (blk_queue_pm_only(q) && 57 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 58 goto fail_put; 59 60 rcu_read_unlock(); 61 return true; 62 63 fail_put: 64 blk_queue_exit(q); 65 fail: 66 rcu_read_unlock(); 67 return false; 68 } 69 70 static inline int bio_queue_enter(struct bio *bio) 71 { 72 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 73 74 if (blk_try_enter_queue(q, false)) 75 return 0; 76 return __bio_queue_enter(q, bio); 77 } 78 79 #define BIO_INLINE_VECS 4 80 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 81 gfp_t gfp_mask); 82 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 83 84 static inline bool biovec_phys_mergeable(struct request_queue *q, 85 struct bio_vec *vec1, struct bio_vec *vec2) 86 { 87 unsigned long mask = queue_segment_boundary(q); 88 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 89 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 90 91 if (addr1 + vec1->bv_len != addr2) 92 return false; 93 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 94 return false; 95 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 96 return false; 97 return true; 98 } 99 100 static inline bool __bvec_gap_to_prev(struct queue_limits *lim, 101 struct bio_vec *bprv, unsigned int offset) 102 { 103 return (offset & lim->virt_boundary_mask) || 104 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 105 } 106 107 /* 108 * Check if adding a bio_vec after bprv with offset would create a gap in 109 * the SG list. Most drivers don't care about this, but some do. 110 */ 111 static inline bool bvec_gap_to_prev(struct queue_limits *lim, 112 struct bio_vec *bprv, unsigned int offset) 113 { 114 if (!lim->virt_boundary_mask) 115 return false; 116 return __bvec_gap_to_prev(lim, bprv, offset); 117 } 118 119 static inline bool rq_mergeable(struct request *rq) 120 { 121 if (blk_rq_is_passthrough(rq)) 122 return false; 123 124 if (req_op(rq) == REQ_OP_FLUSH) 125 return false; 126 127 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 128 return false; 129 130 if (req_op(rq) == REQ_OP_ZONE_APPEND) 131 return false; 132 133 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 134 return false; 135 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 136 return false; 137 138 return true; 139 } 140 141 /* 142 * There are two different ways to handle DISCARD merges: 143 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 144 * send the bios to controller together. The ranges don't need to be 145 * contiguous. 146 * 2) Otherwise, the request will be normal read/write requests. The ranges 147 * need to be contiguous. 148 */ 149 static inline bool blk_discard_mergable(struct request *req) 150 { 151 if (req_op(req) == REQ_OP_DISCARD && 152 queue_max_discard_segments(req->q) > 1) 153 return true; 154 return false; 155 } 156 157 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 158 enum req_op op) 159 { 160 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 161 return min(q->limits.max_discard_sectors, 162 UINT_MAX >> SECTOR_SHIFT); 163 164 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 165 return q->limits.max_write_zeroes_sectors; 166 167 return q->limits.max_sectors; 168 } 169 170 #ifdef CONFIG_BLK_DEV_INTEGRITY 171 void blk_flush_integrity(void); 172 bool __bio_integrity_endio(struct bio *); 173 void bio_integrity_free(struct bio *bio); 174 static inline bool bio_integrity_endio(struct bio *bio) 175 { 176 if (bio_integrity(bio)) 177 return __bio_integrity_endio(bio); 178 return true; 179 } 180 181 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 182 struct request *); 183 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 184 struct bio *); 185 186 static inline bool integrity_req_gap_back_merge(struct request *req, 187 struct bio *next) 188 { 189 struct bio_integrity_payload *bip = bio_integrity(req->bio); 190 struct bio_integrity_payload *bip_next = bio_integrity(next); 191 192 return bvec_gap_to_prev(&req->q->limits, 193 &bip->bip_vec[bip->bip_vcnt - 1], 194 bip_next->bip_vec[0].bv_offset); 195 } 196 197 static inline bool integrity_req_gap_front_merge(struct request *req, 198 struct bio *bio) 199 { 200 struct bio_integrity_payload *bip = bio_integrity(bio); 201 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 202 203 return bvec_gap_to_prev(&req->q->limits, 204 &bip->bip_vec[bip->bip_vcnt - 1], 205 bip_next->bip_vec[0].bv_offset); 206 } 207 208 int blk_integrity_add(struct gendisk *disk); 209 void blk_integrity_del(struct gendisk *); 210 #else /* CONFIG_BLK_DEV_INTEGRITY */ 211 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 212 struct request *r1, struct request *r2) 213 { 214 return true; 215 } 216 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 217 struct request *r, struct bio *b) 218 { 219 return true; 220 } 221 static inline bool integrity_req_gap_back_merge(struct request *req, 222 struct bio *next) 223 { 224 return false; 225 } 226 static inline bool integrity_req_gap_front_merge(struct request *req, 227 struct bio *bio) 228 { 229 return false; 230 } 231 232 static inline void blk_flush_integrity(void) 233 { 234 } 235 static inline bool bio_integrity_endio(struct bio *bio) 236 { 237 return true; 238 } 239 static inline void bio_integrity_free(struct bio *bio) 240 { 241 } 242 static inline int blk_integrity_add(struct gendisk *disk) 243 { 244 return 0; 245 } 246 static inline void blk_integrity_del(struct gendisk *disk) 247 { 248 } 249 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 250 251 unsigned long blk_rq_timeout(unsigned long timeout); 252 void blk_add_timer(struct request *req); 253 const char *blk_status_to_str(blk_status_t status); 254 255 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 256 unsigned int nr_segs); 257 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 258 struct bio *bio, unsigned int nr_segs); 259 260 /* 261 * Plug flush limits 262 */ 263 #define BLK_MAX_REQUEST_COUNT 32 264 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 265 266 /* 267 * Internal elevator interface 268 */ 269 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 270 271 void blk_insert_flush(struct request *rq); 272 273 int elevator_switch_mq(struct request_queue *q, 274 struct elevator_type *new_e); 275 void elevator_exit(struct request_queue *q); 276 int elv_register_queue(struct request_queue *q, bool uevent); 277 void elv_unregister_queue(struct request_queue *q); 278 279 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 280 char *buf); 281 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 282 char *buf); 283 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 284 char *buf); 285 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 286 char *buf); 287 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 288 const char *buf, size_t count); 289 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 290 ssize_t part_timeout_store(struct device *, struct device_attribute *, 291 const char *, size_t); 292 293 static inline bool bio_may_exceed_limits(struct bio *bio, 294 struct queue_limits *lim) 295 { 296 switch (bio_op(bio)) { 297 case REQ_OP_DISCARD: 298 case REQ_OP_SECURE_ERASE: 299 case REQ_OP_WRITE_ZEROES: 300 return true; /* non-trivial splitting decisions */ 301 default: 302 break; 303 } 304 305 /* 306 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 307 * This is a quick and dirty check that relies on the fact that 308 * bi_io_vec[0] is always valid if a bio has data. The check might 309 * lead to occasional false negatives when bios are cloned, but compared 310 * to the performance impact of cloned bios themselves the loop below 311 * doesn't matter anyway. 312 */ 313 return lim->chunk_sectors || bio->bi_vcnt != 1 || 314 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 315 } 316 317 struct bio *__bio_split_to_limits(struct bio *bio, struct queue_limits *lim, 318 unsigned int *nr_segs); 319 int ll_back_merge_fn(struct request *req, struct bio *bio, 320 unsigned int nr_segs); 321 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 322 struct request *next); 323 unsigned int blk_recalc_rq_segments(struct request *rq); 324 void blk_rq_set_mixed_merge(struct request *rq); 325 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 326 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 327 328 int blk_dev_init(void); 329 330 /* 331 * Contribute to IO statistics IFF: 332 * 333 * a) it's attached to a gendisk, and 334 * b) the queue had IO stats enabled when this request was started 335 */ 336 static inline bool blk_do_io_stat(struct request *rq) 337 { 338 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 339 } 340 341 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 342 343 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 344 { 345 req->cmd_flags |= REQ_NOMERGE; 346 if (req == q->last_merge) 347 q->last_merge = NULL; 348 } 349 350 /* 351 * Internal io_context interface 352 */ 353 struct io_cq *ioc_find_get_icq(struct request_queue *q); 354 struct io_cq *ioc_lookup_icq(struct request_queue *q); 355 #ifdef CONFIG_BLK_ICQ 356 void ioc_clear_queue(struct request_queue *q); 357 #else 358 static inline void ioc_clear_queue(struct request_queue *q) 359 { 360 } 361 #endif /* CONFIG_BLK_ICQ */ 362 363 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 364 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 365 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 366 const char *page, size_t count); 367 extern void blk_throtl_bio_endio(struct bio *bio); 368 extern void blk_throtl_stat_add(struct request *rq, u64 time); 369 #else 370 static inline void blk_throtl_bio_endio(struct bio *bio) { } 371 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 372 #endif 373 374 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 375 376 static inline bool blk_queue_may_bounce(struct request_queue *q) 377 { 378 return IS_ENABLED(CONFIG_BOUNCE) && 379 q->limits.bounce == BLK_BOUNCE_HIGH && 380 max_low_pfn >= max_pfn; 381 } 382 383 static inline struct bio *blk_queue_bounce(struct bio *bio, 384 struct request_queue *q) 385 { 386 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 387 return __blk_queue_bounce(bio, q); 388 return bio; 389 } 390 391 #ifdef CONFIG_BLK_CGROUP_IOLATENCY 392 extern int blk_iolatency_init(struct request_queue *q); 393 #else 394 static inline int blk_iolatency_init(struct request_queue *q) { return 0; } 395 #endif 396 397 #ifdef CONFIG_BLK_DEV_ZONED 398 void disk_free_zone_bitmaps(struct gendisk *disk); 399 void disk_clear_zone_settings(struct gendisk *disk); 400 #else 401 static inline void disk_free_zone_bitmaps(struct gendisk *disk) {} 402 static inline void disk_clear_zone_settings(struct gendisk *disk) {} 403 #endif 404 405 int blk_alloc_ext_minor(void); 406 void blk_free_ext_minor(unsigned int minor); 407 #define ADDPART_FLAG_NONE 0 408 #define ADDPART_FLAG_RAID 1 409 #define ADDPART_FLAG_WHOLEDISK 2 410 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 411 sector_t length); 412 int bdev_del_partition(struct gendisk *disk, int partno); 413 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 414 sector_t length); 415 void blk_drop_partitions(struct gendisk *disk); 416 417 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 418 struct lock_class_key *lkclass); 419 420 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 421 struct page *page, unsigned int len, unsigned int offset, 422 unsigned int max_sectors, bool *same_page); 423 424 static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu) 425 { 426 if (srcu) 427 return blk_requestq_srcu_cachep; 428 return blk_requestq_cachep; 429 } 430 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu); 431 432 int disk_scan_partitions(struct gendisk *disk, fmode_t mode); 433 434 int disk_alloc_events(struct gendisk *disk); 435 void disk_add_events(struct gendisk *disk); 436 void disk_del_events(struct gendisk *disk); 437 void disk_release_events(struct gendisk *disk); 438 void disk_block_events(struct gendisk *disk); 439 void disk_unblock_events(struct gendisk *disk); 440 void disk_flush_events(struct gendisk *disk, unsigned int mask); 441 extern struct device_attribute dev_attr_events; 442 extern struct device_attribute dev_attr_events_async; 443 extern struct device_attribute dev_attr_events_poll_msecs; 444 445 extern struct attribute_group blk_trace_attr_group; 446 447 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 448 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 449 450 extern const struct address_space_operations def_blk_aops; 451 452 int disk_register_independent_access_ranges(struct gendisk *disk); 453 void disk_unregister_independent_access_ranges(struct gendisk *disk); 454 455 #ifdef CONFIG_FAIL_MAKE_REQUEST 456 bool should_fail_request(struct block_device *part, unsigned int bytes); 457 #else /* CONFIG_FAIL_MAKE_REQUEST */ 458 static inline bool should_fail_request(struct block_device *part, 459 unsigned int bytes) 460 { 461 return false; 462 } 463 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 464 465 /* 466 * Optimized request reference counting. Ideally we'd make timeouts be more 467 * clever, as that's the only reason we need references at all... But until 468 * this happens, this is faster than using refcount_t. Also see: 469 * 470 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 471 */ 472 #define req_ref_zero_or_close_to_overflow(req) \ 473 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 474 475 static inline bool req_ref_inc_not_zero(struct request *req) 476 { 477 return atomic_inc_not_zero(&req->ref); 478 } 479 480 static inline bool req_ref_put_and_test(struct request *req) 481 { 482 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 483 return atomic_dec_and_test(&req->ref); 484 } 485 486 static inline void req_ref_set(struct request *req, int value) 487 { 488 atomic_set(&req->ref, value); 489 } 490 491 static inline int req_ref_read(struct request *req) 492 { 493 return atomic_read(&req->ref); 494 } 495 496 #endif /* BLK_INTERNAL_H */ 497