1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/blk-crypto.h> 6 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7 #include <xen/xen.h> 8 #include "blk-crypto-internal.h" 9 10 struct elevator_type; 11 12 /* Max future timer expiry for timeouts */ 13 #define BLK_MAX_TIMEOUT (5 * HZ) 14 15 extern struct dentry *blk_debugfs_root; 16 17 struct blk_flush_queue { 18 unsigned int flush_pending_idx:1; 19 unsigned int flush_running_idx:1; 20 blk_status_t rq_status; 21 unsigned long flush_pending_since; 22 struct list_head flush_queue[2]; 23 struct list_head flush_data_in_flight; 24 struct request *flush_rq; 25 26 spinlock_t mq_flush_lock; 27 }; 28 29 extern struct kmem_cache *blk_requestq_cachep; 30 extern struct kmem_cache *blk_requestq_srcu_cachep; 31 extern struct kobj_type blk_queue_ktype; 32 extern struct ida blk_queue_ida; 33 34 bool is_flush_rq(struct request *req); 35 36 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 37 gfp_t flags); 38 void blk_free_flush_queue(struct blk_flush_queue *q); 39 40 void blk_freeze_queue(struct request_queue *q); 41 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 42 void blk_queue_start_drain(struct request_queue *q); 43 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 44 void submit_bio_noacct_nocheck(struct bio *bio); 45 46 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 47 { 48 rcu_read_lock(); 49 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 50 goto fail; 51 52 /* 53 * The code that increments the pm_only counter must ensure that the 54 * counter is globally visible before the queue is unfrozen. 55 */ 56 if (blk_queue_pm_only(q) && 57 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 58 goto fail_put; 59 60 rcu_read_unlock(); 61 return true; 62 63 fail_put: 64 blk_queue_exit(q); 65 fail: 66 rcu_read_unlock(); 67 return false; 68 } 69 70 static inline int bio_queue_enter(struct bio *bio) 71 { 72 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 73 74 if (blk_try_enter_queue(q, false)) 75 return 0; 76 return __bio_queue_enter(q, bio); 77 } 78 79 #define BIO_INLINE_VECS 4 80 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 81 gfp_t gfp_mask); 82 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 83 84 static inline bool biovec_phys_mergeable(struct request_queue *q, 85 struct bio_vec *vec1, struct bio_vec *vec2) 86 { 87 unsigned long mask = queue_segment_boundary(q); 88 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 89 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 90 91 /* 92 * Merging adjacent physical pages may not work correctly under KMSAN 93 * if their metadata pages aren't adjacent. Just disable merging. 94 */ 95 if (IS_ENABLED(CONFIG_KMSAN)) 96 return false; 97 98 if (addr1 + vec1->bv_len != addr2) 99 return false; 100 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 101 return false; 102 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 103 return false; 104 return true; 105 } 106 107 static inline bool __bvec_gap_to_prev(struct queue_limits *lim, 108 struct bio_vec *bprv, unsigned int offset) 109 { 110 return (offset & lim->virt_boundary_mask) || 111 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 112 } 113 114 /* 115 * Check if adding a bio_vec after bprv with offset would create a gap in 116 * the SG list. Most drivers don't care about this, but some do. 117 */ 118 static inline bool bvec_gap_to_prev(struct queue_limits *lim, 119 struct bio_vec *bprv, unsigned int offset) 120 { 121 if (!lim->virt_boundary_mask) 122 return false; 123 return __bvec_gap_to_prev(lim, bprv, offset); 124 } 125 126 static inline bool rq_mergeable(struct request *rq) 127 { 128 if (blk_rq_is_passthrough(rq)) 129 return false; 130 131 if (req_op(rq) == REQ_OP_FLUSH) 132 return false; 133 134 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 135 return false; 136 137 if (req_op(rq) == REQ_OP_ZONE_APPEND) 138 return false; 139 140 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 141 return false; 142 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 143 return false; 144 145 return true; 146 } 147 148 /* 149 * There are two different ways to handle DISCARD merges: 150 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 151 * send the bios to controller together. The ranges don't need to be 152 * contiguous. 153 * 2) Otherwise, the request will be normal read/write requests. The ranges 154 * need to be contiguous. 155 */ 156 static inline bool blk_discard_mergable(struct request *req) 157 { 158 if (req_op(req) == REQ_OP_DISCARD && 159 queue_max_discard_segments(req->q) > 1) 160 return true; 161 return false; 162 } 163 164 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 165 enum req_op op) 166 { 167 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 168 return min(q->limits.max_discard_sectors, 169 UINT_MAX >> SECTOR_SHIFT); 170 171 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 172 return q->limits.max_write_zeroes_sectors; 173 174 return q->limits.max_sectors; 175 } 176 177 #ifdef CONFIG_BLK_DEV_INTEGRITY 178 void blk_flush_integrity(void); 179 bool __bio_integrity_endio(struct bio *); 180 void bio_integrity_free(struct bio *bio); 181 static inline bool bio_integrity_endio(struct bio *bio) 182 { 183 if (bio_integrity(bio)) 184 return __bio_integrity_endio(bio); 185 return true; 186 } 187 188 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 189 struct request *); 190 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 191 struct bio *); 192 193 static inline bool integrity_req_gap_back_merge(struct request *req, 194 struct bio *next) 195 { 196 struct bio_integrity_payload *bip = bio_integrity(req->bio); 197 struct bio_integrity_payload *bip_next = bio_integrity(next); 198 199 return bvec_gap_to_prev(&req->q->limits, 200 &bip->bip_vec[bip->bip_vcnt - 1], 201 bip_next->bip_vec[0].bv_offset); 202 } 203 204 static inline bool integrity_req_gap_front_merge(struct request *req, 205 struct bio *bio) 206 { 207 struct bio_integrity_payload *bip = bio_integrity(bio); 208 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 209 210 return bvec_gap_to_prev(&req->q->limits, 211 &bip->bip_vec[bip->bip_vcnt - 1], 212 bip_next->bip_vec[0].bv_offset); 213 } 214 215 int blk_integrity_add(struct gendisk *disk); 216 void blk_integrity_del(struct gendisk *); 217 #else /* CONFIG_BLK_DEV_INTEGRITY */ 218 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 219 struct request *r1, struct request *r2) 220 { 221 return true; 222 } 223 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 224 struct request *r, struct bio *b) 225 { 226 return true; 227 } 228 static inline bool integrity_req_gap_back_merge(struct request *req, 229 struct bio *next) 230 { 231 return false; 232 } 233 static inline bool integrity_req_gap_front_merge(struct request *req, 234 struct bio *bio) 235 { 236 return false; 237 } 238 239 static inline void blk_flush_integrity(void) 240 { 241 } 242 static inline bool bio_integrity_endio(struct bio *bio) 243 { 244 return true; 245 } 246 static inline void bio_integrity_free(struct bio *bio) 247 { 248 } 249 static inline int blk_integrity_add(struct gendisk *disk) 250 { 251 return 0; 252 } 253 static inline void blk_integrity_del(struct gendisk *disk) 254 { 255 } 256 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 257 258 unsigned long blk_rq_timeout(unsigned long timeout); 259 void blk_add_timer(struct request *req); 260 const char *blk_status_to_str(blk_status_t status); 261 262 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 263 unsigned int nr_segs); 264 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 265 struct bio *bio, unsigned int nr_segs); 266 267 /* 268 * Plug flush limits 269 */ 270 #define BLK_MAX_REQUEST_COUNT 32 271 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 272 273 /* 274 * Internal elevator interface 275 */ 276 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 277 278 void blk_insert_flush(struct request *rq); 279 280 int elevator_switch_mq(struct request_queue *q, 281 struct elevator_type *new_e); 282 void elevator_exit(struct request_queue *q); 283 int elv_register_queue(struct request_queue *q, bool uevent); 284 void elv_unregister_queue(struct request_queue *q); 285 286 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 287 char *buf); 288 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 289 char *buf); 290 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 291 char *buf); 292 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 293 char *buf); 294 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 295 const char *buf, size_t count); 296 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 297 ssize_t part_timeout_store(struct device *, struct device_attribute *, 298 const char *, size_t); 299 300 static inline bool bio_may_exceed_limits(struct bio *bio, 301 struct queue_limits *lim) 302 { 303 switch (bio_op(bio)) { 304 case REQ_OP_DISCARD: 305 case REQ_OP_SECURE_ERASE: 306 case REQ_OP_WRITE_ZEROES: 307 return true; /* non-trivial splitting decisions */ 308 default: 309 break; 310 } 311 312 /* 313 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 314 * This is a quick and dirty check that relies on the fact that 315 * bi_io_vec[0] is always valid if a bio has data. The check might 316 * lead to occasional false negatives when bios are cloned, but compared 317 * to the performance impact of cloned bios themselves the loop below 318 * doesn't matter anyway. 319 */ 320 return lim->chunk_sectors || bio->bi_vcnt != 1 || 321 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 322 } 323 324 struct bio *__bio_split_to_limits(struct bio *bio, struct queue_limits *lim, 325 unsigned int *nr_segs); 326 int ll_back_merge_fn(struct request *req, struct bio *bio, 327 unsigned int nr_segs); 328 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 329 struct request *next); 330 unsigned int blk_recalc_rq_segments(struct request *rq); 331 void blk_rq_set_mixed_merge(struct request *rq); 332 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 333 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 334 335 int blk_dev_init(void); 336 337 /* 338 * Contribute to IO statistics IFF: 339 * 340 * a) it's attached to a gendisk, and 341 * b) the queue had IO stats enabled when this request was started 342 */ 343 static inline bool blk_do_io_stat(struct request *rq) 344 { 345 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 346 } 347 348 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 349 350 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 351 { 352 req->cmd_flags |= REQ_NOMERGE; 353 if (req == q->last_merge) 354 q->last_merge = NULL; 355 } 356 357 /* 358 * Internal io_context interface 359 */ 360 struct io_cq *ioc_find_get_icq(struct request_queue *q); 361 struct io_cq *ioc_lookup_icq(struct request_queue *q); 362 #ifdef CONFIG_BLK_ICQ 363 void ioc_clear_queue(struct request_queue *q); 364 #else 365 static inline void ioc_clear_queue(struct request_queue *q) 366 { 367 } 368 #endif /* CONFIG_BLK_ICQ */ 369 370 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 371 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 372 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 373 const char *page, size_t count); 374 extern void blk_throtl_bio_endio(struct bio *bio); 375 extern void blk_throtl_stat_add(struct request *rq, u64 time); 376 #else 377 static inline void blk_throtl_bio_endio(struct bio *bio) { } 378 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 379 #endif 380 381 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 382 383 static inline bool blk_queue_may_bounce(struct request_queue *q) 384 { 385 return IS_ENABLED(CONFIG_BOUNCE) && 386 q->limits.bounce == BLK_BOUNCE_HIGH && 387 max_low_pfn >= max_pfn; 388 } 389 390 static inline struct bio *blk_queue_bounce(struct bio *bio, 391 struct request_queue *q) 392 { 393 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 394 return __blk_queue_bounce(bio, q); 395 return bio; 396 } 397 398 #ifdef CONFIG_BLK_CGROUP_IOLATENCY 399 extern int blk_iolatency_init(struct request_queue *q); 400 #else 401 static inline int blk_iolatency_init(struct request_queue *q) { return 0; } 402 #endif 403 404 #ifdef CONFIG_BLK_DEV_ZONED 405 void disk_free_zone_bitmaps(struct gendisk *disk); 406 void disk_clear_zone_settings(struct gendisk *disk); 407 #else 408 static inline void disk_free_zone_bitmaps(struct gendisk *disk) {} 409 static inline void disk_clear_zone_settings(struct gendisk *disk) {} 410 #endif 411 412 int blk_alloc_ext_minor(void); 413 void blk_free_ext_minor(unsigned int minor); 414 #define ADDPART_FLAG_NONE 0 415 #define ADDPART_FLAG_RAID 1 416 #define ADDPART_FLAG_WHOLEDISK 2 417 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 418 sector_t length); 419 int bdev_del_partition(struct gendisk *disk, int partno); 420 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 421 sector_t length); 422 void blk_drop_partitions(struct gendisk *disk); 423 424 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 425 struct lock_class_key *lkclass); 426 427 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 428 struct page *page, unsigned int len, unsigned int offset, 429 unsigned int max_sectors, bool *same_page); 430 431 static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu) 432 { 433 if (srcu) 434 return blk_requestq_srcu_cachep; 435 return blk_requestq_cachep; 436 } 437 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu); 438 439 int disk_scan_partitions(struct gendisk *disk, fmode_t mode); 440 441 int disk_alloc_events(struct gendisk *disk); 442 void disk_add_events(struct gendisk *disk); 443 void disk_del_events(struct gendisk *disk); 444 void disk_release_events(struct gendisk *disk); 445 void disk_block_events(struct gendisk *disk); 446 void disk_unblock_events(struct gendisk *disk); 447 void disk_flush_events(struct gendisk *disk, unsigned int mask); 448 extern struct device_attribute dev_attr_events; 449 extern struct device_attribute dev_attr_events_async; 450 extern struct device_attribute dev_attr_events_poll_msecs; 451 452 extern struct attribute_group blk_trace_attr_group; 453 454 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 455 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 456 457 extern const struct address_space_operations def_blk_aops; 458 459 int disk_register_independent_access_ranges(struct gendisk *disk); 460 void disk_unregister_independent_access_ranges(struct gendisk *disk); 461 462 #ifdef CONFIG_FAIL_MAKE_REQUEST 463 bool should_fail_request(struct block_device *part, unsigned int bytes); 464 #else /* CONFIG_FAIL_MAKE_REQUEST */ 465 static inline bool should_fail_request(struct block_device *part, 466 unsigned int bytes) 467 { 468 return false; 469 } 470 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 471 472 /* 473 * Optimized request reference counting. Ideally we'd make timeouts be more 474 * clever, as that's the only reason we need references at all... But until 475 * this happens, this is faster than using refcount_t. Also see: 476 * 477 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 478 */ 479 #define req_ref_zero_or_close_to_overflow(req) \ 480 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 481 482 static inline bool req_ref_inc_not_zero(struct request *req) 483 { 484 return atomic_inc_not_zero(&req->ref); 485 } 486 487 static inline bool req_ref_put_and_test(struct request *req) 488 { 489 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 490 return atomic_dec_and_test(&req->ref); 491 } 492 493 static inline void req_ref_set(struct request *req, int value) 494 { 495 atomic_set(&req->ref, value); 496 } 497 498 static inline int req_ref_read(struct request *req) 499 { 500 return atomic_read(&req->ref); 501 } 502 503 #endif /* BLK_INTERNAL_H */ 504