1 /* 2 * buffered writeback throttling. loosely based on CoDel. We can't drop 3 * packets for IO scheduling, so the logic is something like this: 4 * 5 * - Monitor latencies in a defined window of time. 6 * - If the minimum latency in the above window exceeds some target, increment 7 * scaling step and scale down queue depth by a factor of 2x. The monitoring 8 * window is then shrunk to 100 / sqrt(scaling step + 1). 9 * - For any window where we don't have solid data on what the latencies 10 * look like, retain status quo. 11 * - If latencies look good, decrement scaling step. 12 * - If we're only doing writes, allow the scaling step to go negative. This 13 * will temporarily boost write performance, snapping back to a stable 14 * scaling step of 0 if reads show up or the heavy writers finish. Unlike 15 * positive scaling steps where we shrink the monitoring window, a negative 16 * scaling step retains the default step==0 window size. 17 * 18 * Copyright (C) 2016 Jens Axboe 19 * 20 */ 21 #include <linux/kernel.h> 22 #include <linux/blk_types.h> 23 #include <linux/slab.h> 24 #include <linux/backing-dev.h> 25 #include <linux/swap.h> 26 27 #include "blk-wbt.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/wbt.h> 31 32 enum { 33 /* 34 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) 35 * from here depending on device stats 36 */ 37 RWB_DEF_DEPTH = 16, 38 39 /* 40 * 100msec window 41 */ 42 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, 43 44 /* 45 * Disregard stats, if we don't meet this minimum 46 */ 47 RWB_MIN_WRITE_SAMPLES = 3, 48 49 /* 50 * If we have this number of consecutive windows with not enough 51 * information to scale up or down, scale up. 52 */ 53 RWB_UNKNOWN_BUMP = 5, 54 }; 55 56 static inline bool rwb_enabled(struct rq_wb *rwb) 57 { 58 return rwb && rwb->wb_normal != 0; 59 } 60 61 /* 62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, 63 * false if 'v' + 1 would be bigger than 'below'. 64 */ 65 static bool atomic_inc_below(atomic_t *v, int below) 66 { 67 int cur = atomic_read(v); 68 69 for (;;) { 70 int old; 71 72 if (cur >= below) 73 return false; 74 old = atomic_cmpxchg(v, cur, cur + 1); 75 if (old == cur) 76 break; 77 cur = old; 78 } 79 80 return true; 81 } 82 83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) 84 { 85 if (rwb_enabled(rwb)) { 86 const unsigned long cur = jiffies; 87 88 if (cur != *var) 89 *var = cur; 90 } 91 } 92 93 /* 94 * If a task was rate throttled in balance_dirty_pages() within the last 95 * second or so, use that to indicate a higher cleaning rate. 96 */ 97 static bool wb_recent_wait(struct rq_wb *rwb) 98 { 99 struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb; 100 101 return time_before(jiffies, wb->dirty_sleep + HZ); 102 } 103 104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd) 105 { 106 return &rwb->rq_wait[is_kswapd]; 107 } 108 109 static void rwb_wake_all(struct rq_wb *rwb) 110 { 111 int i; 112 113 for (i = 0; i < WBT_NUM_RWQ; i++) { 114 struct rq_wait *rqw = &rwb->rq_wait[i]; 115 116 if (waitqueue_active(&rqw->wait)) 117 wake_up_all(&rqw->wait); 118 } 119 } 120 121 void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct) 122 { 123 struct rq_wait *rqw; 124 int inflight, limit; 125 126 if (!(wb_acct & WBT_TRACKED)) 127 return; 128 129 rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD); 130 inflight = atomic_dec_return(&rqw->inflight); 131 132 /* 133 * wbt got disabled with IO in flight. Wake up any potential 134 * waiters, we don't have to do more than that. 135 */ 136 if (unlikely(!rwb_enabled(rwb))) { 137 rwb_wake_all(rwb); 138 return; 139 } 140 141 /* 142 * If the device does write back caching, drop further down 143 * before we wake people up. 144 */ 145 if (rwb->wc && !wb_recent_wait(rwb)) 146 limit = 0; 147 else 148 limit = rwb->wb_normal; 149 150 /* 151 * Don't wake anyone up if we are above the normal limit. 152 */ 153 if (inflight && inflight >= limit) 154 return; 155 156 if (waitqueue_active(&rqw->wait)) { 157 int diff = limit - inflight; 158 159 if (!inflight || diff >= rwb->wb_background / 2) 160 wake_up_all(&rqw->wait); 161 } 162 } 163 164 /* 165 * Called on completion of a request. Note that it's also called when 166 * a request is merged, when the request gets freed. 167 */ 168 void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat) 169 { 170 if (!rwb) 171 return; 172 173 if (!wbt_is_tracked(stat)) { 174 if (rwb->sync_cookie == stat) { 175 rwb->sync_issue = 0; 176 rwb->sync_cookie = NULL; 177 } 178 179 if (wbt_is_read(stat)) 180 wb_timestamp(rwb, &rwb->last_comp); 181 wbt_clear_state(stat); 182 } else { 183 WARN_ON_ONCE(stat == rwb->sync_cookie); 184 __wbt_done(rwb, wbt_stat_to_mask(stat)); 185 wbt_clear_state(stat); 186 } 187 } 188 189 /* 190 * Return true, if we can't increase the depth further by scaling 191 */ 192 static bool calc_wb_limits(struct rq_wb *rwb) 193 { 194 unsigned int depth; 195 bool ret = false; 196 197 if (!rwb->min_lat_nsec) { 198 rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0; 199 return false; 200 } 201 202 /* 203 * For QD=1 devices, this is a special case. It's important for those 204 * to have one request ready when one completes, so force a depth of 205 * 2 for those devices. On the backend, it'll be a depth of 1 anyway, 206 * since the device can't have more than that in flight. If we're 207 * scaling down, then keep a setting of 1/1/1. 208 */ 209 if (rwb->queue_depth == 1) { 210 if (rwb->scale_step > 0) 211 rwb->wb_max = rwb->wb_normal = 1; 212 else { 213 rwb->wb_max = rwb->wb_normal = 2; 214 ret = true; 215 } 216 rwb->wb_background = 1; 217 } else { 218 /* 219 * scale_step == 0 is our default state. If we have suffered 220 * latency spikes, step will be > 0, and we shrink the 221 * allowed write depths. If step is < 0, we're only doing 222 * writes, and we allow a temporarily higher depth to 223 * increase performance. 224 */ 225 depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth); 226 if (rwb->scale_step > 0) 227 depth = 1 + ((depth - 1) >> min(31, rwb->scale_step)); 228 else if (rwb->scale_step < 0) { 229 unsigned int maxd = 3 * rwb->queue_depth / 4; 230 231 depth = 1 + ((depth - 1) << -rwb->scale_step); 232 if (depth > maxd) { 233 depth = maxd; 234 ret = true; 235 } 236 } 237 238 /* 239 * Set our max/normal/bg queue depths based on how far 240 * we have scaled down (->scale_step). 241 */ 242 rwb->wb_max = depth; 243 rwb->wb_normal = (rwb->wb_max + 1) / 2; 244 rwb->wb_background = (rwb->wb_max + 3) / 4; 245 } 246 247 return ret; 248 } 249 250 static inline bool stat_sample_valid(struct blk_rq_stat *stat) 251 { 252 /* 253 * We need at least one read sample, and a minimum of 254 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know 255 * that it's writes impacting us, and not just some sole read on 256 * a device that is in a lower power state. 257 */ 258 return (stat[READ].nr_samples >= 1 && 259 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); 260 } 261 262 static u64 rwb_sync_issue_lat(struct rq_wb *rwb) 263 { 264 u64 now, issue = ACCESS_ONCE(rwb->sync_issue); 265 266 if (!issue || !rwb->sync_cookie) 267 return 0; 268 269 now = ktime_to_ns(ktime_get()); 270 return now - issue; 271 } 272 273 enum { 274 LAT_OK = 1, 275 LAT_UNKNOWN, 276 LAT_UNKNOWN_WRITES, 277 LAT_EXCEEDED, 278 }; 279 280 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) 281 { 282 struct backing_dev_info *bdi = rwb->queue->backing_dev_info; 283 u64 thislat; 284 285 /* 286 * If our stored sync issue exceeds the window size, or it 287 * exceeds our min target AND we haven't logged any entries, 288 * flag the latency as exceeded. wbt works off completion latencies, 289 * but for a flooded device, a single sync IO can take a long time 290 * to complete after being issued. If this time exceeds our 291 * monitoring window AND we didn't see any other completions in that 292 * window, then count that sync IO as a violation of the latency. 293 */ 294 thislat = rwb_sync_issue_lat(rwb); 295 if (thislat > rwb->cur_win_nsec || 296 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { 297 trace_wbt_lat(bdi, thislat); 298 return LAT_EXCEEDED; 299 } 300 301 /* 302 * No read/write mix, if stat isn't valid 303 */ 304 if (!stat_sample_valid(stat)) { 305 /* 306 * If we had writes in this stat window and the window is 307 * current, we're only doing writes. If a task recently 308 * waited or still has writes in flights, consider us doing 309 * just writes as well. 310 */ 311 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || 312 wbt_inflight(rwb)) 313 return LAT_UNKNOWN_WRITES; 314 return LAT_UNKNOWN; 315 } 316 317 /* 318 * If the 'min' latency exceeds our target, step down. 319 */ 320 if (stat[READ].min > rwb->min_lat_nsec) { 321 trace_wbt_lat(bdi, stat[READ].min); 322 trace_wbt_stat(bdi, stat); 323 return LAT_EXCEEDED; 324 } 325 326 if (rwb->scale_step) 327 trace_wbt_stat(bdi, stat); 328 329 return LAT_OK; 330 } 331 332 static void rwb_trace_step(struct rq_wb *rwb, const char *msg) 333 { 334 struct backing_dev_info *bdi = rwb->queue->backing_dev_info; 335 336 trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec, 337 rwb->wb_background, rwb->wb_normal, rwb->wb_max); 338 } 339 340 static void scale_up(struct rq_wb *rwb) 341 { 342 /* 343 * Hit max in previous round, stop here 344 */ 345 if (rwb->scaled_max) 346 return; 347 348 rwb->scale_step--; 349 rwb->unknown_cnt = 0; 350 351 rwb->scaled_max = calc_wb_limits(rwb); 352 353 rwb_wake_all(rwb); 354 355 rwb_trace_step(rwb, "step up"); 356 } 357 358 /* 359 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we 360 * had a latency violation. 361 */ 362 static void scale_down(struct rq_wb *rwb, bool hard_throttle) 363 { 364 /* 365 * Stop scaling down when we've hit the limit. This also prevents 366 * ->scale_step from going to crazy values, if the device can't 367 * keep up. 368 */ 369 if (rwb->wb_max == 1) 370 return; 371 372 if (rwb->scale_step < 0 && hard_throttle) 373 rwb->scale_step = 0; 374 else 375 rwb->scale_step++; 376 377 rwb->scaled_max = false; 378 rwb->unknown_cnt = 0; 379 calc_wb_limits(rwb); 380 rwb_trace_step(rwb, "step down"); 381 } 382 383 static void rwb_arm_timer(struct rq_wb *rwb) 384 { 385 if (rwb->scale_step > 0) { 386 /* 387 * We should speed this up, using some variant of a fast 388 * integer inverse square root calculation. Since we only do 389 * this for every window expiration, it's not a huge deal, 390 * though. 391 */ 392 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, 393 int_sqrt((rwb->scale_step + 1) << 8)); 394 } else { 395 /* 396 * For step < 0, we don't want to increase/decrease the 397 * window size. 398 */ 399 rwb->cur_win_nsec = rwb->win_nsec; 400 } 401 402 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); 403 } 404 405 static void wb_timer_fn(struct blk_stat_callback *cb) 406 { 407 struct rq_wb *rwb = cb->data; 408 unsigned int inflight = wbt_inflight(rwb); 409 int status; 410 411 status = latency_exceeded(rwb, cb->stat); 412 413 trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step, 414 inflight); 415 416 /* 417 * If we exceeded the latency target, step down. If we did not, 418 * step one level up. If we don't know enough to say either exceeded 419 * or ok, then don't do anything. 420 */ 421 switch (status) { 422 case LAT_EXCEEDED: 423 scale_down(rwb, true); 424 break; 425 case LAT_OK: 426 scale_up(rwb); 427 break; 428 case LAT_UNKNOWN_WRITES: 429 /* 430 * We started a the center step, but don't have a valid 431 * read/write sample, but we do have writes going on. 432 * Allow step to go negative, to increase write perf. 433 */ 434 scale_up(rwb); 435 break; 436 case LAT_UNKNOWN: 437 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) 438 break; 439 /* 440 * We get here when previously scaled reduced depth, and we 441 * currently don't have a valid read/write sample. For that 442 * case, slowly return to center state (step == 0). 443 */ 444 if (rwb->scale_step > 0) 445 scale_up(rwb); 446 else if (rwb->scale_step < 0) 447 scale_down(rwb, false); 448 break; 449 default: 450 break; 451 } 452 453 /* 454 * Re-arm timer, if we have IO in flight 455 */ 456 if (rwb->scale_step || inflight) 457 rwb_arm_timer(rwb); 458 } 459 460 void wbt_update_limits(struct rq_wb *rwb) 461 { 462 rwb->scale_step = 0; 463 rwb->scaled_max = false; 464 calc_wb_limits(rwb); 465 466 rwb_wake_all(rwb); 467 } 468 469 static bool close_io(struct rq_wb *rwb) 470 { 471 const unsigned long now = jiffies; 472 473 return time_before(now, rwb->last_issue + HZ / 10) || 474 time_before(now, rwb->last_comp + HZ / 10); 475 } 476 477 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO) 478 479 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw) 480 { 481 unsigned int limit; 482 483 /* 484 * At this point we know it's a buffered write. If this is 485 * kswapd trying to free memory, or REQ_SYNC is set, set, then 486 * it's WB_SYNC_ALL writeback, and we'll use the max limit for 487 * that. If the write is marked as a background write, then use 488 * the idle limit, or go to normal if we haven't had competing 489 * IO for a bit. 490 */ 491 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd()) 492 limit = rwb->wb_max; 493 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) { 494 /* 495 * If less than 100ms since we completed unrelated IO, 496 * limit us to half the depth for background writeback. 497 */ 498 limit = rwb->wb_background; 499 } else 500 limit = rwb->wb_normal; 501 502 return limit; 503 } 504 505 static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw, 506 wait_queue_t *wait, unsigned long rw) 507 { 508 /* 509 * inc it here even if disabled, since we'll dec it at completion. 510 * this only happens if the task was sleeping in __wbt_wait(), 511 * and someone turned it off at the same time. 512 */ 513 if (!rwb_enabled(rwb)) { 514 atomic_inc(&rqw->inflight); 515 return true; 516 } 517 518 /* 519 * If the waitqueue is already active and we are not the next 520 * in line to be woken up, wait for our turn. 521 */ 522 if (waitqueue_active(&rqw->wait) && 523 rqw->wait.task_list.next != &wait->task_list) 524 return false; 525 526 return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw)); 527 } 528 529 /* 530 * Block if we will exceed our limit, or if we are currently waiting for 531 * the timer to kick off queuing again. 532 */ 533 static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock) 534 __releases(lock) 535 __acquires(lock) 536 { 537 struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd()); 538 DEFINE_WAIT(wait); 539 540 if (may_queue(rwb, rqw, &wait, rw)) 541 return; 542 543 do { 544 prepare_to_wait_exclusive(&rqw->wait, &wait, 545 TASK_UNINTERRUPTIBLE); 546 547 if (may_queue(rwb, rqw, &wait, rw)) 548 break; 549 550 if (lock) { 551 spin_unlock_irq(lock); 552 io_schedule(); 553 spin_lock_irq(lock); 554 } else 555 io_schedule(); 556 } while (1); 557 558 finish_wait(&rqw->wait, &wait); 559 } 560 561 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio) 562 { 563 const int op = bio_op(bio); 564 565 /* 566 * If not a WRITE, do nothing 567 */ 568 if (op != REQ_OP_WRITE) 569 return false; 570 571 /* 572 * Don't throttle WRITE_ODIRECT 573 */ 574 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE)) 575 return false; 576 577 return true; 578 } 579 580 /* 581 * Returns true if the IO request should be accounted, false if not. 582 * May sleep, if we have exceeded the writeback limits. Caller can pass 583 * in an irq held spinlock, if it holds one when calling this function. 584 * If we do sleep, we'll release and re-grab it. 585 */ 586 enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock) 587 { 588 unsigned int ret = 0; 589 590 if (!rwb_enabled(rwb)) 591 return 0; 592 593 if (bio_op(bio) == REQ_OP_READ) 594 ret = WBT_READ; 595 596 if (!wbt_should_throttle(rwb, bio)) { 597 if (ret & WBT_READ) 598 wb_timestamp(rwb, &rwb->last_issue); 599 return ret; 600 } 601 602 __wbt_wait(rwb, bio->bi_opf, lock); 603 604 if (!blk_stat_is_active(rwb->cb)) 605 rwb_arm_timer(rwb); 606 607 if (current_is_kswapd()) 608 ret |= WBT_KSWAPD; 609 610 return ret | WBT_TRACKED; 611 } 612 613 void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat) 614 { 615 if (!rwb_enabled(rwb)) 616 return; 617 618 /* 619 * Track sync issue, in case it takes a long time to complete. Allows 620 * us to react quicker, if a sync IO takes a long time to complete. 621 * Note that this is just a hint. 'stat' can go away when the 622 * request completes, so it's important we never dereference it. We 623 * only use the address to compare with, which is why we store the 624 * sync_issue time locally. 625 */ 626 if (wbt_is_read(stat) && !rwb->sync_issue) { 627 rwb->sync_cookie = stat; 628 rwb->sync_issue = blk_stat_time(stat); 629 } 630 } 631 632 void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat) 633 { 634 if (!rwb_enabled(rwb)) 635 return; 636 if (stat == rwb->sync_cookie) { 637 rwb->sync_issue = 0; 638 rwb->sync_cookie = NULL; 639 } 640 } 641 642 void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth) 643 { 644 if (rwb) { 645 rwb->queue_depth = depth; 646 wbt_update_limits(rwb); 647 } 648 } 649 650 void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on) 651 { 652 if (rwb) 653 rwb->wc = write_cache_on; 654 } 655 656 /* 657 * Disable wbt, if enabled by default. Only called from CFQ. 658 */ 659 void wbt_disable_default(struct request_queue *q) 660 { 661 struct rq_wb *rwb = q->rq_wb; 662 663 if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT) 664 wbt_exit(q); 665 } 666 EXPORT_SYMBOL_GPL(wbt_disable_default); 667 668 /* 669 * Enable wbt if defaults are configured that way 670 */ 671 void wbt_enable_default(struct request_queue *q) 672 { 673 /* Throttling already enabled? */ 674 if (q->rq_wb) 675 return; 676 677 /* Queue not registered? Maybe shutting down... */ 678 if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) 679 return; 680 681 if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) || 682 (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ))) 683 wbt_init(q); 684 } 685 EXPORT_SYMBOL_GPL(wbt_enable_default); 686 687 u64 wbt_default_latency_nsec(struct request_queue *q) 688 { 689 /* 690 * We default to 2msec for non-rotational storage, and 75msec 691 * for rotational storage. 692 */ 693 if (blk_queue_nonrot(q)) 694 return 2000000ULL; 695 else 696 return 75000000ULL; 697 } 698 699 static int wbt_data_dir(const struct request *rq) 700 { 701 return rq_data_dir(rq); 702 } 703 704 int wbt_init(struct request_queue *q) 705 { 706 struct rq_wb *rwb; 707 int i; 708 709 BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS); 710 711 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); 712 if (!rwb) 713 return -ENOMEM; 714 715 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); 716 if (!rwb->cb) { 717 kfree(rwb); 718 return -ENOMEM; 719 } 720 721 for (i = 0; i < WBT_NUM_RWQ; i++) { 722 atomic_set(&rwb->rq_wait[i].inflight, 0); 723 init_waitqueue_head(&rwb->rq_wait[i].wait); 724 } 725 726 rwb->wc = 1; 727 rwb->queue_depth = RWB_DEF_DEPTH; 728 rwb->last_comp = rwb->last_issue = jiffies; 729 rwb->queue = q; 730 rwb->win_nsec = RWB_WINDOW_NSEC; 731 rwb->enable_state = WBT_STATE_ON_DEFAULT; 732 wbt_update_limits(rwb); 733 734 /* 735 * Assign rwb and add the stats callback. 736 */ 737 q->rq_wb = rwb; 738 blk_stat_add_callback(q, rwb->cb); 739 740 rwb->min_lat_nsec = wbt_default_latency_nsec(q); 741 742 wbt_set_queue_depth(rwb, blk_queue_depth(q)); 743 wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 744 745 return 0; 746 } 747 748 void wbt_exit(struct request_queue *q) 749 { 750 struct rq_wb *rwb = q->rq_wb; 751 752 if (rwb) { 753 blk_stat_remove_callback(q, rwb->cb); 754 blk_stat_free_callback(rwb->cb); 755 q->rq_wb = NULL; 756 kfree(rwb); 757 } 758 } 759